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Abstract
Datacenter workloads have evolved from the data intensive,
loosely-coupled workloads of the past decade to more tightly
coupled ones, wherein ultra-low latency communication is
essential for resource disaggregation over the network and to
enable emerging programming models.

We introduce Aquila, an experimental datacenter network
fabric built with ultra-low latency support as a first-class de-
sign goal, while also supporting traditional datacenter traffic.
Aquila uses a new Layer 2 cell-based protocol, GNet, an inte-
grated switch, and a custom ASIC with low-latency Remote
Memory Access (RMA) capabilities co-designed with GNet.
We demonstrate that Aquila is able to achieve under 40 µs tail
fabric Round Trip Time (RTT) for IP traffic and sub-10 µs
RMA execution time across hundreds of host machines, even
in the presence of background throughput-oriented IP traffic.
This translates to more than 5x reduction in tail latency for
a production quality key-value store running on a prototype
Aquila network.

1 INTRODUCTION
There has been tremendous progress in datacenter networking
over the past decade, with fundamental advances in the control
plane [18,27,44,49], the rise of commodity silicon arranged in
non-blocking topologies [4, 23, 36, 49], network management
and verification [7, 8, 29, 41], and highly available network
design techniques [21]. Taken together, the community is now
in a place where cost-effective, easy-to-manage, and scalable
network designs and deployments are becoming common in
industry. Plentiful network bandwidth at the scale of clusters
of tens of thousands servers [49] can be leveraged for large-
scale hyperscalers and the services they host.

However, all of these advances come while assuming TCP-
based congestion control and Ethernet Layer 2 protocols.
This Layer 2-4 stack has been incredibly robust and resilient
through many decades of deployment and incremental evo-
lution. However, we are seeing a new impasse in the dat-
acenter [12] where advances in distributed computing are

increasingly limited by the lack of performance predictabil-
ity and isolation in multi-tenant datacenter networks. Two
to three orders of magnitude performance difference [15] in
what network fabric designers aim for and what applications
can expect and program to is not uncommon, severely limiting
the pace of innovation in higher-level cluster-based distributed
systems.

Such concerns are amplified when considering the state
of supercomputing/HPC clusters [17] and emerging machine
learning pods [22, 28] where individual applications benefit
from low-latency RDMA [16, 51], collective operations [46],
and tightly integrated compute and communication capabil-
ities. The key differences in these more specialized settings
relative to production datacenter environments include: i) the
ability to assume single tenant deployments or at least space
sharing rather than time sharing; ii) reduced concerns around
failure handling; and iii) a willingness to take on backward
incompatible network technologies including wire formats.

Recent research efforts into disaggregated rack-scale archi-
tectures [13, 34] further highlight some of these challenges:
can the same NICs and switches supporting host-to-host com-
munication across the wide area support, for example, SSD
and GPU devices at a much smaller radius? Is the disaggrega-
tion network necessarily a separate dedicated fabric or can it
be multiplexed with TCP/IP traffic destined to remote hosts
potentially 100ms or more away? While there is some appeal
to running a second (or third) network dedicated for an individ-
ual use case, the control and, as importantly, the management
overhead of each network introduces a cyclic dependency
where the second network is not worthwhile relative to the
status quo until the underlying technology is proven/mature.
However, there is no opportunity to iterate on the alternate
technology because doing so is cost and complexity negative
for a number of generations into the future because applica-
tions would have to evolve substantially before demonstrating
end-to-end wins on the new hardware.

The need for backward compatibility combined with chal-
lenges in deploying niche "bag on the side" networks threat-
ens a new ossification in datacenter networking and dis-
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tributed systems where we are left with programming to the
lowest common denominator of TCP transports and commod-
ity Ethernet switches with associated latency, CPU efficiency,
and isolation limitations.

In this paper, we present a first exploration of an alterna-
tive tightly-coupled (or Clique-based) datacenter architecture,
Aquila, a hardware implementation supporting predictable,
high-bandwidth, and ultra-low latency communication. In our
approach, datacenter networks consist of dozens of Cliques,
each hosting approximately 1-2k network ports. Cliques in-
teroperate with one another at the datacenter interface (e.g.,
the spine layer of existing Clos-based datacenter networks)
through standard Ethernet and IP. However, within a Clique,
any transport and Layer 2 network protocol may be deployed.
Applications that fit within the boundaries of an individ-
ual Clique can assume Clique-local capability, including ro-
bust RDMA, predictable low-latency communication, device
disaggregation, support for ML aggregation primitives, etc.
We assume IP-based transport for communication between
Cliques, which means that any intra-Clique communication
primitives and innovations must live alongside standard trans-
ports. Cliques then become the unit of deployment, innova-
tion, and homogeneity, allowing for incremental, backward-
compatible deployment into existing datacenters. A Clique is
also sufficiently large to host all but the largest of individual
distributed systems, especially as we move to hundreds of
compute cores per server.

Aquila, our first Clique implementation based around a
custom in-house ASIC and communication software, consists
of a cell-switched non-Ethernet substrate, GNet.
• Aquila networks are built from individual silicon compo-

nents that serve as both NIC and a portion of the traditional
Top of Rack (ToR) switch; each ToR-in-NIC (TiN) chip
attaches to hosts and directly to other TiN chips to realize
a cost-effective network built from a single, replicated sili-
con component, rather than distinct NIC and switch silicon
components from separate vendors.

• GNet provides the illusion of Ethernet to hosts within
Aquila, as well as to non-Aquila networking components
outside the scope of the Aquila Clique, by terminating
Ethernet at the Aquila network boundary and tunneling
traffic across a fully-custom, self-defending, near-lossless
L2 substrate.

• Aquila further reduces cost by realizing a direct-network
rather than an indirect (Clos) topology. To fully unlock
the capabilities of its Dragonfly topology [30], and freed
from the de facto constraints imposed by Ethernet, Aquila
leverages adaptive routing to deliver full point-to-point
bandwidth between host-pairs by leveraging multiple non-
minimal paths.

• Aquila delivers data in small chunks called cells, rather
than packets, thereby optimizing for latency of small ex-
changes like those used by distributed systems built on
RDMA and similar technologies [51]. Its extremely tight

integration between NIC and network allows for ultra-low
RMA-read capability (4us median) between the memory
systems of up to 1152 hosts.
Aquila’s design departs from traditional Ethernet fabrics in

several ways: i) links use credit-based flow-control; ii) switch
buffering is shallow; and iii) solicitation bounds end-to-end
admission. Any one of these tenets in Ethernet would be
problematic, but taken together, they form a cohesive design.
For instance, flow-controlled near-lossless links can give rise
to tree saturation, especially with shallow buffering, but end-
to-end admission control bounds the size and spread of such
trees, and ensures they are transient. Similarly, admission
control breaks down when drops are likely, but link-level flow
control makes drops very rare, and in turn enables the use of
shallow buffering in switching elements, since overrun is not
possible.

We present the detailed design, implementation, and evalu-
ation of Aquila. Aquila is not the final word in Clique design;
in fact, our first experience with the Aquila system suggests a
number of areas for improvement in future generations. We
hope, however, that the approach of bringing vertical integra-
tion including the host software stack, the NIC, and the switch
along with a Clique-based datacenter architecture will enable
new models of datacenter innovation along with new capa-
bilities to distributed systems that can assume cutting edge
rather than lowest common denominator communication and
disaggregation capability within the boundary of thousands
of servers and hundreds of thousands of cores.

2 OBJECTIVES AND OUR APPROACH
Aquila’s design departures from Ethernet are grounded in a
set of common objectives, described below. Taken individu-
ally, these design choices–e.g., flow control, custom Layer
2–would be hard to apply to an existing network incremen-
tally. But in concert, Aquila’s features realize a complete,
performant design point.

