
FastFlow: Accelerating Deep Learning Model Training with Smart
Offloading of Input Data Pipeline

Taegeon Um∗

Samsung Research
taegeon.um@samsung.com

Byungsoo Oh
Samsung Research

byungsoo.oh@samsung.com

Byeongchan Seo
Samsung Research

bchan.seo@samsung.com

Minhyeok Kweun
Samsung Research

mh.kweun@samsung.com

Goeun Kim
Samsung Research

ge326.kim@samsung.com

Woo-Yeon Lee
Samsung Research

wooyeon0.lee@samsung.com

ABSTRACT

When training a deep learning (DL) model, input data are pre-
processed on CPUs and transformed into tensors, which are then
fed into GPUs for gradient computations of model training. Ex-
pensive GPUs must be fully utilized during training to accelerate
the training speed. However, intensive CPU operations for input
data preprocessing (input pipeline) often lead to CPU bottlenecks;
correspondingly, various DL training jobs suffer from GPU under-
utilization.

We propose FastFlow, a DL training system that automatically
mitigates the CPU bottleneck by offloading (scaling out) input
pipelines to remote CPUs. FastFlow carefully decides various of-
floading decisions based on performance metrics specific to ap-
plications and allocated resources, while leveraging both local and
remote CPUs to prevent the inefficient use of remote resources
and minimize the training time. FastFlow’s smart offloading policy
and mechanisms are seamlessly integrated with TensorFlow for
users to enjoy the smart offloading features without modifying the
main logic. Our evaluations on our private DL cloud with diverse
workloads on various resource environments show that FastFlow
improves the training throughput by 1 ∼ 4.34× compared to Tensor-
Flow without offloading, by 1 ∼ 4.52× compared to TensorFlow
with manual CPU offloading (tf.data.service), and by 0.63 ∼ 2.06×

compared to GPU offloading (DALI).

PVLDB Reference Format:

Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun, Goeun
Kim, and Woo-Yeon Lee. FastFlow: Accelerating Deep Learning Model
Training with Smart Offloading of Input Data Pipeline. PVLDB, 16(5): 1086 -
1099, 2023.

doi:10.14778/3579075.3579083

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/SamsungLabs/FastFlow.

∗Corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 5 ISSN 2150-8097.
doi:10.14778/3579075.3579083

1 INTRODUCTION

Over the past decade, the performance of GPUs has increased by
more than 15 times [16]. This has allowed researchers to accelerate
the training of deep learning (DL) models in areas such as speech
recognition [34], computer vision [31], and translation [23, 24].
New types of powerful GPUs have enabled the training of large-
scale DL models with millions or billions of parameters, advancing
human-level accuracy. Moreover, the GPUs have accelerated the
training speeds of various DL models and boosted the development
of diverse DL applications [26].

In the last few years, however, DL model and system developers
have noted that the fast speed of the GPU does not always guar-
antee fast DL training, owing to CPU bottlenecks in the DL input
pipeline [14, 15, 27, 43, 47, 49]. In the DL input pipeline, input
data are decoded, preprocessed, and augmented on CPUs to cre-
ate tensors for computations on GPUs. Although CPU and GPU
operations can overlap, the time spent on CPUs for preprocessing
can be longer than that spent on GPUs for tensor computations. As
a result, expensive GPUs wait for CPU computations, leading to
preprocessing (prep) stalls and GPU under-utilization.

Recently, prep stalls have become a significant problem in DL
training [55] and have gained considerable attention from research-
ers for the following reasons. First, the speeds of CPUs are relatively
low compared to those of GPUs due to the short release cycle of
high-end GPUs [9, 16]. Second, as the data-centric AI paradigm [44]
has shifted the approach regarding the impact on accuracy from
developing a better model (model-centric) to acquiring and synthes-
izing better-quality data (data-centric), data preprocessing such as
cleaning and augmentation (e.g., randomizing the original dataset
for model accuracy) require complex and CPU-intensive opera-
tions [30, 43, 44, 51]. In addition, resources with a fixed number
of CPUs per GPU in the cloud [2] or clusters cannot satisfy the
various CPU demands of diverse training jobs. [33, 57].

Existing works have attempted to address prep stalls using vari-
ous techniques [14, 15, 27, 40, 43, 48, 49], but they have several
limitations. First, some of the works [40, 43, 48] could not address
preprocessing bottlenecks when the required CPU resources exceed
the allocated CPUs. To employ computing resources in addition to
CPUs, DLBooster [27], TrainBox [49], and DALI [15] offload pre-
processing to specialized hardware (FPGAs and GPUs). However,
users must manually convert CPU operations to the limited opera-
tions supported by the specialized hardware, which is a non-trivial
work. In addition, it is difficult to offload general operations (e.g.,
user-defined functions or third-party libraries).

1086

https://doi.org/10.14778/3579075.3579083
https://github.com/SamsungLabs/FastFlow
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3579075.3579083
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3579075.3579083&domain=pdf&date_stamp=2023-01-01

To overcome these limitations, tf.data.service [14], a service run-
ning on top of TensorFlow [22], distributes and scales out the gen-
eral preprocessing operations to remote CPUs. However, users
should judiciously decide when to offload the input pipeline and
which preprocessing operations to offload by themselves according
to the workload and resource environment because naively offload-
ing can lead to significant performance degradation. In addition,
users cannot precisely control the amount of operations to be of-
floaded to fully leverage both the allocated local and remote CPU
resources for performance improvement and resource efficiency.

In this paper, we design FastFlow, a DL training system that
automates offloading decisions, when to offload, which operations

to offload, and how much data to offload to the provided resources.
To automate such decisions, FastFlow measures performance met-
rics specific to applications (e.g., encoding/decoding and thread-
ing overheads) and allocated resources, which are not considered
thoroughly in existing work. These metrics are measured with
lightweight metric profiling before the actual run to estimate the
benefit of offloading in advance. For profiling, FastFlow traverses
the input data pipeline consisting of a directed acyclic graph (DAG)
and inserts profiling operators. To strike the right balance between
profiling accuracy and overhead, FastFlow harnesses the iterative
characteristic of DL training; a deep learning training job executes
the same operations iteratively per batch, i.e., a collection of ele-
ments for tensor computations on GPUs. FastFlow estimates the
metrics with a few iterations of batches and further minimizes the
profiling overhead by storing and reloading metrics for repetitive
DL jobs based on DAG matching.

For offloading without user intervention, FastFlow extends the
existing DL framework library [10] and gathers additional configur-
ation (e.g., remote node addresses for offloading). This is key to the
usability of FastFlow in various workloads, as users can maintain
the main logic of preprocessing and training without modification.

We have implemented FastFlow on top of TensorFlow 2.7.0 [22]
and evaluate FastFlow with seven DL workloads (image and audio)
that represent various preprocessing operations in our private DL
cluster. Our comprehensive evaluations show that FastFlow im-
proves the training throughput by 1 ∼ 4.34× compared to Tensor-
Flow without offloading, by 1 ∼ 4.52× compared to TensorFlow
with manual CPU offloading (tf.data.service [14]), and by 0.63 ∼

2.06× compared to DALI [15] on various resource environments.
We make the following contributions in this paper:

• We motivate scenarios where careful decisions must be
made to offload input pipeline to remote CPUs, as naively
offloading all operations and data does not always guaran-
tee training speed up (reducing the epoch time) and can
lead to unnecessary remote CPU use.

• We design FastFlow, which automates offloading decisions
without user intervention and modification of the main
logic. We seamlessly integrate the smart offloading features
on top of TensorFlow with lightweight profiling.

• We empirically show the effectiveness of FastFlow in vari-
ous workloads and resource environments: FastFlow pre-
vents offloading when there is no offloading benefit. Other-
wise, FastFlow automatically offloads operators and data to
achieve optimal performance in our private cluster.

Figure 1: An example of DL training pipeline. A circle represents

an operator. The training operator executes gradient computations,

whereas the remaining operators are for input preprocessing.

2 BACKGROUND AND MOTIVATION

2.1 Deep Learning Training

Deep learning (DL) model training usually consists of three phases:
1) offline input preprocessing, 2) online input preprocessing, and 3)
gradient computation. In this study, we mainly focus on the online
input preprocessing step; however, we also explain the remaining
steps for a complete understanding.
Offline Preprocessing. The offline preprocessing phase converts
raw data collected from various sources to training datasets used
in the remaining phases. For offline preprocessing, distributed data
processing systems such as Apache Spark [56] and Flink [25] are
widely used to deal with tens of GBs or TBs of data [57], leading
to a massive data preprocessing overhead. Therefore, users often
attempt to reduce the offline preprocessing overhead by storing
the preprocessed data as a training dataset into a shared storage,
such as an object store [3] or local solid-state drive (SSD) storage.
In this study, we do not focus on the offline preprocessing overhead,
assuming that it can be removed by caching on the data storage.
Online Preprocessing. The training dataset are then loaded from
the data storage, decoded, and augmented [29, 30] to create and
feed tensors, multi-dimensional arrays, into GPUs for the gradient
computations. Unlike offline preprocessing which can be cached
and executed once, online preprocessing inevitably incurs multiple
times for each training. This is because decoding is required to
load a large amount of data that may exceed the memory size
(so we cannot cache the dataset), and augmentation is a random
operation that randomly tweaks each element to create diverse data
and improve model accuracy. These decoding and augmentation
operations are typically executed on CPUs with CPU-intensive
operations (e.g., a room impulse response simulation [51]). We use
the term preprocessing to refer to online preprocessing.