Sustainable hardware development. To sustain the hard-
ware development effort with a modest sized team, we chose
to build a single chip with both NIC and switch functional-
ity in the same silicon. Our fundamental insight and starting
point was that a medium-radix switch could be incorporated
into existing NIC silicon at modest additional cost and that
a number of these resulting NIC/switch combinations called
ToR-in-NIC (TiN) chips could be wired together via a copper
backplane in a pod, an enclosure the size of a traditional Top
of Rack (ToR) switch. Servers could then connect to the pod
via PCIe for their NIC functionality. The TiN switch would
provide connectivity to other servers in the same Clique via
an optimized Layer 2 protocol, GNet, and to other servers
in other Cliques via standard Ethernet. The inset in Figure 1
summarizes the major components of TiN.

Cost effective, non-blocking topology. For efficiency and
low latency, we selected a direct connect topology, Dragon-
fly, a well-studied topology that minimizes the number of
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Figure 1: Aquila Clique dataplane and control plane overview. The ToR-in-NIC (TiN) chip is expanded in the top right inset. TiN chips are arranged in a
cell-switched Dragonfly network, connecting via Ethernet to the rest of the datacenter network’s (DCN) spine switches and to host machines via PCIe.
Conventional Ethernet/IP packets are split into cells at ingress after a round of solicitation per packet and reassembled and re-ordered at the fabric’s egress.
The co-designed 1RMA protocol injects cells directly into the cell network, extending memory accesses across the Clique. The Aquila SDN controller
configures and manages TiN switches inband, via the DCN.

long optical links in the network while still providing non-
blocking bandwidth for uniform random traffic patterns, with
2:1 over-subscription for worst-case adversarial traffic. Fig-
ure 1 illustrates a simplified Dragonfly topology where TiNs
within a pod are fully connected in a mesh, and multiple pods
are likewise connected all-to-all to form a tightly-coupled
Clique network. The largest Aquila network supports 12 TiNs
in a pod with 48 pods, serving up to 1152 host machines.

Combining NIC and ToR into the single TiN chip was a
less costly path to innovation than separate NIC and switch
ASIC programs, and a design realized from a common single
component was intended to streamline inventory management
for Aquila. Further, we implemented an optional capability to
allow pairs of host machines to share a single TiN, halving the
normalized cost of ownership for networking per host, trading
off reduced sustained bandwidth provisioning per machine.

Ultra low-latency network. To optimize for ultra-low la-
tency, under load and in the tail, Aquila implements cell-based
communication with shallow buffering for cells within the
network, flow controlled links for near lossless cell delivery,
and hardware adaptive routing to react in nanoseconds to link

failures and to keep the network load balanced even at high
loads. To ensure recipients are not overwhelmed, Aquila im-
plements end-to-end solicitation for each packet at ingress,
which guarantees that resources are available at the destination
TiN before the packet can be split into cells and transmitted
from the source TiN. We built these latency-guarding features
into Aquila’s Layer 2 protocol, GNet. As depicted in Fig-
ure 1, while the Aquila network fabric presents an Ethernet
packet interface at its boundary, Aquila tunnels conventional
Ethernet/IP packets over GNet, disassembled at ingress and
reassembled and re-ordered at the egress of the Clique.

Unified fabric for legacy traffic and RMA/memory
disaggregation. Aquila unifies low-latency communication
primitives (RMA) alongside commodity primitives (IP) in
a common fabric, to address the growing diversity of data-
center workloads [5, 42, 45]. A fabric delivering both high-
performance and legacy connectivity avoids the pitfalls of
a bag-on-the-side network and secondary NICs, reducing
the cost of ownership and the toil related to the life cycle
management of two separate networks. Managing a single
network for availability, security, monitoring and upgrades
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is challenging enough–managing separate networks for indi-
vidual use cases introduces an extraordinarily high bar in any
cost/benefit analysis. For efficient remote memory access and
memory disaggregation alongside traditional protocols, we
co-designed a Remote Memory Access protocol, 1RMA [51],
to extend memory access across the Aquila Clique directly
on GNet, instead of layering on top of IP.

Co-existing within the larger Clos-based software-
defined datacenter network ecosystem. Typical datacenter
networks [49] are based on a scalable Clos topology where
aggregation blocks are connected via a spine switching layer;
Aquila is designed to integrate into such a network via its Eth-
ernet ports. A hierarchical Software Defined Network (SDN)
control plane with a modular, micro-service architecture [18]
manages and controls the various networking blocks within
the datacenter.

Figure 2 describes the integration of Aquila in the broader
datacenter network’s dataplane and control plane ecosystem.
The Aquila network block connects to the datacenter’s spine
switching layer via Ethernet links, akin to other aggregation
blocks. The modular architecture of the datacenter network
realizes a hybrid topology, i.e., a Dragonfly network integrated
as a block within a larger Clos topology, a first of its kind to
the best of our knowledge.

For the control plane, we adapted an SDN controller to con-
figure, manage and program TiNs inband via a thin on-box
firmware running on the TiN CPU (Figure 1). The Aquila
SDN controller, similar to the SDN controllers of other aggre-
gation blocks, interacts with each of four central Inter-Block
Routing Controllers (IBR-C) (Figure 2) to enable communi-
cation with other aggregation blocks as well as with networks
external to the datacenter.

Cliques as the basis for hosting tightly-coupled appli-
cations. To exploit the tightly coupled, low latency commu-
nication enabled by the Aquila Clique, we adapted the job
scheduler [53] to be aware of Clique locality. High bandwidth
or latency sensitive jobs could optionally be scheduled on
host machines within a Clique, while other jobs could still be
bin-packed across blocks, regardless of locality.

3 HARDWARE DESIGN
In this section we relate how the key design goals drove the
hardware design. In summary:
• Low latency objectives drove the selection of a shallow-

buffered cell-switched GNet fabric. §3.1 details the design
of the GNet switch and link-level protocol.

• Cost-effectiveness goals led to the choice of an integrated
switch and NIC chip, TiN, as well as a direct topology such
as the Dragonfly. §3.2 outlines the rationale for selecting
the Dragonfly and the impact of this choice on the design.

• Shared fabric for both IP traffic and low-latency RMA.
§3.3 describes how IP packets traverse the GNet fabric, and
§3.4 details the co-design aspects of the 1RMA protocol
with the GNet fabric.

Figure 2: Aquila Clique integrated into the broader datacenter network
and SDN ecosystem co-existing with other Ethernet aggregation blocks.
Topologically, the Aquila block connects to the Clos-based datacenter
spines akin to the Ethernet based blocks. In the control plane, the Aquila
SDN controller, similar to controllers of other blocks, interacts with
each of the four sharded Inter Block Routing controllers (IBR-C) to
enable cross-block routing.

3.1 GNet Switch and Links
The cell switch. The switching capability of the TiN chip is
provided by a 50-port cell switch optimized for low latency.
The maximum cell size of 160 bytes was chosen to keep the
serialization latency on 25G links small (~50ns). 32 ports are
external-facing GNet ports (of which 24 are pod-local and 8
are inter-pod ports). The remaining 18 ports are intra-chip,
for cells transmitted and received by the various traffic end-
points (e.g., IP and 1RMA). The fall through latency of the
core cell switch is 20ns and the total per hop latency without
Forward Error Correction (FEC) is 40ns. GNet links sup-
port 32 Virtual Channels (VCs [14]) - FIFO queues used for
deadlock-avoidance and QoS. VCs are used for deadlock-free
routing, for differentiation between classes of service, and to
separate solicited and unsolicited traffic. A centralized arbiter
implements a variant of the iSLIP arbitration protocol [38],
supporting one arbitration request per VC per port, ensuring
that no VC or port is starved of throughput. To support vari-
able cell sizes, we modified iSLIP such that the ingress and
egress ports communicate a "busy" signal to the crossbar ar-
biter. A "busy" indicates that the ports are transferring a cell
across the crossbar. The arbiter takes this into account when
it evaluates pending requests for the next request-grant-accept
cycle. Quality of Service (QoS) between VCs is implemented
in the output buffer and supports both weighted round robin
and strict priority. Each VC has its own input FIFO space
protected by a reliable credit mechanism, similar to that used
in PCI Express. A shared buffer, shared credit scheme was
considered to save memory, but for the relatively short links
required for Aquila the simplicity and complete QoS isolation
of independent FIFOs was preferred.

GNet link level protocol. GNet links support cells be-
tween 16 bytes and 160 bytes in size, with frequent reverse
flow control traffic. The use of variable length cells gives very
high protocol efficiency (e.g., 1RMA requests are small) on
the wire even after the additional control traffic for admission
control. Every GNet cell has a common routing header of 8
bytes that contains the 16 bit source and destination GNet ad-
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dresses, the cell length and type, the VC, a decrementing hop
count, an 8 bit header CRC and a Trace Enable bit. To enable
efficient transmission of GNet cells, a custom 66/64 bit Physi-
cal Coding Sublayer (PCS) was developed that minimizes the
cell delineation overhead and allows the reverse flow control
traffic to be sent as very compact ordered sets. Control or-
dered sets are used for: (1) Start of cell delineation, (2) Flow
control, (3) TimeSync (§B), (4) Management ordered sets
(MOS), and (5) Phy up/down control and fault detection.
3.2 The Dragonfly cell fabric
We selected the Dragonfly topology to manage the cost of
optical links, shown in Figure 1. The Dragonfly cell fabric is
implemented using two types of GNet links: 24 local links per
TiN that fully connect TiNs within the pod, and 8 global links
per TiN that connect between pods, up to 100m apart on the
datacenter floor. The local links are implemented as single-
lane, 28 Gbps copper backplane connections. The global links
are optical and use specially developed low cost GNet opti-
cal modules. Noise on global links is mitigated with FEC,
incurring a 30ns per-hop latency penalty, and a 6% bandwidth
overhead. Local links operate without FEC for the lowest
latency at acceptable margins. Both local and global links
ultimately implement the same link level protocol. Due to
the hierarchical nature of the Dragonfly topology, GNet ad-
dresses have three components: pod id, TiN id and endpoint id.
Endpoints represent protocol engines (IP, 1RMA, and CPU)
detailed later.

Deadlock avoidance. We implement deadlock avoidance
in our Dragonfly topology using a combination of turn rules
and VCs. With our budget of 32 VCs, it is desirable to mini-
mize the number of VCs used for deadlock avoidance. In the
implemented routing scheme, we employ turn rules similar
to the parity-sign approach in [20] within a pod for deadlock-
free intra-pod routing. The VC is incremented when moving
from a global link to a local link [30], requiring a total of
3 VCs used for deadlock avoidance in the worst fault-free
route, that of a non-minimal route via an intermediate pod.
Accounting for 10 traffic classes, each with 3 routing VCs,
a further two VCs are available as escape VCs in certain
dynamic failure avoidance scenarios.

Adaptive routing. The majority of traffic routes adaptively
to achieve both high throughput and the lowest latency on
Aquila’s Dragonfly network. TiN implements locally adaptive
routing [30, 48], a scheme that makes adaptive routing deci-
sions based on available information at a GNet switch, in par-
ticular, the per-VC output queue lengths at each port. These
queue depths reflect nearby congestion because of GNet’s
link-level flow control and shallow buffering. Link failures
manifest similarly, which also allows the adaptive routing
algorithm to route around failed links until the SDN routing
engine removes the entries for links which have lost connec-
tivity.

The adaptive routing implementation selects two minimal
routes at random from eight supplied by the routing tables, and

also considers three non-minimal routes from 24 non-minimal
route candidates. The five candidate routes are evaluated us-
ing a weighted comparison that favors the minimal routes.
Random choices (rather than 24-way comparison) allow us to
avoid flocking, having coordinated adaptive routing decisions,
and moving congestion from one place to another [40]. Other
routing modes are enabled by constraining the routing to min-
imal routes only, or by forcing deterministic choice of route
using a hash of the source and destination addresses. These
constraints yield Aquila’s four principal routing modes: Fully
Adaptive, Minimal Adaptive, Deterministic and Minimal De-
terministic. The deterministic routing modes are used for cell
types requiring ordering. The cell switch uses table-based
routing because of the need to handle failures and upgrades
using SDN routing described in §4.2, as well as flexibility for
other topologies.

3.3 IP Traffic
Host IP traffic is sent and received by a conventional 100 Gbps
NIC capable of supporting multi-host operation for up to two
independent hosts. The option of multi-host capability was
considered important in order to give a degree of flexibility
in bandwidth per machine allocation. There are two other
sources of IP traffic on the TiN chip: the 100 Gbps exter-
nal Ethernet port for connectivity outside the Aquila fabric,
and a low bandwidth port to the embedded management pro-
cessor. Traffic from all IP sources is handled in the same
way: the packet processing pipeline performs IP routing and
cellification, i.e., splitting the IP packet into GNet cells and
traversing them to the final destination, using Aquila’s IP over
GNet protocol.

Packet processing logic. Each IP packet passing over the
GNet fabric goes through the input packet processing and
output packet processing blocks once only. Effectively, the
entire GNet Clique acts as a single stage IP packet switch.
The input packet processing pipeline handles:
• L3 to GNet L2 address translation (either one-to-one or

WCMP [55]);
• Selectively punting some packets to the embedded control

processor;
• Input buffer QoS.

L2 Ethernet MAC addresses are stripped from inbound
packets after processing; packet transfer over the GNet cell
network is for IPv4/IPv6 only. Non-IP packets such as ARP
may be either encapsulated or punted to the embedded con-
trol processor, consistent with the requirements of our SDN
control plane (§4).

IP over GNet protocol. IP traffic traverses Aquila by
means of the GNet upper layer protocol, shown in Figure 3.
Each IP packet sent over the cell fabric issues a Request To
Send (RTS), and awaits a Clear to Send (CTS) handshake
before any data is transmitted. These are sent as 16 byte
GNet cells to minimize the bandwidth overhead. The hand-
shake protocol performs three functions:
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Figure 3: Cellification: IP Packets are split into multiple GNet data
cells that are only admitted into the GNet fabric when the ingress TiN
receives a CTS. In the egress packet handler, cells are reassembled into
packets, respecting their original transmission order, and sent to the NIC
(all within the TiN chip).

• It implements solicitation for IP packets by only allowing
data cells onto the GNet network when the destination end
point has signalled it has sufficient input bandwidth and
buffer space to receive them.

• It allocates hardware resources at the destination, e.g., cell
to packet reassembly buffers, before any data cells are
transmitted so that there is always a guaranteed reassembly
space.

• RTS arrival defines inter-packet order. While data cells
route adaptively and potentially arrive out of order at their
destination, RTS ordering ensures that original transmis-
sion order can be reconstructed at the receiving side.
Packets which have passed through the packet processing

pipeline and have a valid GNet L2 address are stored in the
packet ingress buffers. An RTS is generated immediately;
in fact, for long packets the RTS can be issued before the
whole packet is received. The RTS itself consists of 8 bytes of
routing header and a further 8 bytes of payload that includes
the IP packet length, Class of Service (CoS), the packet’s
location in the ingress buffer, and an indicator of ingress
buffer usage. Compactness is important because RTS cells are
unsolicited and can still lead to incast. However, considering
that an average packet is >1Kbytes, an incast of RTS cells
represents a reduction of incast volume in the network by a
factor of 64.