The online preprocessing phase, which we call the input pipeline
throughout this paper, can be expressed as a directed acyclic graph
(DAG) [18, 48], where a node is an operator and an edge repres-
ents the data flow between operators. Figure 1 shows an example
of the input pipeline in which the training dataset is read and
preprocessed. Here, an operator is coarse-grained. For instance,
we represent transformation and augmentation operations (e.g.,
map function) as the single Prep. operator. The training operator
fetches tensors for gradient computation (whenever GetNext()
is called). 1 To transform the data into tensors and fully utilize the
massive parallelism of the GPUs, users generally mini-batch several
elements as tensors for gradient computations. The batch operator
is then applied after preprocessing (e.g., decoding and augmenta-
tion) and before the gradient computations to create tensors and
to maximize GPU utilization. Users can overlap the preprocessing

1As we focus on the input pipeline, we abstract the training with a single operator.
However, training can also be represented as a DAG (multiple layers for DL).

1087

1 import tensorflow as tf
2 # Input pipeline
3 ds = tf.data.Dataset(data_path)

4 ds = ds.map(...). distribute (dispatcher_addr..)

5 .batch(..).prefetch(..)
6 # define model
7 class MyModel(tf.keras.Model):
8 def __init__(self,...):
9 ...
10 model = MyModel(..)
11 # training
12 model.compile(..)
13 model.fit(ds, epoch=..,)

Source Code 1: tf.data.service API for CPU offloading to the allocated

resources. Users should manually insert a distribute operator.

on CPUs and gradient computations on GPUs with prefetching to
improve the GPU utilization. We explain the details in § 2.2.
Gradient Computation. During gradient computation, the weight
of the model is updated according to forward and backward com-
putations on the GPUs. The forward computation feeds the tensors
into the layers of the model and compares the predicted value with
the target value to calculate the loss. To minimize the loss, back-
ward computation computes the gradient of each layer for the loss
and adjusts the weights to reduce the loss.

The DL training involves iterative processing. The weights must
be updated and tuned iteratively to improve model accuracy. While
training, the training dataset is consumed entirely for the gradient
computations, which is referred to as one 𝑒𝑝𝑜𝑐ℎ of training. Usually,
multiple epochs are performed for higher accuracy by iterating
the same dataset multiple times, and augmentation is required to
prevent the model from being overfitted on the same dataset.

2.2 Preprocessing Stall in DL Training

Existing DL frameworks support prefetching to overlap CPU and
GPU computations [18, 48]. However, despite prefetching, GPUs
can be underutilized if the computation time on the CPUs is rel-
atively higher than that on GPUs. We refer to this situation as a
preprocessing (prep) stall.

Recently, various workloads suffer from the prep stall because
the computational complexity of augmentation techniques has in-
creased [30, 51] to generate more realistic data (e.g., simulations).
In contrast, the gradient computation speed on GPUs is increasing
due to the short release cycle of high-performance GPUs. Therefore,
the relative speed of the preprocessing on CPU decreases, which
results in prep stall.

In addition, widely-used cloud resources for DL training com-
monly have a fixed CPU:GPU ratio [2], and therefore, they cannot
satisfy the various required number of CPUs per GPU of diverse
DL training jobs for no prep stalls (see Figure 7 in our evaluation).
The fixed allocation of CPUs leads to the CPU bottleneck when the
input data preprocessing requires more CPU powers than the alloc-
ated ones. Simply choosing instances with a high number of CPUs
per GPU may lead to CPU under-utilization and cost inefficiency.

Furthermore, a recent study on real cluster ML workloads [55]
showed that many ML jobs use CPUs more extensively than GPUs.
This is a challenging real-world problem that leads to GPU under-
utilization. We also investigated various DL training workloads
and found prep stalls in our GPU cluster environment. In short,

Figure 2: Example of input pipeline offloading to remote CPUs. C.O

represents a conditional operator that fetches an element either from

operators running on the local CPUs or from the remote CPUs. The

C.O can control the amount of data to be processed on the remote

CPUs.

up to 80% of the epoch time is stalled by the preprocessing in our
evaluation. The detailed results are presented in § 7.

2.3 Limitations of Existing Work

Existing work [14, 15, 27, 40, 48, 49] mitigates the prep stall with
various techniques, but they have several limitations.
Auto-Tuning on Local Node. Recent studies such as Plumber [40]
and tf.data [48] tries to resolve the prep stall with auto parallelism
and caching on the local training node, where the training code is
executed, and GPUs are used for gradient computations. However,
parallelization is limited to the allocated local CPUs, so it cannot
resolve CPU bottlenecks if preprocessing requires more CPUs than
allocated local CPUs. Caching could not be possible if the data
size is larger than memory size, and reusing cached data hinders
random operations of augmentation, which is critical for model
accuracy. Revamper [43] partially caches augmented data while
preserving accuracy, but requires users to divide augmentations
into multiple layers. It cannot be generally applied if if users use
third-party libraries or a single map function that augments data.
Offloading to Specialized Hardware. DALI [15] enables input
preprocessing on GPUs, and DLBooster [27] and TrainBox [49]
focus on offloading operations (e.g., image decoding, resizing) to
FPGAs. However, they are limited because users may write CPU
operations, which are not supported by the specialized hardware.
Moreover, manually transforming CPU operations into the opera-
tions supported by the systems is not straightforward and requires
knowledge for the operator mapping between different systems.

Offloading to Remote CPUs. tf.data.service [14] is a service
that offloads general operations of input data pipelines to remote
CPU clusters on top of TensorFlow. tf.data.service consists of two
components: a dispatcher and workers. A worker process runs
on a remote node and executes data preprocessing of offloaded
operations. The worker sends the preprocessed results back to the
local (client) TensorFlow node, where the gradient computations are
performed on GPUs. A dispatcher communicates with the workers
and manages their life cycle. With such offloading, preprocessing
is not limited to the allocated CPUs of the local GPU node, which
can mitigate the CPU bottleneck in the local GPU node.

tf.data.service requires users to make the following decisions by
themselves. Source Code 1 shows an example code snippet of using
tf.data.service. First, to enable offloading, users must insert a dist-
ribute operator. As an example, when a distribute operator
is added after the map operator (line 4 in Source Code 1), the pre-
vious operations before the distribute operator (e.g., dataset
read and map in Source Code 1) are executed on remote workers.

1088

Figure 3: The overall workflow of FastFlow to execute a DL training job with smart offloading.

Second, users must decide where to place the distribute oper-
ator to control which operations to offload. The operator can be
inserted before the map operator not to offload the map operations
to remote workers. Third, to leverage the CPUs of the local client
node for preprocessing, users must create a local worker on the
local client node. When the local worker is added, the tf.data.service
distribute operator distributes the preprocessing across the
local and remote workers to harness both local and remote CPUs.

Although tf.data.service enables users to offload preprocessing
to remote CPUs manually, it has several limitations. First, making
decisions for optimal performance and efficient resource use is dif-
ficult because the decisions can vary according to the application’s
characteristics and resource capacity. For instance, an application
does not have a prep stall in a resource environment, but users may
offload input pipeline and lead to unnecessary remote resource use.
In addition, the capacity of remote CPU resources may be lower
than the required CPU power for offloading, and the network band-
width between local and remote machines could also be lower than
the required data transfer. Second, even if tf.data.service offers a
mechanism of leveraging both local and remote CPUs with local
workers, it does not provide a knob that fine-controls the amount
of data to offload across local and remote resources. The optimal
amount of data to be offloaded varies according to applications and
allocated resources to achieve best performance (see Figure 9 in
§ 7) but users cannot configure the optimal ratio of data offloading.

Recent work, Cachew [33], provides an auto-scaling of workers
on top of tf.data.service, but Cachew users must also decide when
and which operations to offload like Source Code 1. Moreover, as
Cachew is designed for disaggregated environments with high net-
work and disk bandwidth and abundant remote CPU resources,
it offloads all data preprocessing to remote workers without har-
nessing local CPUs. This approach may result in inefficient remote
resource use and degrade performance in the environments where
the network and disk bandwidth and CPU resources are not enough.

2.4 Our Approach and Challenges

To address the limitations, we propose automatic offloading of input
pipeline to remote CPUs. Automatic offloading, or smart offloading,
means that systems offload input pipeline without user interven-
tion to achieve best performance on the given resources. Figure 2
illustrates an example of input pipeline offloading, where the C.O
operator is automatically inserted after Prep. operator and fine-
controls the amount of data to offload based on our decisions.

To the best of our knowledge, it is the first work that addresses
the below challenges for automatic and optimal offloading decisions,
while seamlessly integrating such decision making with existing
deep learning frameworks to lessen users’ burden.

• When to offload? If there is no prep stall or CPU bottle-
neck, the input pipeline should not be offloaded and the
remote CPU resources should be saved.

• Which operations to offload? Because there are multiple
operators for preprocessing (e.g., decode, augmentation,
and, batch), we should decide which operators to offload
for best performance.

• Howmuch data to offload? To leverage both local and
remote CPUs, we should automatically fine-tune the right
amount of data for offloading.

3 SYSTEM OVERVIEW

To address the above challenges, we design and implement Fast-
Flow, an extension of existing DL systems for smart offloading.
Based on profiled metrics, we design a new smart offloading de-
cision policy (§ 4) on top of TensorFlow. For an efficient offloading
mechanism, we create a new conditional operator and profiling
feature in the TensorFlow core (§ 5). Although we design FastFlow
on top of TensorFlow, we believe that our design for auto-offloading
is generally applicable to other DL systems (e.g., Pytorch [50]) with
some engineering efforts for the offloading mechanism.

FastFlow is designed to maximize DL training job performance in
environments where each training job runs on allocated resources.
However, we believe that FastFlow can be easily extended for dis-
aggregated or cloud resources and be easily integrated with Ca-
chew [33] for autoscaling. We will briefly discuss the extension
of FastFlow for autoscaling in § 9. In the following section, we
describe the overall workflow of how FastFlow enables smart of-
floading (§ 3.1) and show how users can easily use FastFlow with
minor code modifications (§ 3.2).

3.1 Overall Workflow

Figure 3 illustrates an architectural overview of FastFlow and how
FastFlow is integrated with TensorFlow. The current implement-
ation covers the single-node/multi-GPU training. Extending Fast-
Flow to multi-node/multi-GPU training remains as future work.