RTS cells are carried on their own VCs, allowing them to
be sent at high priority and also maintain isolation between
solicited and unsolicited cells. RTS VCs are routed determinis-
tically over the GNet fabric, using a path selected by a hash of
the flow-invariant fields of the cell, ensuring that the RTS cells
for a given IP flow are received in the order they were sent.
The RTS cells are received into FIFO queues at the packet
egress. Packet data transfer is initiated by the egress-side by
sending a CTS back to the appropriate ingress port. Along
with the 8-byte routing header, the CTS carries a pointer to
the packet in the ingress buffer (copied from the RTS) and a
pointer to the allocated location in the egress cell-to-packet

reassembly buffer. CTS cells are issued by the CTS scheduler,
which tracks the availability of egress reassembly buffer ca-
pacity, only issuing a CTS when there is space available to
reassemble cells into packets.

When a CTS is received back at the packet source, the
packet in question is pulled from the ingress buffer as a se-
ries of data-only cells, which are then transmitted across the
fabric. Data cells can take many different routes (adaptively)
through the fabric, and data cells may arrive in any order at
the final destination. Cells are reassembled into packets in
the egress buffer at the destination. The sizing of the egress
buffer is determined by the bandwidth delay product of the
output port bandwidth and the cell fabric round trip delay,
plus an allowance for packet reordering delays. Packets do
not experience significant queuing in the egress buffers, which
are primarily for reassembly, so the egress buffers are signifi-
cantly smaller than the ingress buffers.

In order to maintain packet order within flows, when a CTS
is issued by the scheduler, the packet descriptor is registered
with packet reordering logic respecting RTS arrival order. A
packet is transmittable at egress after receipt of all its data
cells, but transmittable packets are held until all packets in
the same flow that were ahead of it in CTS issue order have
been successfully forwarded to the NIC.

A significant benefit of the RTS/CTS scheme is that the
RTS queues have a local view of all the requested packet
demand for that destination port from the entire GNet fabric,
while the packet data remains queued in the ingress buffers.
In the presence of severe incast, packets can be discarded
while conserving fabric bandwidth, i.e., without packet data
traversing the cell fabric. The egress side can choose to drop
a packet by issuing a variant of CTS (a Clear To Drop, CTD),
which pulls the packet from the ingress buffer and discards
it. A CTD is sent when an RTS is received at an RTS queue
whose depth exceeds a given threshold. The RTS queue’s
depth also provides the signal for Explicit Congestion Notifi-
cation (ECN) marking; if the RTS queue exceeds the marking
threshold when the packet has been reassembled and is ready
to send, ECN is applied.

QoS Support for IP. There are separate RTS queues for
each independent port and class of service, with a total of
32 RTS queues supporting eight CoS on four independent
ports - one port for the external Ethernet MAC, two for the
dual-host NIC, and one for the control processor. CTS cells
are issued by the CTS scheduler at the packet’s destination
which allocates bandwidth between the 32 RTS queues, im-
plementing per-IP-packet QoS between the respective queues.
The CTS scheduler may throttle traffic into the egress buffers
by limiting CTS issues according to a window of outstanding
packet fetches, which can be adjusted to minimize the queu-
ing of data cells within the cell fabric. The scheduler does
not attempt to implement bandwidth fairness between sources
since all the sources to a given destination port share the same
RTS queue.
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3.4 1RMA
To deliver the low-latency capabilities of the Aquila Clique
directly to distributed systems programmers, we built an im-
plementation of 1RMA [51] into the TiN chip. 1RMA is an
RMA protocol that offers unordered, segmented, solicited
remote memory access primitives (read, write, and atomics)
to on-host software—tenets that match precisely those of
GNet packet transfer governed by RTS/CTS.

Such alignment is not merely coincidental; we co-designed
Aquila and 1RMA’s GNet-based protocol. Rather than sim-
ply layering the 1RMA protocol messages above the packet
layer, we instead express 1RMA protocol exchanges as first
class cell types in GNet—alongside RTS and CTS, rather
than atop—and ensure that they obey similar end-to-end so-
licitation rules as they share the Aquila fabric. The advantage
of co-design is significant latency savings: while a UDP/IP
or TCP/IP round-trip on Aquila incurs six GNet half-round-
trips on its critical path (RTS, CTS, data, in each direction),
a 1RMA read operation incurs only two, shaving precious
microseconds from user-facing latency.

We realized protocol co-design by encoding 1RMA read re-
quests entirely within GNet framing. Fundamentally, read re-
quests initiate data transfer from receivers to senders, i.e., such
requests intrinsically already are solicitations, expressed at
the transport layer. GNet also builds on solicitation, but at the
L2 layer. The key insight is to express both the GNet (L2) and
1RMA (L4) solicitation behaviors in a single cell type, Req.
Since Req cells solicit data movement in the reverse direction,
GNet handles Req similarly to CTS; the main differences
arise from cell size, as Req fully encodes a read request (host
address, memory identifiers, HMAC, etc.), yielding a cell 3x
larger than CTS at 48B. Req is otherwise behaviorally similar
to CTS, in that it can be freely reordered without violating
assumptions of the protocol layer above. Because 1RMA is
highly tolerant of out-of-order delivery, Req is intrinsically
compatible with Aquila’s adaptive routing.

We also leverage 1RMA’s close coupling to host-facing
PCIe to encode response cells, Resp. 1RMA NICs send each
individual PCIe read completion payload as a distinct proto-
col response, a hardware simplification that avoids response
coalescing logic, buffering, and overheads in the NIC. To fa-
cilitate this behavior in GNet, Resp cells are sized to handle
the most common PCIe completion sizes we observe from the
host root complexes. Like Req, Resp can be freely reordered
and routed adaptively, and the initiating 1RMA NIC lands the
individual response segments in arrival order in destination
host memory, since there is no need to restore overall inter-
or intra-request response ordering.

Lastly, to isolate latency-critical 1RMA traffic from less
sensitive IP flows, we map roughly half of GNet’s virtual
channels to carry low-latency protocol messages, which
1RMA shares with low-latency IP traffic flows. Because IP
traffic is cellified, 1RMA responses do not queue behind bulk
transfers from competing flows. In all, 1RMA on Aquila de-

livers near-flat lookup latency—even under load from conven-
tional traffic—to approximately 864TB of DRAM inside of
4us end-to-end. Aquila traversal accounts for a mere 2.5-3us;
the remaining time is attributable to PCIe latency contribu-
tions.

3.5 Embedded control processor
The TiN chip has an embedded control processor (ECP) to
handle all switch side control and monitoring actions. Cost of
silicon exerts pressure to make the ECP as simple as possible,
as it is replicated in each TiN chip. Where a typical control
processor for a ToR might be a multicore, 64-bit processor
with 8-16 GB of memory, TiN’s ECP is a 32-bit ARM Cortex
M7 processor with a mere 2 MB of SRAM.

In order to bootstrap the embedded control processor before
the GNet logic has been fully initialized (§4.4), a low band-
width but reliable in-band control path is implemented over
the GNet fabric using the management ordered set (MOS).
Each MOS 64 bit word allows 6 bytes of data to be trans-
ferred between directly connected TiN chips, irrespective of
whether the GNet link layer is up. We layer a robust packet
implementation, PMOS, above the MOS primitive to carry
debug and bootstrap traffic.

3.6 Putting it all together
Figure 4 plots the overall structure of the TiN chip:
• The cell switch (the building block for the cell fabric);
• A conventional IP host interface (NIC);
• An external-facing Ethernet MAC for connectivity to out-

side networks;
• A 1RMA host interface that supports direct protocols

across the cell fabric;
• IP packet-to-cell (ingress) and cell-to-IP packet (egress)

logic;
• The embedded control processor, acting as the local agent

for the SDN control software.
The device has the following interfaces:

• Two x16 PCIe gen 3 interfaces giving 256 Gbps connec-
tivity to one host or 128 Gbps to each of two hosts;

• Thirty-two 28 Gbps, single-lane GNet links used to con-
struct the low latency cell fabric;

• A single 100 Gbps Ethernet interface which connects to
the wider datacenter network (DCN).
Approximately 50% of the TiN silicon area is used to imple-

ment host interface or NIC functions, and 50% for switching
functions.

4 SOFTWARE-DEFINED NETWORK
As alluded to in §3, the integration of switch and NIC in a
single chip leads to substantial replication of the management
subsystem across all TiNs in an Aquila Clique. To keep the
Aquila Clique cost-effective, the management subsystem for
a TiN ASIC was kept simple – a 32-bit ARM Cortex M7
processor with a modest 2MB of SRAM and no dedicated
management Ethernet port. Consequently, much of the routing
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Figure 4: Aquila Chip Architecture showing GNet, IP, Embedded Con-
trol Processor (ECP), 1RMA and PCIe components.

Figure 5: Overview of Aquila’s SDN and firmware architecture.

computation and state needed to be offloaded from the switch
to a logically centralized distributed controller which had
to orchestrate the bootstrap, management and control of the
fabric in-band. In this section, we describe how Aquila’s
software-defined network (SDN) control plane, along with
its simplified firmware, was able to address the challenges of
controlling and managing an Aquila Clique, specifically:
• Explosion of flow state in the SDN (§4.2).
• Switch firmware with constrained CPU/memory (§4.3).
• In-band bootstrap of the whole network (§4.4).

4.1 Control Architecture Overview
The Aquila controller is built on top of an SDN controller
platform [18], a modular SDN control plane comprised of
micro-services, and a central publisher/subscriber database
called the Network Information Base (NIB). Multiple appli-
cations form an Aquila SDN constellation with redundant
instances of each application deployed on separate control
servers. The top half of Figure 5 details the Aquila SDN
controller applications.

The routing application for the controller, Routing Engine
(RE), computes the routing solution for the Aquila network

block in reaction to changes of topology states and external
reachability. RE writes the solution in the form of flows and
groups similar to OpenFlow [39] to the NIB in sequenced
batches for hit-less routing state transition. Separately, the
Inter-Block Routing controller (IBR), an application in a data
center-wide SDN control domain, computes the routing solu-
tion for traffic between various network blocks and provides
Aquila’s RE with the egress paths to reach destinations exter-
nal to the Aquila Clique.

On receiving routing updates from the NIB, Flow Manager
(FM) sorts the flow and group programming operations. For
instance, a flow is installed only after its referenced group
is installed for hit-less transition, before sending them to the
Switch Front-End application (SFE) via RPC. SFE programs
the flows and groups to TiN switches converting between
flows/groups and hardware register values and completes the
RPC with the programming results. Then FM writes the re-
sults back to the NIB for RE to consume.

4.2 Handling routing state
The large number of GNet endpoints in the fabric and the per-
port GNet routing table in the TiN switch result in much larger
routing state than non-Aquila blocks, which increases both
CPU and memory demand in the SDN system. Aquila routing
introduced scaling challenges for both IP and GNet flows.

IP flows. A network comprised of 1152 hosts and 576
management CPUs, addressable via both IPv4 and IPv6, calls
for approximately 1.9 million flows, each with a single output
port. Leveraging the observation that all of these flows are
from a small number of subnets, we introduced a new indexed
group representation, where the index of a port in the group
corresponds to the same index in the subnet, which in turn
reduces the number of flows by a factor of 576 (the number
of TiNs in a fabric).

GNet flows. As seen in §3, flow controlled GNet requires
per-input port, per-virtual channel flows which leads to an
explosion in state for a switch with 50 ports. A naive imple-
mentation leads to almost 5 million flows. To accommodate
such a large scale, we exploited the significant similarity in
the routes. For example, all terminal ports described in §3.1
use the same route, and are represented only once in the NIB.
Similarly, the deadlock avoidance turn rules define a similar
role for each intra-pod port in the TiN chip. Further, all inter-
pod ports behave the same. We introduced six port classes –
denoting equivalence classes of ports with respect to routing
rules – reducing the number of flows to approximately 700k.
GNet flows use port-classes as both matching fields and out-
put actions. On receiving a GNet flow using a port-class, SFE
expands it to flows targeting each member port’s GNet flow ta-
ble, and then prunes improper member ports from the output,
e.g., to avoid sending traffic back to the source. The resulting
flows are then programmed in the switch.

Even with these optimizations in place, the rest of the SDN
system needed more modifications:
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• Despite the port-class optimization, the number of flows in
the NIB was still about 10x more than non-Aquila network
blocks. To compensate for the memory increase, the NIB’s
pub-sub interface was changed to keep state in compressed
format and decompressed only when necessary.

• The SRAM available in the TiN switch is not large enough
to hold a snapshot of all routing state. SFE has the capa-
bility to rate limit the hardware programming operations
to avoid the memory on the switch from overflowing. The
RPC interface between SFE and switches is designed in
such a way that the largest RPC can fit in memory and only
one outstanding RPC is allowed at a time.

4.3 Switch Firmware with limited state
The switch firmware (see lower half of Figure 5) runs on an
ARM Cortex M7 CPU integrated into the TiN switch chip.
Due to physical size and cost limitations, the firmware has
only 2MB of on chip SRAM available. Therefore, it is built
on the FreeRTOS [1] and lwIP [2] open source libraries to fit
within the space constraints. The firmware is implemented in
approximately 100k lines of C and C++.

We explicitly decided that the firmware is not responsible
for fully configuring the TiN chip. At power on, the firmware
brings up the GNet and Ethernet links and attempts DHCP
over Ethernet. This enables the controller to connect early
during initialization and finish the necessary configuration
to allow the TiN chip to start passing traffic (for details see
§4.4).

The programming API exposed by the firmware is low-
level and allows the SDN controller to directly access hard-
ware registers. The API is generated from the hardware reg-
ister description and permits the SDN controller code to use
symbolic names of the chip registers for convenience. Statis-
tics and counters from the TiN chip can also be reported using
the low level API. The SDN controller is able to configure
a set of registers that should be periodically reported by the
firmware. One of the programming API sets up ARP/NDv6
responses in reaction to requests from the attached machines
so that the IP-to-MAC resolution could function properly even
if the firmware loses connection to the SDN controller.

The firmware supports Non-Stop Forwarding (NSF) re-
boots to minimize disruption caused by upgrades and unex-
pected software errors. During reboot the firmware avoids
changing any configuration that might impact traffic. Since
the inband connectivity is not disrupted, the controller is able
to quickly reconnect after a reboot without going through the
bootstrap process. The implementation of NSF reboot was
simplified due to the register level API since there is no need
to save and restore state information, because the TiN chip
maintains all the controller visible state during reboot.

While the firmware itself is stateless, the TiN chip and SDN
controller are not. After any loss of connection between the
firmware and SDN controller a process of reconciliation has
to be initiated to resolve any differences between the hardware

registers and the SDN controller intent. These differences can
occur if any commands were lost when the connection failed.
4.4 In-band Control and Bootstrap
A key challenge in Aquila’s SDN control was that the control
channel from the SDN controller to the Aquila switches is
in-band. This means that the controller needs to communicate
with the management CPU of a TiN before it can program
the routing tables of the TiN. During bootstrap, the controller
sets up TCP connections in-band over the datacenter network
to all TiNs in the Clique in iterative “waves”, configuring and
programming routing tables as it gains control of TiNs in each
subsequent wave.

Figure 6 shows k Aquila pods connected via intra-pod
copper GNet links as well as inter-pod optical GNet links.
Some TiNs (e.g., TiN 1, TiN 3 in Pod 1 and Pod k) are also
connected to the spine layer of the datacenter via Ethernet
datacenter network (DCN) links. We refer to these TiNs as
DCN-connected. The Aquila SDN controller—running on
external control servers—is initially reachable only over the
DCN links. The TiN firmware sends DHCP discover mes-
sages over the DCN links if available. These DHCP messages
are relayed by the spine switches to the DHCP server, which
then assigns an IP address to the TiN management CPU based
on the TiN MAC address.