For automatic decision and profiling system metrics, FastFlow
requires information such as input pipelines, models, and remote
resource environments for offloading. To acquire this information
with minimal code modifications, FastFlow’s model interface in-
herits the existing classes of DL frameworks (e.g., keras.Model),
where users can set the configuration and deep-copy method for
the profiling without modifying the main logic (Figure 3(1)). The
detailed example is presented in § 3.2.

Once the training code is written, FastFlow then profiles the
performance metrics before the actual training if the input pipeline
and training model is newly executed (Figure 3(2)). For profiling,

1089

1 import fastflow as ff
2 import tensorflow as tf
3 # input pipeline
4 ds = tf.data.Dataset(data_path)
5 ds = ds.map(...).batch(..).prefetch(..)
6

7 # define model

8 class MyModel(ff.Model):

9 def __init__(self,...):
10 ...
11 def __deepcopy__(self):
12 # must be implemented
13 model = MyModel(..)
14 # training with auto-offloading
15 model.compile(..)
16 model.fit(ds, epoch=.., ff_config=config)

Source Code 2: FastFlow’s API for smart offloading. Note that users

keep the main logic of building the input pipeline, model, and train-

ing codewithoutmanual configuration of thedistribute operator.

FastFlow executes a few iterations of training on local nodes (Fig-
ure 3(3)) and stores the metrics in the metric storage with the
corresponding input pipeline, model, and configuration. When the
same input pipeline and model are executed again with the same
resources, FastFlow loads the saved metrics to remove the profil-
ing overhead. Based on the profiled metrics, FastFlow executes the
original input pipeline (𝑃) if there is no performance benefit for
offloading (if there is no prep stall). Otherwise, FastFlow modifies
the input pipeline DAG (𝑃 ′) to partially offload data and operators
to remote CPU resources (Figure 3(4)).

For execution (Figure 3(5)), FastFlow harnesses the existing
DL engine (TensorFlow in this paper) with an extension of op-
erator kernels for offloading. In TensorFlow, as explained in § 2,
tf.data.service [14] enables the horizontal scaling of the input pipeline
to remote CPUs. For pipeline execution on the remote CPUs, tf.data-
.service clones the pipeline operators and executes the operators
on workers, with each worker inheriting the same code-base of
TensorFlow’s internal execution engine. To feed the preprocessed
data from the workers to the GPUs, the distribute operator
fetches data through remote procedure calls from the workers.

FastFlow automatically creates a tf.data.service worker process
when a job starts and destroys the workers after the job is finished.
To enable partial offloading and control the data preprocessing ratio
for the remote workers, FastFlow creates and injects a conditional
operator, which is the extension of the distribute operator. The
conditional operator receives the local-remote data processing ratio
(as configured by FastFlow’s auto-decision logic) as a parameter.
Currently, FastFlow assumes homogeneous remote workers with
the same amount of CPUs, and thus evenly distributes data across
the remote workers when offloading.

Note that the input data should be stored in the shared storage
or need to be copied into the worker’s local data storage, in order
for the remote workers and local DL engine to have the same
view of the input data and for FastFlow to dynamically control data
preprocessing across the remote workers and local DL engine. Users
can choose to store their dataset in shared storage if the network
bandwidth is high; or to copy their datasets once into remote nodes.

When fetching data, FastFlow must synchronize the data indices
to be processed across machines. tf.data.service already provides
IndexProvider within a dispatcher for dynamic data sharding, which
communicates with local and remote workers. FastFlow executes

1 class Model(keras.Model): # FastFlow Model
2 ...
3 def fit(self, x=None, # input pipeline
4 conf=None, # auto-offloading conf
5 **kwargs):
6 with self.distribute_strategy.scope():
7 M = self.__deepcopy__()
8 M.compile(..)
9 launch_workers(conf)
10 P = smart_offloading(x,M,conf)
11 # Reuse the main training logic
12 super(Model, self).fit(x=P, **kwargs)
13 destroy_workers(conf)

Source Code 3: FastFlow’s model.fitmethod.

IndexProvider on a designated worker node (or on the local node).
Workers request an index from the IndexProvider, and it basically
increments the index for each request to synchronize the data
preprocessing and sends it back to the workers. The workers then
preprocess the specific data with the index to prevent duplicate
data preprocessing. As the local and remote CPUs can preprocess
data concurrently, the preprocessed data are gathered in the local
machine in out-of-order.

3.2 API with Code Example

In designing FastFlow, we factor in usability as a key requirement.
This section illustrates how existing TensorFlow users can easily use
FastFlow with relatively minor code modifications (Source Code 2).

To use FastFlow, users should import FastFlow’s user-facing
library (line 1 in Source Code 2), and FastFlow’s customized Tensor-
Flow core (line 2 in Source Code 2). Users can define their input
pipelines without code modifications. Typically, tf.data [48] is used
for data preprocessing and the input pipeline (lines 4–5). The users
only need to set the data path as a shared data storage path or a
local data storage path (line 4), where the same dataset is located.

After defining the input pipeline, the users define their train-
ing model. To easily define and train their model, most Tensor-
Flow users use the Keras library [10]. FastFlow extends the pre-
defined Keras model and provides ff.Model (ff.Model extends
keras.Model) to minimize code modifications. Users then only
need to extend ff.Model to build their customized model, and
to additionally write the __deepcopy__ method as described in
lines 11—12. The method returns a new copy of the model and is
internally used in FastFlow’s auto-offloading logic to prevent the
model parameters from being modified during the profiling phase
(§ 4). The other methods of keras.Model can be used without
modification. In the MyModel class, we omitted the model building
code due to space constraints; in fact, users can write hundreds of
lines of code for their model. Once the input pipeline and model
are defined, training is performed with the model.fit method
in Keras. FastFlow receives arguments for auto-offloading config-
uration (line 16) such as resource environments (e.g., addresses of
remote nodes) in addition to the input pipeline.

Within the model.fit method, FastFlow profiles the perform-
ance metrics and makes offloading decisions, as described below.

4 SMART OFFLOADING POLICY

FastFlow’s offloading policy automatically decides the following:
• Is there a prep stall, and is offloading beneficial (§ 4.1)?

1090

Algorithm 1: The smart offloading policy.

1 Input: Input Pipeline P, modelM, conf Conf

2 Profile𝐺𝑡ℎ𝑝 = 𝑡ℎ𝑝 (M) and 𝐿𝑡ℎ𝑝 = 𝑡ℎ𝑝 (P+M)

3 if 𝐺𝑡ℎ𝑝 <= 𝐿𝑡ℎ𝑝 or
𝐺𝑡ℎ𝑝
𝐿𝑡ℎ𝑝 < 𝑆𝑝𝑒𝑒𝑑𝑈𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

4 Return P // No data offloading

5 else

6 P = {𝑝′1, 𝑝′2, 𝑝′3} = CandidatePipelines(P, Conf)

7 P’ = argmaxp’∈P {𝐿𝑡ℎ𝑝 ∗ (1 −
𝑂𝑐𝑦𝑐𝑙𝑒 (𝑝′)

𝑃𝑐𝑦𝑐𝑙𝑒) + 𝑅𝑡ℎ𝑝 (𝑝′) }

8 𝑈𝑝𝑝𝑒𝑟 = 𝑅𝑡ℎ𝑝 (𝑃 ′)

9 𝐿𝑜𝑤𝑒𝑟 = (𝐺𝑡ℎ𝑝 - 𝐿𝑡ℎ𝑝) * (1 +
𝑂𝑐𝑦𝑐𝑙𝑒 (𝑃 ′)

𝑃𝑐𝑦𝑐𝑙𝑒)

10 if 𝐿𝑜𝑤𝑒𝑟 <𝑈𝑝𝑝𝑒𝑟 then

11 OffRatio =𝑈𝑝𝑝𝑒𝑟 /𝐺𝑡ℎ𝑝

12 else

13 OffRatio = 𝑅𝑡ℎ𝑝 / (𝐿𝑡ℎ𝑝 + 𝑅𝑡ℎ𝑝)

14 Return ApplyOffRatio(P’, OffRatio)

Table 1: Profiled metrics for optimal offloading decision. P is the

original input pipeline, M is the model, and P’ is the modified input

pipeline of P for offloading. All of the metrics are measured on the

local GPU machine. All units are MB/s except for Ocycle and Pcycle.

Metric Description

Gthp The maximum GPU throughput of gradient computations of
model (𝑀) (𝑡ℎ𝑝 (M))

Lthp The maximum training throughput of input pipeline (𝑃) and
gradient computations of model (𝑀) (𝑡ℎ𝑝 (P+M))

Rthp The maximum training throughput when all data is
preprocessed on the remote nodes with the offloaded input

pipeline (𝑃 ′) and gradient computations of model (𝑡ℎ𝑝 (P’+M))

Ocycle CPU cycles on local CPUs for training with offloaded pipeline

Pcycle CPU cycles on local CPUs for training without offloading

• Which operations should be offloaded (§ 4.2)?
• How much data should be offloaded (§ 4.3)?

Source Code 3 shows a snippet of FastFlow’s Model internal
code. As profiling may change the weights of the model (because
profiling performs model training with sample dataset) and affect
the model accuracy, FastFlow creates a copy of the model with the
__deepcopy__ method and uses this copied model for the smart
offloading decision (line 7) to separate the actual model training
and profiling. If the model is trained on multi-GPUs, FastFlow
applies the distributed strategy to enable profiling on multiple
GPUs (line 6). FastFlow launches remote workers before profiling
to execute preprocessing on the remote workers during profiling
(line 9). Once the smart offloading policy (smart_offloading)
profiles metrics and returns a modified input pipeline for offloading,
FastFlow executes the existing keras.Model.fit method with
the modified pipeline for model training (line 12) and destroys the
remote workers once the training is done (line 13).