The Aquila controller has records of the IP addresses in-
tended for each TiN’s CPU from its own configuration. The
controller continually attempts to connect to each TiN CPU
via TCP session using its assigned IP address and a well
known L4 port number. Once the IP address is known to
a TiN’s firmware, a controller message destined to that IP
is trapped by an ACL rule installed by the firmware and
reaches the firmware. The response Ack is sent out the same
interface the packet came in from thus enabling a TCP con-
nection between the controller and the switch CPU of the
DCN-connected TiNs. The controller can then configure the
DCN-connected TiN and program its routing tables.

Once the controller establishes a TCP session with a DCN-
connected TiN, it uses that TiN as a proxy TiN (e.g., Pod 1,
TiN 3) to bootstrap a directly connected target TiN (e.g., Pod
1, TiN 2) using the point-to-point low bandwidth Packet Man-
agement Ordered Sets (PMOS) protocol (§3.5) between TiN
CPUs. A target TiN—not yet configured with its IP address—
also sends DHCP discovery messages over MOS over all
GNet links, which are trapped by the proxy TiN and sent over
its own session to the controller. The controller in turn relays
the discover message to the DHCP server, and likewise relays
the DHCP response, so that a target TiN learns of its assigned
IP address indirectly. The controller proceeds to configure
and program the routing tables in the target TiN via the proxy
TiN over PMoS. After enough routing state is programmed,
the controller can establish a TCP connection to the target
TiN via the GNet routing pipeline and the proxy TiN (Pod 1,
TiN 3) can then be used in turn to bootstrap yet another target
TiN (e.g., Pod 1, TiN 4). Once a TCP session is established
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Figure 6: Inband bootstrap. The Aquila SDN controller bootstraps the
TiNs inband in "waves" originating from the TiNs that are directly
connected to the DCN.

with this new target TiN, it too can be used as a proxy to
bootstrap a directly connected TiN (e.g., Pod 1, TiN 5), and
so on.

DCN-connected TiNs typically bootstrap faster than the
target TiNs, which are configured over the slower PMOS pro-
tocol leading to a distribution of bootstrap times ranging from
3 minutes to 48 minutes. Several of the waves of bootstrap
occur simultaneously, resulting in a bring-up time of approxi-
mately 2.5 hours for a full-sized Clique.

5 EXPERIMENTAL RESULTS
We present a set of results examining key aspects of the Aquila
network, including its data plane performance as well as its
impact on application metrics.

5.1 Data Plane Performance
Aquila’s data plane performance was evaluated in a prototype
Aquila testbed comprised of 576 TiNs. We used 500 host
machines. Two hosts share a NIC unless otherwise specified.
We used two workloads, both of which run with delay-based
congestion control [33]:
1. UR: An IP traffic generator based on a user space micro-

kernel, Pony Express [37], that generates a Uniform Ran-
dom traffic pattern with Poisson arrival.

2. CliqueMap: A key-value store [50] that uses Remote
Memory Accesses (RMA) via either Pony Express or
1RMA.

For our evaluation, we used three metrics:
1. IP Fabric RTT (µs): We used NIC hardware timestamps

to measure Aquila fabric RTT, excluding processing and
ack-coalescing delays on the remote host. This is a true
measure of the transmission and queuing delay inside the
Aquila fabric, both for GNet and IP components.

2. 1RMA Total Execution Latency (µs): the time from when
the RMA command is submitted to the hardware until
the hardware issues the completion for that command.

This metric measures more than queuing and transmission
delay in the fabric, as it includes the PCIe transaction
delay on the remote side.

3. Achieved throughput of the network in Gbps (averaged
over 30 seconds).

Latency Under Load. We examine the latency of both IP
and 1RMA traffic under load. We used a CliqueMap client
benchmark that issues lookups of 4 KB-sized values using
RMA. By varying the QPS of the CliqueMap client on the
500 hosts, we changed the offered load per machine in a
traffic pattern akin to Uniform Random. Figure 7 plots fabric
RTT against offered load. It shows that the fabric latency
remains under 40 µs, even when the network is close to the
per machine NIC line rate of 50Gbps and it is sub-20 µs at
70% load.

1RMA is co-designed with GNet (§3.4) and Figure 8 shows
that this co-design paid off with total execution time below
10 µs even under high load for 4 KB RMA reads that are
generated using 500 CliqueMap clients to read from 500
CliqueMap backends.

1RMA Latency Isolation. Aquila is a unified network
shared by low latency 1RMA traffic and regular IP traffic
which may be latency insensitive. In our next evaluation, we
show that Aquila delivers latency sensitive traffic with low
tail latency despite sharing the network with IP traffic. To
this end, we compare the latency of latency-sensitive traffic
with and without background IP traffic in both Aquila and a
conventional Ethernet network.

For the Ethernet network, we employ standard QoS tech-
niques to isolate low-latency (or important) traffic from
bulk throughput oriented traffic. We run 200 instances of
CliqueMap lookups of 4 KB values at 10,000 QPS on a higher
priority QoS class (H) and a UR traffic pattern with 64 KB
messages with average load of 10 Gbps on a lower priority
class (L). The relative egress scheduling priority between H
and L classes is 8:1. The orange and cyan bars in Figure 9
show that such QoS-based schemes provide reasonable isola-
tion for the CliqueMap traffic from the bulk IP traffic, leading
to a modest increase in queuing in the fabric RTT for HiPri
CliqueMap traffic, albeit with a high baseline latency.

Repeating the same experiment using 1RMA as a transport,
we can see that 1RMA on Aquila offers a much lower baseline
(less than 5 µs median and tail latency) despite sharing the
same GNet fabric with IP traffic. High priority 1RMA traffic
uses different virtual channels than low-priority Pony Express
IP traffic and thus is nearly unaffected by adding the bulk traf-
fic (blue and red bars). Even when low priority 1RMA traffic
shares the virtual channels with the bulk IP traffic (yellow and
green bars), the overall latency is slightly higher than 10 µs
but still lower than Pony Express traffic on Ethernet networks
(orange and cyan bars).

Effect of Burst Size. One of the lessons we learned in
Aquila is the phenomenon of self-congestion. The IP network
in Aquila has an injection rate of 100 Gbps per TiN while
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Figure 7: IP Latency vs. Load: Fabric
queuing remains low under load.

Figure 8: RMA read latency under varied
1RMA Load.

Figure 9: 1RMA Isolation: Aquila provides low latency for
1RMA traffic, even when sharing the network with IP (H = High
Priority, L = Low Priority, CM = CliqueMap, PX = Pony Express)

Figure 10: Effect of burstiness on queuing in a full sized Aquila (left) and a half sized Aquila (right).
By keeping the injection rate constant and varying message size, we can see the effect of burstiness
on queuing latency.

Figure 11: Effect of a cell-based RMA protocol
on end-to-end CliqueMap lookup latency.

the aggregate bandwidth along the minimal paths between
two pods in the full scale Aquila topology is limited to 50
Gbps. This leads to cells taking non-minimal routes even if
the overall injection rate is well bellow the link rate due to
bursts. We show this effect by keeping the injection rate of
a point-to-point traffic at 0.6 Gbps but varying the message
size of the RPC using Pony Express. Varying the message
size only affects the burstiness of the injection. Figure 10
shows that as we increase message size, the tail fabric latency
increases past 40 µs. However, repeating the same experiment
in a half-scale version of Aquila where we have matching
inter-pod bandwidth to the IP injection rate from each TiN,
we see no effect of message size on queuing in the fabric.
Provisioning higher minimal path bandwidth trades off better
performance under bursty traffic conditions in exchange for a
smaller maximum scale of the topology.
5.2 Application Impact
In order to see application impact, we compare CliqueMap
lookup (of objects with 4 KB size) latency using 1RMA and
Pony Express as a transport for RMAs on the Aquila network.
We use O(100) backends and clients and vary queries per-
second from each client. Figure 11 shows how 1RMA on
Aquila cuts the median and tail latency by 50% at low QPS
and by more than 300% at high QPS. As with prior work [51],
higher load levels with 1RMA deliver lower latencies, as
individual servers may dwell in low-power states at low load.

6 DISCUSSION
While our approach to Aquila’s design enabled us to develop
a unified low latency network fabric for datacenter networks,
there were a number of challenges that we had to overcome.
We highlight some of the key challenges next.

Single chip part and direct connect topology. While the
single chip design delivered a sustainable development model

with a modest sized team and cost efficiency for the Aquila
network, the approach had a couple of key implications on the
architecture and deployment. First, the single part implied that
we had to deploy Aquila as a direct connect network topology
because an indirect topology (such as a Clos network) was
infeasible with TiN chips. While not a drawback by itself,
a direct connect topology is not conducive to incremental
deployment. Secondly, the evolution of the NIC and the switch
architectures were coupled together from a multi-generational
roadmap standpoint.

For simplicity, we designed the Aquila Clique as a homoge-
neous unit of deployment without an intent to mix hardware
from different generations. Moreover, the networking foot-
print for the entire Clique (up to 24 racks housing all TiN cards
as well as the networking fiber) was designed to be deployed
up front and host machines could be incrementally populated
on demand. With an indirect topology, a small number of net-
work racks (e.g., 4) could be pre-deployed with server racks
deployed incrementally. With a direct topology, all server
racks (potentially without servers) had to be pre-deployed.
Further, for a given optical technology, an indirect topology
supports more deployment flexibility: all server racks need
only be within a (say) 100m radius of the network racks. With
our direct topology, care had to be taken to lay out the rack
footprint such that the GNet fiber length between all rack pairs
was within the budget of (say) 100m.

Self congestion due to thin minimal path links. The
scale of a Dragonfly topology can be increased until we have
only a single global link between each pair of pods. How-
ever, a mismatch between the injection bandwidth from a
TiN and the pod-to-pod bandwidth leads to self-congestion
where, even at low loads and especially for large MTU pack-
ets, some cells may be routed minimally while others may
traverse non-minimal paths. As a result, there is some vari-
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ance in latency introduced due to cell and packet reassembly
even for point-to-point flows at low average loads.

For our initial Aquila prototype, we chose a Clique size
of 576 TiNs where the pod-to-pod bandwidth was 2x25Gbps
which was 1/4 the maximum injection bandwidth of 200Gbps
for each TiN, a balance between Clique scale and self-
congestion in the Dragonfly configuration. Further, we tuned
adaptive routing to switch from minimal to non-minimal paths
to reduce the variance due to self-congestion.

Overhead of cell switching and solicitation. Cell switch-
ing and solicitation are key features in Aquila for achiev-
ing predictable, low network latency. Switching GNet cells
comes with an overhead of approximately 5% due to an 8
byte GNet header for each 160 byte GNet cell. The RTS/CTS
solicitation for each IP packet incurs a latency overhead of
an extra round trip through the network though the RTS/CTS
cells get high priority through the GNet network and the over-
head is further mitigated for packets with large MTU. We
considered both these overheads acceptable in exchange for
low tail latency even at high injected loads. Considering a
larger GNet cell size as well as the ability to not incur solicita-
tion overhead at low loads are techniques we are investigating
to further mitigate these overheads.

Debugging a cell switched network. Since the Aquila
Clique is not an IP routed fabric internally, standard debug
tools such as traceroute only show 1 hop through the entire
Aquila fabric. To debug data blackholes in Aquila, we imple-
mented a cell tracing capability in TiN. Cells that are marked
with a bit are sampled by each TiN in the cell’s path and sent
to a central collector over UDP. The collector can then stitch
the path of the constituent cells of a packet and triangulate
any mis-configured or faulty hardware.

Limited RAM on TiN and low level firmware API. To
save cost and board space, we provisioned just 2MB of RAM
for the firmware running on the TiN chip, which led us to
a custom firmware implementation. Firmware development
added significantly to the development effort, since many
basic facilities had to be customized or re-implemented (e.g.,
logging, memory allocation, and flash storage).

The decision to expose a register level API to the SDN con-
troller for programming the TiN chip had the benefit of shift-
ing complexity away from the resource constrained firmware
as well as simplifying the capability to upgrade firmware
with Non-Stop Forwarding (NSF). It also meant that new
features could be implemented without needing to roll out a
new firmware version since all features of the hardware were
exposed. A challenge with this approach was maintaining
this interface across multiple hardware generations, since the
SDN controller would need to be aware of the register level
details of each chip.

For future designs, we are investigating adding more com-
pute to the NIC so that it can be Linux based. Adding Rasp-
berryPi equivalent compute to each NIC is likely to minimally
increase the per unit cost relative to the expected gains in de-

velopment velocity. Additionally, more compute will unblock
the use of an API with a higher level of abstraction, such as
P4 Runtime [24].

Legacy Applications Performance. While Aquila deliv-
ered significant application performance improvements (§5)
for the co-designed case, such as CliqueMap with 1RMA, it
did not have a significant positive impact on legacy applica-
tions. We observed that legacy application’s tail latency is
dominated by the host software stack, including thread wake
up latency. Moreover, with IP software stacks, RTS queue
length is governed by the host congestion control algorithms
rather than the GNet fabric cell latency. Looking forward, we
are shifting transport and network protocols to natively take
advantage of future-looking hardware improvements, creating
an interesting tension where the substantial software invest-
ment would likely not be a net positive until newly designed
hardware is deployed across the majority of the fleet.

7 RELATED WORK
Topology and Cell-switching. Aquila uses a direct-connect
topology, Dragonfly [30]. The Cray Cascade system [17]
utilizes a Dragonfly topology as the basis for an HPC fab-
ric. This design uses a high radix switch with 4 integrated
host interfaces, using a proprietary packet format and virtual
cut-through. The gateway to Ethernet networking requires
processing nodes connected to both types of network. Aquila
differs from this system (and from work on Flattened Butter-
flies [31] and HyperX [3]) by using the topology as a cell fab-
ric, as opposed to a packet network with virtual cut-through.
JellyFish [52] is a random-graph topology with its own chal-
lenges of deployment. Sirius [6] is a flat-topology with sim-
ilar goals to Aquila but it utilizes optical circuit switching
rather than cell or packet switching. Early ATM networks
provided Ethernet-on-ATM [26]. More recently, Stardust [56]
employed the idea of cells to give a higher effective switch
radix by using single lane channels in the fabric.

Low latency networking protocols. Infiniband [10] im-
plements an alternative networking stack to Ethernet/IP op-
timized for lower latency. This provides a flow controlled,
lossless packet level protocol, a reliable transport implementa-
tion, and a complete set of messaging and RDMA operations.
Although inter-operation with Ethernet networks for IP traf-
fic can be implemented by gateway functions, Infiniband is
commonly used as a dedicated HPC network. SRD [47] (Scal-
able Reliable Datagram) is an alternate transport protocol
layered over IP datagrams that is used in conjunction with
EFA (Elastic Fabric Adapter) by a Cloud computing provider
to provide lower latency communications services for HPC
applications. This has the advantage of being able to use stan-
dard Ethernet switches at some cost in minimum achievable
latency. While Aquila uses cell-based adaptive routing, SRD
uses source-based adaptive multi-pathing.