For smart offloading decision (line 10, smart_offloading),
FastFlow uses five metrics: 𝐺𝑡ℎ𝑝 , 𝐿𝑡ℎ𝑝 , 𝑅𝑡ℎ𝑝 , 𝑂𝑐𝑦𝑐𝑙𝑒 , and 𝑃𝑐𝑦𝑐𝑙𝑒

(summarized in Table 1 and Figure 4). The detailed metric profiling
process is described in § 5.1. Next, we will illustrate Algorithm 1
for prep stall detection (§ 4.1), offloading operator decision (§ 4.2),
and offloading data ratio decision (§ 4.3).

Figure 4: An illustration of measuring metrics for offloading de-

cisions.

Figure 5: Candidate pipelines for offloading.

4.1 Preprocessing Stall Detection

Lines 2—4. Before starting the actual training on the DL engine
with the whole dataset, FastFlow checks whether there is a prep
stall, so as to prevent additional profiling. This can be determined
with two metrics: 𝐺𝑡ℎ𝑝 and 𝐿𝑡ℎ𝑝 (see Table 1 and Figure 4). 𝐿𝑡ℎ𝑝
= 𝐺𝑡ℎ𝑝 means that the GPUs consume the preprocessed data on
CPUs without waiting and stalls. In this case, FastFlow executes the
original input pipeline on local CPUs without offloading (line 4).
Otherwise, FastFlow checks whether or not FastFlow can increase
the speed by more than the SpeedUpThreshold (line 3). The ideal

increase in speed is calculated by
𝐺𝑡ℎ𝑝
𝐿𝑡ℎ𝑝

(the speed-up when there is

no prep stall). By default, FastFlow does not offload preprocessing
if the maximum increase in speed is negligible (less than 10%), so
as to prevent inefficient remote resource use.

4.2 Offloading Operator Selection

Lines 6—7. Once FastFlow decides to offload preprocessing to re-
mote CPUs, FastFlow next decides which operators to offload in the
input pipeline DAG (e.g., where to put the distribute operator).
As the performance may vary according to the decisions, FastFlow
creates several candidate pipelines (line 6) for offloading by tra-
versing the DAG. FastFlow then compares the estimated training
throughput with offloading and selects the pipeline that leads to
the maximum training throughput and minimum prep stall (line 7).

In our current design, FastFlow judiciously chooses three candid-
ate pipelines (illustrated in Figure 5) to comprehensively consider
network, disk I/O, offloading overheads (e.g., encoding/decoding
and threading), and computation capacity while offloading. The first
pipeline (p’1) offloads only the computation (Prep.), while read-
ing the data in the local node. The second candidate (p’2) pipeline
offloads operators sequentially from the data read operator (data
source), except for the batch operator. The third pipeline (p’3) na-
ively offloads all operations including batch. FastFlow currently
considers the three candidates because usually users express the
Prep. operation as a single map operator to reduce the overheads
of function calls of multiple operators. In the future, we plan to
enable users to give a hint for candidate pipelines with annotations
when multiple operators exist for the Prep. operation.

1091

According to the workloads and resource environments, the best
candidate pipeline may change among the three candidates. For
instance, p’1 can lead to the best performance compared to the
others when the data transfer throughput (Read→Prep. in p’1)
from the local to the remote node is higher than the data fetching
throughput on the remote node (Read in p’2 and p’3). This can
happen when the I/O performance or network bandwidth of the
remote node storage is too low, or the overheads for offloading (e.g.,
encoding and decoding) is negligible.

Otherwise, choosing p’2 or p’3 is better than p’1 as p’1 requires
additional encoding overheads. Between p’2 and p’3, the perform-
ance benefit varies according to the computing capacity, network
bandwidth, and threading overheads of remote nodes. For p’3, the
granularity of the data offloading becomes a batch, and therefore,
one fetch request leads to preprocessing the multiple elements of
a batch entirely on the remote side. In contrast, keeping the batch
operator on the local machine (p’2) enables element-wise request
for data preprocessing on the remote side, but it causes network I/O
and encoding/decoding overheads for each element for offloading.

When the remote computing capacity (or network bandwidth) is
enough to promptly process a batch, p’3 is better than p’2 because
it reduces the network I/O and encoding/decoding overheads. How-
ever, in some cases, multiple batch requests by the prefetch operator
may result in significant threading overheads in the remote node,
which degrades the performance. In contrast, p’2 causes less thread-
ing overheads than p’3 as each request just requires preprocessing
one element. FastFlow considers all of the cases by comparing the
estimated training throughput with the candidate pipelines, and
we will explain how to calculate the estimated training throughput
in the following section.

4.3 Offloading Data Ratio Decision

Lines 8—14. Once the candidate pipeline is decided, FastFlow next
decides the right amount of data to offload by considering the local
and remote computing/network capacity and threading overheads
(𝐿𝑡ℎ𝑝 , 𝑅𝑡ℎ𝑝) as well as offloading overheads (encoding/decoding)
in the local node (𝑂𝐶𝑦𝑐𝑙𝑒 and 𝑃𝐶𝑦𝑐𝑙𝑒).

To harness both local and remote CPUs, we consider the 𝐿𝑜𝑤𝑒𝑟
and the𝑈𝑝𝑝𝑒𝑟 amount of data to offload. Offloading data more than
𝑈𝑝𝑝𝑒𝑟 will lead to the remote CPU or network bottleneck (line 8),
whereas offloading data less than 𝐿𝑜𝑤𝑒𝑟 will lead to the local CPU
bottleneck (line 9). Intuitively, offloading more than 𝑅𝑡ℎ𝑝 to the
remote nodes will lead to the remote bottleneck, and therefore,
𝑈𝑝𝑝𝑒𝑟 is 𝑅𝑡ℎ𝑝 . For 𝐿𝑜𝑤𝑒𝑟 , as the local CPU will be the bottleneck
when we try to process more than 𝐿𝑡ℎ𝑝 in the local, it seems that
𝐿𝑜𝑤𝑒𝑟 = 𝐺𝑡ℎ𝑝 − 𝐿𝑡ℎ𝑝 . However, as encoding data and decoding
offloaded results require additional CPU cycles (𝑂𝑐𝑦𝑐𝑙𝑒) in the local
node, we also consider the overheads to prevent local CPU from
being the bottleneck. As a result, FastFlow tries to offload more
data to the remote nodes if the additional overhead for offloading
is large compared to preprocessing overhead (𝑃𝑐𝑦𝑐𝑙𝑒). This is rep-
resented by multiplying the ratio of offloading and preprocessing

cycles (1 +
𝑂𝑐𝑦𝑐𝑙𝑒
𝑃𝑐𝑦𝑐𝑙𝑒

) to 𝐺𝑡ℎ𝑝 − 𝐿𝑡ℎ𝑝 . Similarly, 𝐿𝑡ℎ𝑝 ∗ (1 −
𝑂𝑐𝑦𝑐𝑙𝑒
𝑃𝑐𝑦𝑐𝑙𝑒

)

represents the effective training throughput in the local node with
offloading overheads (the larger offloading overheads are, the lower

Table 2: The key-value pair for storing and loading profiled metrics.

P is the original input pipeline,M is a model, P’ is one of p’1, p’2, and

p’3. For the model, FastFlow also stores its batch size, as the batch

size affects GPU throughput. If the key is matched, FastFlow loads

the corresponding metric and skips profiling.

Key Value

M 𝐺𝑡ℎ𝑝

(P, M) (𝐿𝑡ℎ𝑝 , 𝑃𝑐𝑦𝑐𝑙𝑒)
(P, M, RemoteNodeInfo) (𝑅𝑡ℎ𝑝, 𝑃 ′,𝑂𝑐𝑦𝑐𝑙𝑒)

effective throughput is in the local node), so the estimated training

throughput with offloading is 𝐿𝑡ℎ𝑝 ∗ (1 −
𝑂𝑐𝑦𝑐𝑙𝑒
𝑃𝑐𝑦𝑐𝑙𝑒

) + 𝑅𝑡ℎ𝑝 (line 7).

In some cases,𝑈𝑝𝑝𝑒𝑟 is lower than 𝐿𝑜𝑤𝑒𝑟 , e.g., when the remote
CPU power or network bandwidth is low (line 13). It represents
that FastFlow cannot avoid a local or remote resource bottleneck.
The best way in this case is to evenly balance the load among local

and remote CPUs based on the resource capacity (
𝑅𝑡ℎ𝑝

𝐿𝑡ℎ𝑝+𝑅𝑡ℎ𝑝
).

Once the offloading ratio is decided, FastFlow modifies the input
pipeline P’ by applying the ratio value (line 14). In this transform-
ation, FastFlow provides the offloading ratio as a parameter for
the partial offloading operator to control the amount of data for
offloading at runtime (based on the ratio).

5 SMART OFFLOADING MECHANISM

As described above, the profiled metrics are key to the offloading
decisions (§ 5.1). To minimize the profiling overheads, FastFlow
stores and reloads the metrics whenever the same input pipeline
and model are trained (§ 5.2). Once the decision is made, FastFlow
evenly balances and controls the amount of data to fetch from the
remote workers (§ 5.3). In this section, we illustrate FastFlow’s
mechanism for smart input pipeline offloading.

5.1 Metric Profiling

To strike the right balance between profiling overhead and accur-
acy, FastFlow harnesses the iterative characteristic of DL training.
As the DL training iteratively processes the input data with mul-
tiple epochs and batches, FastFlow executes only a few iterations
and estimates the metrics without processing the entire data. We
empirically found that profiling 50 ∼ 100 steps (batches) leads to
high accuracy with small overheads [33], as training a model takes
hundreds of epochs, each of which consists of a few hundreds of
steps. We show the profiling overhead in our evaluation.

There are three types of metrics for profiling. First, to measure
the GPU throughput of the model gradient computations (𝐺𝑡ℎ𝑝 =

𝑡ℎ𝑝 (𝑀)), FastFlow removes the prep stall by caching the prepro-
cessed data of the first step in memory and reusing them to feed
the GPUs. Second, to measure the throughput of the entire in-
put pipeline and model training (𝐿𝑡ℎ𝑝 = 𝑡ℎ𝑝 (𝑃 +𝑀) and 𝑅𝑡ℎ𝑝 =

𝑡ℎ𝑝 (𝑃 ′ +𝑀)), FastFlow simply executes the original and the modi-
fied input pipeline and measures their throughputs (𝐿𝑡ℎ𝑝 and 𝑅𝑡ℎ𝑝).
Third, FastFlow estimates the CPU cycles (𝑂𝑐𝑦𝑐𝑙𝑒 and 𝑃𝑐𝑦𝑐𝑙𝑒) by
executing the input pipeline without gradient computations.

5.2 Metric Store and Load

FastFlow further reduces the profiling overhead by storing metrics
and reloading them if the same input pipeline and model are trained

1092

again [55]. To detect the same input pipeline and model, FastFlow
matches the DAG graph information of a job, i.e., the number of
nodes, node information, and edge information.

To detect the samemodel, FastFlow removes parameters and com-
pares only the model DAG information, as the training throughput
usually depends on the model architecture (e.g., number of layers,
nodes), not on its parameters. FastFlow also stores and matches the
remote node information when the metrics are profiled, because
different remote nodes may change the offloaded throughput of the
pipeline (𝑅𝑡ℎ𝑝). FastFlow stores the metrics in a key-value store,
where the key is the combination of the input pipeline, model, or
remote node information, and the value is the corresponding metric
and an offloaded pipeline (p’1, p’2, and p’3 in Figure 5) depending
on the key. These key-value pairs are described in Table 2.

5.3 Balanced Offloading

In controlling data to offload, FastFlow evenly distributes data
processing (the GetNext call) between local and remote CPUs
to minimize prep stall. For balanced offloading, FastFlow uses a
counter-based approach. FastFlow maintains counters for local and
remote CPUs and increments the corresponding counter whenever
it fetches and preprocesses data from the resources. FastFlow then
decides data preprocessing based on the ratio calculated by the
counters. Another alternative approach is the static data partition-
ing approach, like splitting the index of data for local and remote
(e.g., 2𝑥-th data in local, and 2𝑥+1 data in remote where 0 ≤ 𝑥 < 50).
This approach is beneficial when the number of remote workers is
static, but we choose the counter-based approach to easily support
dynamic load rebalancing across workers in the future.

6 IMPLEMENTATION

We have implemented FastFlow on top of TensorFlow 2.7.0 with
around 1, 200+ lines of code. To reduce the engineering effort, we
use the base offloadingmechanism implemented in tf.data.service [14].
For the profiling metrics, we modify TensorFlow’s iterator operator.
The iterator operator measures the processed data size and elapsed
time when a batch is preprocessed. The profiler then extracts this
information for each batch to calculate the throughput.

To calculate the throughput without data preprocessing over-
head (𝐺𝑡ℎ𝑝), FastFlow inserts the following tf.data operators for
caching and reusing data by traversing the input pipeline DAG.
FastFlow adds the take(1).cache().repeat() operators
before training to remove preprocessing overhead. The take(1)
operator takes one batch from the dataset, the cache() operator
caches the batch, and the repeat() operator repeatedly uses the
cached batch. For 𝑂𝑐𝑦𝑐𝑙𝑒 and 𝑃𝑐𝑦𝑐𝑙𝑒 , we use psutil [17], which
calculates the system and CPU times without I/O time.

7 EVALUATION

In this section, we answer the following questions:
• Does FastFlow improve performance compared to baselines

in various workloads and resource environments (§ 7.2)?
• How do the offloading decisions affect the performance of

FastFlow (§ 7.3)?
• How long the profiling takes (§ 7.4)?

Table 3: Dataset used in the evaluation.

Dataset Domain Size Workloads

ImageNet [31] Image 150 GB R

LJSpeech1.1 [37] Audio 2.6 GB C, T, M

Caltech Birds [53] Image 1.1 GB G

Cats and Dogs [32] Image 786 MB L

16000 PCM [20] Audio 256 MB S

• Does FastFlow achieve performance gains without affecting
model convergence (§ 7.5)?

• Does FastFlowworkwell onmulti-GPU environments (§ 7.6)?

7.1 Environment and Setup

We conduct experiments on our private cloud system (PCS), built on
Kubernetes [11]. The PCS provides GPU containers, each of which
has 7𝑥 vCPUs and 1𝑦 NVIDIAV100 GPUs, and CPU containers, each
of which has 7𝑧 vCPUs.2 In our evaluation, we vary 𝑥 (1 ≤ 𝑥 ≤ 2),
𝑦 (1 ≤ 𝑦 ≤ 4), and 𝑧 (1 ≤ 𝑧 ≤ 4) to analyze performance in diverse
resource environments. We measure the average epoch time except
for the first epoch to remove warm-up overheads.
Local GPU Node. For the local GPU node that executes input
pipeline and gradient computations, we use one PCS GPU container.
By default, we allocate a container with 7 vCPUs and one GPU
because its ratio is similar to that of the popular cloud GPU instance
(e.g., EC2 p3 instances (8:1) [2]). We also vary the number of GPUs
from 1 to 4 and vCPU:GPU ratios from 7 : 1 to 14 : 1.
Remote CPU Nodes with High Network Bandwidth. We also
vary the number of remote vCPUs of PCS containers from 7 to 28 for
offloading. Inter-container communication between PCS containers
guarantees network bandwidth more than 20 Gbps with InfiniBand,
a high-performance networking standard. Therefore, experiments
on the PCS do not cause the network bottleneck for offloading. The
local and remote PCS containers read dataset from a shared SSD
storage connected with Infiniband.
Remote CPU Nodes with Low Network Bandwidth. To show
performance on low network environments, we also use an external
on-premise server called PRD 3 as the offloading node. The PRD is
outside of the PCS clusters, and therefore, the network bandwidth
between PCS containers and the PRD is unstable and relatively low
(less than 1 Gbps). We copy the same dataset to the local storage of
the PRD node once before the evaluation. We run IndexProvider
(dispatcher) on the remote PCS container and PRD node.
Workloads. We use 7 DL workloads in image and audio domains
that have various preprocessing. Commonly, the input pipeline
consists of the following operations: 1) loading data, 2) applying
a map operator for decoding and augmentation, 3) batching, and
4) prefetching. We briefly describe each job as follows. Table 3
summarizes the dataset used in the workloads.

• Transformer ASR (T) [5]: Automatic speech recognition
using Transformer. Preprocessing includes short-time Four-
ier transform to get the spectrogram and normalizing.

• GANADA (G) [6]: A generative adversarial network (GAN)
with adaptive discriminator augmentation. Preprocessing
includes cropping, resizing, and clipping images.

2Intel Xeon Gold 6142 CPU @ 2.60GHz.
330 CPUs of Intel Core Processor (Skylake) @ 2.2GHz

1093

Figure 6: Performance in various workloads and resource environments (lower is better). In 𝑥 :𝑦 and 𝑥 :PRD, 𝑥 indicates a local PCS GPU

container with 𝑥 vCPUs and one GPU, 𝑦 is a remote PCS container for offloading with 𝑦 vCPUs, and PRD is the remote PRD node for offloading.

We omitted MelGAN as it has no prep stall and has the same performance in all systems and resource environments. Bars with ∗ indicate

the system that achieves the lowest epoch time among TF-NO, TF-DSR, TF-DSLR, and DALI in each workload. DALI results marked with x

represent applications where data pipeline operations cannot be converted into DALI operations due to the limited GPU operation support.

• CTCASR (C) [4]: Automatic speech recognition using two-
dimensional (2-D) convolutional neural network (CNN),
recurrent neural network (RNN), and connectionist tem-
poral classification (CTC) loss. Same preprocessing as Trans-
former ASR.

• Speaker Recognition (S) [19]: Speaker classification us-
ing fast Fourier transform (FFT) and a 1-D convolutional
network. Preprocessing includes adding noise randomly
and transforming audio waves with FFT.

• ResNet50 with RandAugment (R) [30]: Image classific-
ation for improved robustness using RandAugment [30].
Preprocessing includes image transformations such as ro-
tate, posterize, solarize, sharpness, etc.

• MelGAN (M) [13]: Conditional waveform synthesis using
GANs. Preprocessing includes decoding audio files into
instances of the wave.

• Learnable Resizer (L) [12]: Learning to resize images for a
given image resolution and a model. Preprocessing includes
resizing and one-hot-encoding.

Baselines. Our baselines are TF-NO (TensorFlow 2.7.0 with no of-
floading), TF-DSR (TensorFlow+tf.data.service with remote worker
only) that offloads the entire preprocessing load to remote CPUs,
TF-DSLR (TensorFlow+tf.data.service with local and remote work-
ers) that attempts to distribute the preprocessing load to both local
and remote CPUs 4, and DALI [15] that offloads preprocessing load
to the local GPU without using remote CPU resources. For TF-DSR
and TF-DSLR, we choose to offload all preprocessing operations
like p’3 in Figure 5. Parameters such as number of operator threads
(parallelism), prefetch size, and request buffer size are automatically
tuned (AUTOTUNE) by tf.data and tf.data.service.

For DALI, we try our best to offload preprocessing operations on
the local GPU for supported operations. Note that some operations
are not supported by DALI, and converting the original CPU oper-
ations to DALI (GPU) operations is not straightforward and time
consuming 5, which is the main hurdle for wide adoptions of DALI.

4We applied the recent commit [21] that improves tf.data.service performance.
5It takes a few weeks for us to port the TensorFlow operations to run on DALI, as we
are not familiar with the DALI operations.

Figure 7: (a) Prep stalls in various workloads measured on 7 vCPUs

and one V100 GPU container. (b) The average number of vCPUs for

preprocessing without CPU bottlenecks on a V100 GPU.