Congestion control. Solicitation is one of the key elements
of GNet for controlling congestion in the GNet fabric. A
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few recent congestion control schemes such as Homa [42],
NDP [25], ExpressPass [11], pHost [19] and Stardust [56] use
a receiver-driven solicitation scheme, similar to that of GNet,
to avoid incast congestion and achieve low latency. Aquila’s
solicitation controls the transfer of IP packets from buffers at
the GNet fabric edge and does not directly control the IP NIC.
This means it can handle both gateway and host interface IP
traffic, but it requires host-based congestion control [33] to
cause the traffic sources to back off in the event of congestion.

Control-plane. Aquila’s control plane was designed with
a distributed software defined control-plane. Most of the pre-
vious SDN controllers, Onix [32], ONOS [9], Flowlog [43],
Ravel [54] assume routing of IP traffic and rely on Open-
Flow to program switches. Aquila’s control plane introduces
a lower-level communication protocol from a Switch Front-
end module to control light embedded switch controllers. The
table-based design in [18, 43, 54] allowed for extending rout-
ing and sequencing to support GNet flows in addition to IP
flows.

8 CONCLUSION
In this paper we present Aquila, our first foray into tightly-
coupled networks (Cliques) integrated within the datacenter
networking ecosystem realizing Clique-scale resource disag-
gregation and predictable, low-latency communication. Our
primary goal is to advocate for a new design architecture for
datacenter networking around Cliques and to encourage new
research and development in tightly-coupled networking in
support of high-performance computing, ML training, and
network disaggregation while simultaneously interoperating
with traditional TCP/IP/Ethernet traffic at datacenter scale.
We believe our experience, both positve and negative, with
the Aquila prototype will set the foundation for future explo-
ration in this space.
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can Tate, Jakov Seizovic, Jeffery Seibert, Jennie Hughes, Joe
Love, Kamran Torabi, Luiz Mendes, Matt Maxwell, Matthew
Beaumont-Gay, Philippe Selo, Phillip La, Ranjan Bonthala,
Robin Zhang, Scott Berkman, Sean Clark, Shaun Tran, Si-
mon Sabato, Steven Knight, Trevor Switkowski, Tri Nguyen,
Warren James, Wilson Lee, Yousuf Haider, and Zhenchuan
Pang.
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A HARDWARE PACKAGING DETAILS
Incremental deployment is a much more significant consider-
ation for datacenter systems than for supercomputers which
are typically installed as a single system, or in a number of
predefined phases. Incremental network deployment is chal-
lenging for the Dragonfly topology, where growing the size
of the fabric requires the topology to be reconfigured to fully
exploit the available chip bandwidth. To avoid recabling for
expansion, which is hard to reconcile with the availability
requirements of a datacenter, we developed a packaging strat-
egy that allows all the networking infrastructure to be landed
as one initial deployment, with the servers being populated
incrementally as required.
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Figure 12: Aquila Clique with 1152 servers, in 24 racks.

A second key consideration was whether to use a blade
based system, with a combined server and networking pack-
aging solution, or to work with our existing servers designed
around conventional NICs. The latter approach was chosen
to avoid having to support two packaging variants of each
different server type. These two decisions broadly determined
our packaging design.

The physical design (Figure 12) supports up to 48 ma-
chines per rack, organized as two pods of 24 servers. The
Aquila networking for each pod is provided by a switch chas-
sis containing 12 TiN ASICs, on 6 line cards. The first level
interconnect of the Dragonfly is implemented in copper on
the switch chassis backplane. Servers are connected to the
switch chassis using a cabled x16 Gen 3 PCIe bus. Sideband
signals on the cable carry the independent machine manage-
ment interface from the TiN chip that connects to the server’s
NC-SI port.

The overall Aquila Clique consists of 24 racks. The con-
nectivity between the racks is optical using custom low cost
VCSEL based 4 channel GNet optical modules, 4 per line
card. This gives a total of 96 optical GNet connections for the
global interconnect level of the Dragonfly from each pod. As
there are a total of 48 pods in a clique there are two optical
GNet global links between any pod pair. If we connected
these directly with two channel fiber ribbons this would re-

quire 47x48/2 = 1128 unique interpod cables to be connected.
To simplify the rack to rack cabling we use fiber shuffles
within groups of 4 pods to consolidate into wider fiber rib-
bons allowing the use of 8 GNet link, MPO16 fiber cables.
This reduces the rack to rack cabling to 66 4-cable bundles
running between 12 pairs of racks greatly simplifying the
fiber deployment.

The total number of available 100g Ethernet ports available
for connection to the data center spine network from the TiN
ASICs is 576. 24 of these are used for rack management.
Either 256 or 512 ports are connected to the higher level
Ethernet fabric with the remaining 40 ports unused.

A.1 Failure Domains
A key consideration of the Aquila architecture was to reduce
the blast radius of any networking component failure. In a con-
ventional network the loss of a TOR impacts all the attached
servers; this could be as many as 48 machines for a high
radix switch device. In contrast, with the Aquila architecture,
loss of a TiN ASIC impacts a maximum of two servers. In
practice because the physical packaging solution uses a pair
of TiN ASICs on a single line card, the effective blast radius
for a repair operation can be up to four servers if 2 servers
share a TiN. A switch chassis failure impacts a maximum
of 24 servers, however the only chassis components with a
significant failure rate are the fans, and N+2 fan redundancy
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Figure 13: Aquila Clock Sync.

is implemented to minimize the possibility of a chassis level
failure.

B CLOCK SYNCHRONIZATION
B.1 Overview
The timesync protocol on Aquila was designed with the aim
of keeping the software overhead for timesync low while
also providing a tight bound on the notion of current time
across the TiNs in the clique. This protocol maintains a single
primary clock in the clique against which clients are syn-
chronized purely in hardware (Figure 13). Synchronization is
carried out over the GNet links on the switch side of the TiN
by transmitting information as lightweight, 8-Byte “ordered
sets” between cells, a class of which (TimeSync) are defined
for Clique time synchronization. Clients in the host, expect-
ing an IEEE 1588-like protocol to maintain time in the NIC,
are able to query the value of this clock. The hardware also
corrects for link delays between neighboring TiNs and for
time spent within the chip while waiting for a gap between
cells to get on the link.

B.2 Implementation
The Timesync hardware on TiN maintains the current time
by counting cycles of the core clock along with status bits
which tracks several parameters that indicate the accuracy of

the clock. The value of time is also updated by the reception
of timesync messages from the neighboring TiN if the current
TiN has been configured to be a client node in the time distri-
bution network. The protocol relies on software to set up this
time distribution tree [35].

Once the time distribution tree is configured, the TiN trans-
mits TimeSync ordered sets on a configured number of output
GNet links at a fixed interval (typically, about 100us). On a
client node, an incoming TimeSync message also causes an
update to be sent downstream even if the configured interval
between messages has not expired. This is to ensure that even
the farthest nodes in the time distribution tree do not drift
much from the primary node.

The TimeSync message cannot interrupt a cell on the wire,
so the ordered set can wait up to 128ns to get onto the wire.
Regardless of the delay, the ordered set indicates the actual
time of transmission (+/- 2.5ns) by incrementing the value of
current time in the TimeSync message for each cycle that it
waits to get onto the wire, including flight time across the chip
from the hardware clock, arbitration time to get onto the wire,
etc. Each receiving TiN is configured to receive TimeSync
messages only on a single port and it adjusts for any on-chip
delays to get the TimeSync message to the hardware clock
along with the delay through the GNet channel.

The delay through the GNet channel is configured on the
receiver by running round trip delay measurement at the time
of setting up of the time distribution tree. This is done by the
GNet ports by putting them in a “latency measurement” mode
where the neighbors exchange special ordered sets and reflect
the delay through the channel to software as a status.

On reception of a Timesync message, the client node,
checks the validity of the message through comparison of
status bits transmitted with the message and the difference
between the incoming time and the current time against a
configurable threshold. The update to current time is only
applied when valid Timesync messages are received and if
enough invalid messages are seen, the client node signals that
a failure is detected. The protocol relies on software to take
action once failure is detected
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