7.2 Performance Comparison

Figure 6 shows the performance of diverse systems on various CPU
resources and network bandwidths. Overall, FastFlow improves
training throughput up to 4.34×, 4.52×, 3.07×, and 2.06× compared
to TF-NO (in 7:28 of (d)), TF-DSR (in PRD of (f)), TF-DSLR (in 7:28
of (a)), and DALI (in 7:28 of (b)), respectively.

According to applications and resource environments, the system
that achieves best performance varies among TF-NO, TF-DSR, TF-
DSLR, and DALI, whereas FastFlow always achieves comparable or
better performance than the others with optimal and automatic de-
cisions based on the profiled metrics. For instance, in Figure 6(a) 7:7,
DALI is better than TF-NO, TF-DSR, and TF-DSLR in performance,
but in Figure 6(a) 7:21, TF-DSR has better performance than others.
This result indicates that users must judiciously decide offloading
decisions to achieve best performance whenever the application
and remote resources change.
Comparison with TF-NO. Since TF-NO does not offload prepro-
cessing, it is obvious that FastFlow has better performance than
TF-NO when there is a prep stall. However, the performance gain
is different from each workload. The higher prep stall and CPU
bottlenecks workloads have, the higher speed-up FastFlow achieves
compared to TF-NO because FastFlow minimizes the prep stall. In
Figure 7(a), Speaker Recognition has the highest prep stall (around
80%), and FastFlow shows the best performance gain (4.34×) against
TF-NO in the 7:28 environment (Figure 6(d)). For workloads with

1094

negligible prep stalls (e.g., MelGAN and Learnable Resizer), Fast-
Flow has similar training time with TF-NO because there is no
room for minimizing the prep stall.

When the number of local CPUs per GPU increases, i.e., com-
paring 7:7 with 14:7 in Figure 6, the prep stall and the performance
benefit of FastFlow decrease compared to TF-NO. For example,
GAN ADA has no prep stall in the 14:7 environment because it
requires 10 vCPUs on average for preprocessing with one v100 GPU
(Figure 7(b)). However, choosing the right number of CPU:GPU is
hard due to the different number of required CPUs in various ap-
plications. As shown in Figure 7(b), the required number of average
vCPUs per one GPU varies from 7 to 30. FastFlow can lessen the
burden of such decisions; users can choose 7 vCPUs:1 GPU for the
local node, and FastFlow automatically scales out preprocessing to
remote CPUs only when necessary.
Comparison with TF-DSR. As TF-DSR offloads all operations
and data to the remote nodes for preprocessing, its performance
degrades when the remote resources become the bottleneck for pre-
processing. For instance, in the environment with 14 local vCPUs:7
remote vCPUs, harnessing the local CPUs is better than using the re-
mote CPUs for preprocessing. However, TF-DSR tries to preprocess
all operations on the 7 remote vCPUs rather than preprocessing on
the 14 local vCPUs, which results in the remote CPU bottleneck for
the applications that require more than 7 vCPUs for preprocessing.

The performance of TF-DSR also degrades in Figure 6(a), (b), and
(f) compared to TF-NO because fully offloading data to the PRD
worker causes the network bottleneck. Transformer ASR and Learn-
able Resizer require higher data transfer rate on average (around
410 and 275 MB/s, respectively) than the PRD network bandwidth
(less than 1Gbps). In contrast, FastFlow achieves 3.26× and 4.52×
speedup against TF-DSR in the workloads, respectively, because
FastFlow decides the operators to offloading and the right amount
of data to offload considering the network bottleneck (e.g., 𝑅𝑡ℎ𝑝).

FastFlow also enables the efficient use of remote resources of
shared CPU clusters by harnessing local CPU resources. In Fig-
ure 7(b), Transformer ASR requires at most 20 vCPUs for prepro-
cessing, and therefore, TF-DSR requires more than 20 remote vCPUs
to saturate the speedup of Transformer ASR (Figure 6(a)). In con-
trast, when local 7 vCPUs are provided, FastFlow requires only
around 13 remote vCPUs to saturate the speedup.
Comparison with TF-DSLR. Compared to TF-DSR, TF-DSLR har-
nesses the local CPUs for preprocessing, but FastFlow still achieves
higher performance than TF-DSLR due to the following two reas-
ons. First, FastFlow compares the estimated training throughput
among the three candidates (p’1, p’2, and p’3) and finds the best
one that leads to maximum performance, whereas TF-DSLR naively
offloads all preprocessing operations (like p’3).

The second reason is the effect of offloading data ratio decision.
TF-DSLR relies on the operating system’s thread scheduling for
deciding the amount of data to offload. Therefore, TF-DSLR can
request more data preprocessing to the remote nodes, even if the
remote nodes become the bottleneck and suffer from high threading
overheads. Especially, in the shared container environment (like
PCS containers), threading overheads may be exacerbated because
the number of threads for preprocessing is larger than the allocated
vCPUs of a container. As the tf.data’s auto-parallelism logic sets the
operator parallelism to the number of CPU cores of the host node by

default, 6 in our PCS environment, 64 operator threads are created
on a PCS container with 7 vCPUs. As a result, a container can
process 64 batches concurrently on the 7 vCPUs, which exacerbates
the threading overheads and degrades performance. In contrast,
FastFlow decides the optimal offloading ratio not to exacerbate
the threading overheads in the local and remote containers with
profiled metrics (e.g., 𝑅𝑡ℎ𝑝 and 𝑂𝑐𝑦𝑐𝑙𝑒).
Comparison with DALI. Despite harnessing GPUs for prepro-
cessing, DALI is slower than FastFlow in most training workloads.
The first reason is because of GPU intervention between processing
and model training, which can lead to the local GPU bottleneck. For
instance, in Transformer ASR and CTC ASR, FastFlow shows 11%
speedup compared to DALI in 7 vCPUs, where the performance
gap further increases as CPU resources increase (up to 41%). In ad-
dition, DALI degrades performance in GAN ADA because the data
pipeline is partially converted into the GPU operations. As a result,
tensors produced in the GPU need to be copied again to the CPU
for further preprocessing, which incurs additional overheads. DALI
is beneficial than FastFlow only when the performance benefit of
remote nodes is smaller than that of GPUs (e.g., (a) 7:PRD).

Aside from the performance, DALI has several limitations in
usability. It is non-trivial to migrate data pipelines originally writ-
ten by tf.data to DALI due to the limited operations supported
and incompatible interfaces. Accordingly, it is not possible to im-
plement data pipelines using DALI for Speaker Recognition (no
support for Fourier transform operator [8]) and RandAugment (no
support for several image transformations including sharpness
function [1]). In addition, DALI could also suffer from GPU OOM
and slowdown due to resource contention between preprocessing
and model training for workloads having high prep stalls, so users
must judiciously use GPU resources for preprocessing.

7.3 Performance Effect of Offloading Decisions

As described in the previous section, FastFlow outperforms the
baselines in various applications and resource environments. In
this section, we show the performance effect of offloading decisions.
In the remaining sections, we show the evaluation results on the
7:7 environment by default.
When to Offload. FastFlow automatically decides to offload only
if there is a prep stall. For example, FastFlow prevents offloading of
MelGAN and Learnable Resizer in the 7:x and 14:7 environments,
and GAN ADA and RandAugment in the 14:7 environment because
they have negligible prep stalls.
Which Operations to Offload. To decide which operations to of-
fload, FastFlow compares the three candidate pipelines as illustrated
in Figure 5. Figure 8 shows the epoch time when each input data
pipeline is selected for offloading. In the 7:7 PCS environment, p’2
always leads to better performance than p’3 due to the threading
overheads and than p’1 because the disk I/O is not the bottleneck.
The thread overheads differ from applications, and applications
with CPU intensive operations have high threading overheads. For
instance, Transformer ASR has the highest CPU cycles for pre-
processing among the applications, so choosing p’3 significantly
degrades the performance due to the threading overheads in the
PCS container.

6A PCS host node has 32 cores with hyperthreading (64 vcores)

1095

Figure 8: Impact of the offloading operator selection of FastFlow. *

mark shows the selection of FastFlow.

Figure 9: Epoch duration in various offloading ratios on different

remote workers. (a) is compute-intensive, and (b) is data-intensive

preprocessing workload.

Figure 10: The offloading ratio decision accuracy of FastFlow.

When the resource environment changes, FastFlow can make
different choices for the same application. For instance, when ex-
ecuting Transformer ASR on the PRD node, FastFlow chooses p’3
instead of p’2 because the threading overheads are negligible in the
PRD node (30 operator threads are created on 30 CPU cores), and
the network does not become the bottleneck with partial offloading.
In addition, when we evaluate the same application on the resource
environment where the remote node reads data from the disk with
low I/O bandwidth (e.g., HDD), FastFlow chooses p’1 to avoid the
disk read bottleneck from the remote node.
How Much Data to Offload. To evaluate whether FastFlow finds
the optimal data offloading ratio, we first measure the epoch time
by manually varying the partial offloading ratio from 0% to 100% for
every 10% increment. As representative examples, we select Speaker
Recognition and Transformer ASR, which is a CPU-intensive and
data-transfer-intensive workload, respectively. FastFlow chooses
the best data pipeline for operator selection as shown in Figure 8.

Figure 9 shows the epoch time in different offloading ratios. For
CPU-intensive workloads, the optimal offloading ratio increases as
the number of remote CPUs increases to utilize the remote CPU
powers and to prevent the local CPU bottleneck. As shown in Fig-
ure 9(a), offloading 50% of data is optimal in 7:7, but in 7:21, 80%
of data needs to be preprocessed for the optimal performance. For
data-transfer-intensive workloads, the optimal offloading ratio de-
creases as the network bandwidth decreases to prevent the network

Table 4: Profiling overheads of FastFlow in various applications.

Fraction is Profile time
Train time ∗ 100. Values with ∗ are the results with metric

reload.

Job Profile time (min) Train time (min) Fraction (%)

T 1.91 / 0.08∗ 68.37 2.80 / 0.11∗

G 0.61 / 0.08∗ 162.22 0.37 / 0.05∗

C 9.27 / 0.20∗ 299.32 3.10 / 0.07∗

S 1.28 / 0.02∗ 150.58 0.85 / 0.01∗

R 7.01 / 0.24∗ 11396.50 0.06 / 0.002∗

M 0.78 / 0.53∗ 933.35 0.08 / 0.06∗

L 0.65 / 0.26∗ 49.23 1.31 / 0.53∗

bottleneck. Figure 9(b) shows that only about 30% of data needs to
be offloaded to the PRD for optimal performance.

We compare FastFlow’s epoch time with the manually tuned
results for decision accuracy. As illustrated in Figure 10, FastFlow
successfully finds the optimal point for the minimum epoch time.
In this graph, the epoch time of FastFlow is slightly lower than
that of the manually-tuned results. This is because we increment
the offloading ratio by every 10% to find the optimal point, but
FastFlow automatically finds the optimal point more precisely than
the manual selection based on the profiled metrics.

7.4 Profiling Overhead

To evaluate the profiling overheads that FastFlow incurs, we meas-
ure the fraction of profiling time to end-to-end training time. To
clarify, profiling time includes the time of model deep-copy (§ 4),
measuring metrics, and scanning the same graph architecture of the
input pipeline and model for metric store/reload. For training time,
we measure the elapsed time until the models reach the target accur-
acy as suggested in their papers [28, 30, 35, 38, 42, 45, 52]. Table 4
shows that profiling takes only from 0.06% to 3.1% of training time
without metric reload. Considering the speed-up that FastFlow
achieves, profiling overheads are negligible. Workloads with low
prep stalls such as MelGAN and Learnable Resizer also have little
overheads as FastFlow prevents measuring other metrics after a
short profiling of 𝐿𝑡ℎ𝑝 and 𝐺𝑡ℎ𝑝 , which takes a little fraction of
time. FastFlow further reduces the profiling time by 81.1% on av-
erage with the metric saving and reloading when the same input
pipeline or model is trained again. Still, there is a little overhead for
identifying the same input pipeline and model, but it is negligible.

7.5 Effect on Model Convergence

To demonstrate that FastFlow accelerates training speed without
affecting learning algorithms, wemeasure the loss and training time
until models converge. We then compare the result of TF-NO with
that of FastFlow. In this evaluation, we show the experimental result
of the CTCASR due to the space constraint, but we already observed
that other workloads produce similar results. Figure 11 shows the
training time andWord Error Rate (WER) of CTCASR. In this graph,
FastFlow achieves 40% reduction of the training time to reach the
desirable Word Error Rate (0.16 as described in [4]) compared
to TF-NO. The result proves that our smart offloading technique
boosts the training without affecting the model convergence, and
also indicates that the reduction of the epoch time directly affects

1096

Figure 11: Model convergence of CTC ASR.

Figure 12: Multi-GPU training for (a) Transformer ASR and (b)

Speaker Recognition.

the total training time (FastFlow also reduces the CTC ASR epoch
time by 40% than TF-NO in the 7:7 environment).

7.6 Multi-GPU Training

Our evaluation shows that FastFlow is still effective on multiple
GPUs. While keeping the vCPU:GPU ratio to 7:1, we train models
by increasing the number of GPUs from 1 to 4 with synchronous
data parallelism strategy [7]. To keep up with the increased par-
allelism on the GPU-side, we set the same number of remote PCS
vCPUs with the local vCPUs (from 7 to 28). For evaluation, we se-
lect Transformer ASR and Speaker Recognition because they have
high prep stalls. Figure 12 shows the results on the applications.
Although the speedup slightly decreases as the number of GPU
increases due to the synchronization overheads of weight updates
in the multi-GPU training, FastFlow offloads preprocessing well by
efficiently using both local and remote CPU resources. As a result,
compared to TF-NO, FastFlow improves the performance of Trans-
former ASR by 2.27×, 1.92× and 1.83×, and Speaker Recognition
by 1.89×, 1.73× and 1.67× on 1, 2 and 4 GPUs, respectively.

8 RELATED WORK

In this section, we discuss related works except for the work dis-
cussed in § 2.2 that handles preprocessing stalls.
BottleneckAnalysis. PRESTO [36] analyzes the trade-off of through-
put, preprocessing time, and storage consumption by individually
caching preprocessing operators. With this analysis, we can determ-
ine which preprocessing to be performed on offline preprocessing
(only once), or on online preprocessing (every epoch) based on the
analyzed throughput. DS-Analyzer [47] analyzes fetch stall and
preprocessing stall, with the comparison of I/O, CPU, and GPU
speed. Further from analysis, FastFlow makes automatic decisions
for offloading according to workloads and resource environments.
Dynamic-CPU Allocation. Synergy [46] addresses the problem
of CPU bottlenecks in DL training on shared GPU clusters. Synergy
allows each job to acquire a different number of CPUs per GPU
and develops scheduling policies to allocate the appropriate CPUs
for each job. However, when the total amount of CPUs required
by the multiple jobs is beyond the CPUs of the shared GPU cluster,
the GPU cluster will suffer from the CPU bottleneck. FastFlow can

resolve the CPU bottleneck of the shared GPU cluster by offloading
input pipeline to remote CPU clusters and accelerates DL jobs by
considering the remote CPU capacity and network bandwidth.
Caching. Cachew [33] enables the autocaching of a job by allowing
users to set an autocache operator before random operations to
reduce deterministic-preprocessing overheads. In multi-user and
multi-job environments, Quiver [41] reduces I/O overheads with
workload-aware caching techniques. These caching techniques can
be integrated with FastFlow, which focuses on prep stalls caused
by intensive CPU uses of diverse (random) operations.
Domain-Specific Preprocessing. DIESEL+ [54] optimizes the en-
tire image input pipelinewith domain-specific knowledge.Meta [57]
shows the characteristics of datacenter-scale input data pipeline for
recommendation models. PCR [39] proposes an efficient compres-
sion for images to reduce the overhead of fetching and decoding.
FastFlow can accelerate and scale out general operations without
domain-specific knowledge.

9 DISCUSSION

Although FastFlow targets resource environments where each job
runs on a fixed amount of allocated resources, we believe that Fast-
Flow can be easily extended to disaggregated or cloud environments
where CPU resources for offloading are abundant and on-demand
resource allocation is supported. In this section, we discuss how to
support auto-scaling in FastFlow on the environments.

To automatically decide the number of workers to offload be-
fore the actual training, FastFlow can use the profiled metrics.
For instance, for homogeneous workers, FastFlow can estimate
the required number of workers by measuring 𝑅𝑡ℎ𝑝 with one
worker. The number of workers for offloading can be simply de-
rived by 𝑛_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = ⌈𝐿𝑜𝑤𝑒𝑟/𝑅𝑡ℎ𝑝𝑎_𝑤𝑜𝑟𝑘𝑒𝑟 ⌉. Compared to the
auto-scaling of Cachew [33] that dynamically adjusts the number
of workers to find the optimal performance, FastFlow can find the
optimal number of workers at one time with the profiled metrics.
The profile-based autoscaling can also be easily integrated with
the Cachew’s dynamic autoscaling by measuring performance at
runtime and adjusting the number of workers from the number
decided by the prior profiling.

10 CONCLUSION

We design FastFlow, a DL training system that carefully offloads
DL input pipeline to remote CPUs for performance improvement
based on lightweight profiling. Our evaluation with seven diverse
workloads shows that FastFlow always achieves comparable or
better performance than the manual configuration of TensorFlow
for offloading and than DALI by automatically finding the best
offloading decisions—when, which, and how much data to offload—
in diverse resource environments. FastFlow can easily be adopted
by TensorFlow’s users with minimal code modification, and we
believe that FastFlow can improve not only training throughput,
but also resource utilization of both GPU and CPU clusters.

ACKNOWLEDGMENTS

We thank all reviewers for their insightful comments. We also
gratefully acknowledge Kyungjae Kim, Jaehun Uhm, and Yunsu
Lee for helping us to initiate and complete this work.

1097

REFERENCES
[1] Accessed in January 2023. Add more choices for data augmentation. https:

//github.com/NVIDIA/DALI/issues/1610.
[2] Accessed in January 2023. Amazon EC2 P3 Instances. https://aws.amazon.com/

ec2/instance-types/p3/.
[3] Accessed in January 2023. Amazon S3. https://aws.amazon.com/s3.
[4] Accessed in January 2023. Automatic Speech Recognition using CTC. https:

//keras.io/examples/audio/ctc_asr/.
[5] Accessed in January 2023. Automatic Speech Recognition with Transformer.

https://keras.io/examples/audio/transformer_asr/.
[6] Accessed in January 2023. Data-efficient GANs with Adaptive Discriminator

Augmentation. https://keras.io/examples/generative/gan_ada/.
[7] Accessed in January 2023. A distribution strategy for synchronous training on

multiple workers. https://www.tensorflow.org/api_docs/python/tf/distribute/
experimental/MultiWorkerMirroredStrategy.

[8] Accessed in January 2023. Does DALI support GPU operation equivalent to
tf.signal.fft? https://github.com/NVIDIA/DALI/issues/4331.

[9] Accessed in January 2023. Google TPU v4. https://cloud.google.com/tpu/docs/
system-architecture-tpu-vm#tpu_v4.

[10] Accessed in January 2023. Keras: Deep Learning for humans. https://github.
com/keras-team/keras.

[11] Accessed in January 2023. Kubernetes: an open source system for managing
containerized applications across multiple hosts. https://github.com/kubernetes/
kubernetes.

[12] Accessed in January 2023. Learning to Resize in Computer Vision. https:
//keras.io/examples/vision/learnable_resizer/.

[13] Accessed in January 2023. MelGAN-based spectrogram inversion using feature
matching. https://keras.io/examples/audio/melgan_spectrogram_inversion/.

[14] Accessed in January 2023. Module: tf.data.experimental.service. https://www.
tensorflow.org/api_docs/python/tf/data/experimental/service.

[15] Accessed in January 2023. NVIDIA Data Loading Library (DALI). https:
//developer.nvidia.com/dali.

[16] Accessed in January 2023. NVIDIA H100 Performance. https://developer.nvidia.
com/blog/nvidia-hopper-architecture-in-depth/.

[17] Accessed in January 2023. psutil (process and system utilities): a cross-platform
library for retrieving information on running processes. https://github.com/
giampaolo/psutil.

[18] Accessed in January 2023. Pytorch Dataloader. https://pytorch.org/docs/stable/
data.html#torch.utils.data.DataLoader.

[19] Accessed in January 2023. Speaker Recognition. https://keras.io/examples/audio/
speaker_recognition_using_cnn/.

[20] Accessed in January 2023. Speaker Recognition Dataset. https://www.kaggle.
com/datasets/kongaevans/speaker-recognition-dataset.

[21] Accessed in January 2023. tf.data.service commit that does not
prefer local reads. https://github.com/tensorflow/tensorflow/commit/
17e7f5e01bbcdde893309bc302f144e25d43bb81.

[22] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In OSDI. 265–283.

[23] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence
Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler,
USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben
Wang, and Samuel Weinbach. 2022. GPT-NeoX-20B: An Open-Source Autore-
gressive Language Model.

[24] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[25] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[26] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oli-
veira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shant-
anu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, MiraMurati, Katie Mayer, PeterWelinder, BobMcGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large

Language Models Trained on Code. https://arxiv.org/abs/2107.03374
[27] Yang Cheng, Dan Li, Zhiyuan Guo, Binyao Jiang, Jinkun Geng, Wei Bai, Jian-

ping Wu, and Yongqiang Xiong. 2021. Accelerating End-to-End Deep Learning
Workflow With Codesign of Data Preprocessing and Scheduling. IEEE TPDS 32,
7 (2021), 1802–1814.

[28] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. 2018. VoxCeleb2: Deep
Speaker Recognition. In Interspeech. 1086–1090.

[29] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le.
2019. AutoAugment: Learning Augmentation Strategies From Data. In CVPR.

[30] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. 2020. Randaug-
ment: Practical Automated Data Augmentation With a Reduced Search Space. In
CVPR.

[31] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In CVPR.

[32] Jeremy Elson, John (JD) Douceur, Jon Howell, and Jared Saul. 2007. Asirra: A
CAPTCHA that Exploits Interest-Aligned Manual Image Categorization. In ACM
CCS.

[33] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramohan A.
Thekkath, and Ana Klimovic. 2022. Cachew: Machine Learning Input Data Pro-
cessing as a Service. In 2022 USENIX Annual Technical Conference (USENIX ATC
22). 689–706.

[34] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech re-
cognition with deep recurrent neural networks. In IEEE international conference
on acoustics, speech and signal processing. 6645–6649.

[35] Yosuke Higuchi, Shinji Watanabe, Nanxin Chen, Tetsuji Ogawa, and Tetsunori
Kobayashi. 2020. Mask CTC: Non-Autoregressive End-to-End ASR with CTC
and Mask Predict. In Interspeech. 3655–3659.

[36] Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and Hans-Arno Jacobsen. 2022.
Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning Prepro-
cessing Pipelines. In SIGMOD.

[37] Keith Ito and Linda Johnson. 2017. The LJ Speech Dataset. https://keithito.com/LJ-
Speech-Dataset/.

[38] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and
Timo Aila. 2020. Training Generative Adversarial Networks with Limited Data.
In NeurIPS. 12104–12114.

[39] Michael Kuchnik, George Amvrosiadis, and Virginia Smith. 2021. Progressive
Compressed Records: Taking a Byte out of Deep Learning Data. Proc. VLDB
Endow. 14, 11 (2021), 2627–2641.

[40] Michael Kuchnik, Ana Klimovic, Jiri Simsa, Virginia Smith, and George Amvro-
siadis. 2022. Plumber: Diagnosing and Removing Performance Bottlenecks in
Machine Learning Data Pipelines. Proceedings of Machine Learning and Systems
4 (2022).

[41] Abhishek Vijaya Kumar and Muthian Sivathanu. 2020. Quiver: An Informed
Storage Cache for Deep Learning. In FAST. 283–296.

[42] Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen
Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, and Aaron C Courville.
2019. MelGAN: Generative Adversarial Networks for Conditional Waveform
Synthesis. In NeurIPS.

[43] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee, Hwarim Hyun, Ahnjae
Shin, and Byung-Gon Chun. 2021. Refurbish Your Training Data: Reusing Par-
tially Augmented Samples for Faster Deep Neural Network Training. In ATC.
537–550.

[44] Youngjune Lee, Oh Joon Kwon, Haeju Lee, Joonyoung Kim, Kangwook Lee, and
Kee-Eung Kim. 2021. Augment & Valuate: A Data Enhancement Pipeline for
Data-Centric AI. arXiv preprint arXiv:2112.03837 (2021).

[45] Abdelrahman Mohamed, Dmytro Okhonko, and Luke Zettlemoyer. 2019. Trans-
formers with convolutional context for asr. arXiv preprint arXiv:1904.11660
(2019).

[46] Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay Chidam-
baram. 2022. Looking Beyond GPUs for DNN Scheduling on Multi-Tenant
Clusters. In OSDI. 579–596.

[47] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram.
2021. Analyzing and Mitigating Data Stalls in DNN Training. Proc. VLDB Endow.
14, 5 (2021), 771–784.

[48] Derek G. Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. 2021. Tf.Data: A
Machine Learning Data Processing Framework. Proc. VLDB Endow. 14, 12 (2021),
2945–2958.

[49] Pyeongsu Park, Heetaek Jeong, and Jangwoo Kim. 2020. TrainBox: An Extreme-
Scale Neural Network Training Server Architecture by Systematically Balancing
Operations. In MICRO. 825–838.

[50] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In NeurIPS.

1098

https://github.com/NVIDIA/DALI/issues/1610
https://github.com/NVIDIA/DALI/issues/1610
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/s3
https://keras.io/examples/audio/ctc_asr/
https://keras.io/examples/audio/ctc_asr/
https://keras.io/examples/audio/transformer_asr/
https://keras.io/examples/generative/gan_ada/
https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/MultiWorkerMirroredStrategy
https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/MultiWorkerMirroredStrategy
https://github.com/NVIDIA/DALI/issues/4331
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm##tpu_v4
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm##tpu_v4
https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://keras.io/examples/vision/learnable_resizer/
https://keras.io/examples/vision/learnable_resizer/
https://keras.io/examples/audio/melgan_spectrogram_inversion/
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://developer.nvidia.com/dali
https://developer.nvidia.com/dali
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://github.com/giampaolo/psutil
https://github.com/giampaolo/psutil
https://pytorch.org/docs/stable/data.html##torch.utils.data.DataLoader
https://pytorch.org/docs/stable/data.html##torch.utils.data.DataLoader
https://keras.io/examples/audio/speaker_recognition_using_cnn/
https://keras.io/examples/audio/speaker_recognition_using_cnn/
https://www.kaggle.com/datasets/kongaevans/speaker-recognition-dataset
https://www.kaggle.com/datasets/kongaevans/speaker-recognition-dataset
https://github.com/tensorflow/tensorflow/commit/17e7f5e01bbcdde893309bc302f144e25d43bb81
https://github.com/tensorflow/tensorflow/commit/17e7f5e01bbcdde893309bc302f144e25d43bb81
https://arxiv.org/abs/2107.03374
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

[51] Robin Scheibler, Eric Bezzam, and Ivan Dokmanić. 2018. Pyroomacoustics: A
Python Package for Audio Room Simulation and Array Processing Algorithms.
In IEEE ICASSP. 351–355.

[52] Hossein Talebi and Peyman Milanfar. 2021. Learning to resize images for com-
puter vision tasks. In ICCV. 497–506.

[53] CatherineWah, Steve Branson, PeterWelinder, Pietro Perona, and Serge Belongie.
2011. The caltech-ucsd birds-200-2011 dataset. (2011).

[54] LipengWang, Qiong Luo, and Shengen Yan. 2022. DIESEL+: Accelerating Distrib-
uted Deep Learning Tasks on Image Datasets. IEEE TPDS 33 (2022), 1173–1184.

[55] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He,
Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in the Wild: Workload
Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In NSDI.

945–960.
[56] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A {Fault-Tolerant} Abstraction for {In-Memory}
Cluster Computing. In NSDI. 15–28.

[57] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, SundaramNaray-
anan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean Wu, Christos
Kozyrakis, and Parik Pol. 2022. Understanding Data Storage and Ingestion for
Large-Scale Deep Recommendation Model Training: Industrial Product. In ISCA.
1042–1057.

1099

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Deep Learning Training
	2.2 Preprocessing Stall in DL Training
	2.3 Limitations of Existing Work
	2.4 Our Approach and Challenges

	3 System Overview
	3.1 Overall Workflow
	3.2 API with Code Example

	4 Smart Offloading Policy
	4.1 Preprocessing Stall Detection
	4.2 Offloading Operator Selection
	4.3 Offloading Data Ratio Decision

	5 Smart Offloading Mechanism
	5.1 Metric Profiling
	5.2 Metric Store and Load
	5.3 Balanced Offloading

	6 Implementation
	7 Evaluation
	7.1 Environment and Setup
	7.2 Performance Comparison
	7.3 Performance Effect of Offloading Decisions
	7.4 Profiling Overhead
	7.5 Effect on Model Convergence
	7.6 Multi-GPU Training

	8 Related Work
	9 Discussion
	10 Conclusion
	Acknowledgments
	References

