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Class Information

* Website: https://zaoxing.github.io/teaching/2026-cloud-network

 Bookmark this, contains links all resources

e ELMS-Canvas: discussions and announcements

* Email: always happy to chat



Instructor / Your Collaborator

Alan Liu

Office hours:
upon request
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Welcome: What is this class about



Three Goals (How to do systems research):

- Learning latest research in Systems for Al domain:
Reading, Reviewing, Presenting, Reproducing

- Finding an interesting problem to explore, how?

- Playing a role in an open-source project.



Two main themes this semester:

- How a LLM is trained and served in the cloud infra?
& OMeta 4 Gemini

- How (Shall) we build efficient systems in the Al wave?
E.g., How Al agent systems work?
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Machine Learning

The basic goal of Al is to develop intelligent
machines. Deep Learning

This consists of many sub-goals: GenAl
* Perception

* Reasoning

* Control [ Motion /[ Manipulation
* Planning

¢ Communication

* Creativity

* Learning
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Artiticial Intelligence Workloads

The basic goal of Al is to develop intelligent
machines.

This consists of many sub-goals:

* Perception

* Reasoning

* Control [ Motion /[ Manipulation
* Planning

* Communication

* Creativity

* Learning

“Deep Style” from https://deepdreamgenerator.com/#gallery

Artificial Intelligence

Machine Learning

Deep Learning

GenAl
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The basic goal of Al is to develop intelligent

machines.

This consists of many sub-goals:

Perception

Reasoning

Control / Motion [ Manipulation
Planning

Communication

Creativity

Learning

Machine Learning

Deep Learning

OQ: What does Generative Al
have to do with any of
these goals?

OA: It’s making in-roads into
all of them.
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. : i i Machine Learning
The basic goal of Al is to develop intelligent

machines. Deep Learning

This consists of many sub-goals:
* Perception

* Reasoning o Communication comprises the

» Control / Motion / Manipulation comprehension and generation of
, human language.

* Planning

— 0 Large language models (LLMs)

 Communication excel at both

* Creativity 0 (Even though they are most often
: trained autoregressively, i.e. to

* Learning

generate a next word, given the
previous ones)
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Machine Learning

The basic goal of Al is to develop intelligent
machines. Deep Learning

This consists of many sub-goals:
* Perception

* Reasoning 0 The traditional way of learning in

* Control/Motion/ Manipulation = ML is via parameter estimation
* Planning O But in-context learning (i.e.
e Communication providing training examples as
+ Creativity context at test time) shows that
: learning can also be done via
* Learning .
inference
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Machine Learning

The basic goal of Al is to develop intelligent

machines. Deep Learning
This consists of many sub-goals: GenAl

* Perception

* Reasoning 0 LLMs are also (unexpectedly)

* Control / Motion/Manipulation  good at certain reasoning tasks
* Planning o cf. Chain-of-Though Prompting
« Communication (an ex. of in-context learning)

+ Creativity

* Learning

: The cafeteria had 23 apples. If they used 20 to
ake lunch and bought 6 more, how many apples

Q
m
do they have?
\_ >
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Machine Learning

The basic goal of Al is to develop intelligent
machines. Deep Learning

This consists of many sub-goals: o

* Perception ———

* Reasoning 0 LLMs are already being used for
 Control [ Motion/ Manipulation grounded planning for

* Planning embodied agents, c.f. LLM-

e« Communication Planner

* Creativity O Planning is a key step for agentic

. code assistants
* Learning
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Machine Learning

The basic goal of Al is to develop intelligent
machines. Deep Learning

This consists of many sub-goals:
* Perception

* Reasoning 0 Text-to-image models

* Control / Motion [ Manipulation [ Midjourney’s Discord server has
* Planning 18 million members (1.7 million

e Communication were online this morning)]

e Creativity O Text-to-music models

[ MusicGen capable of
conditioning on text and audio
sample]

“Deep Style” from https://deepdreamgenerator.com/#gallery

* Learning
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Machine Learning

The basic goal of Al is to develop intelligent
machines. Deep Learning

This consists of many sub-goals:
* Perception

* Reasoning 0 Multimodal foundation models

* Control / Motion [ Manipulation = [earn to answer questions about
 Planning images (and text in images)

* Communication 0 Diffusion models can be used as
* Creativity zero-shot classifiers

* Learning
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Machine Learning

The basic goal of Al is to develop intelligent
machines. Deep Learning

This consists of many sub-goals:
* Perception

* Reasoning 0 DayDreamer learns a generative

* Control / Motion [ Manipulation model of experiences for RL, i.e.

* Planning a World Model, without

e Communication simulation Real World  Replay Buffer

* Creativity O Quadruped ﬁﬁ'
robot learns

to walk in - ’]

under 1 hour

* Learning

Actor Critic World Model
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Where can Systems fit into the picture



Machine Learning Systems

& Transformer .

ML Research
Researcher New Models
i ™\
44k lines of code Six months
) Y,
Data Compute

IMAGE
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Machine Learning Systems

& rehet | ML Research
Transformer
Researcher

[ 100 lines of python A few hours
System Abstractions

{ Systems (ML Frameworks) O

Data
IMAGE
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Machine Learning Systems

rch
Researcher Transformer
[ 100 lines of python A few hours ]
System Abstrac!
{ Systems (ML Frameworks) O\

IMAGENET




MLSys as a Research Field

> Problems

Compute

A holistic approach (ML, Data,
Systems, Hardware) to solve the
problem of interest.

28
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The Pile:

Training Data for LLMs

Composition of the Pile by Category

= Academic ® Internet = Prose * Dialogue * Misc

Bibliotik
Pile-CC PG-19
ArXiv

An open-source dataset for
training language models

Comprised of 22 smaller
datasets

Favors high quality text
825 Gb = 1.2 trillion tokens

PubMed Central

StackExchange !!
PMA Github
FreelLaw USPTO NIH |OpenWebText2 Wikipedia DM Math I YT
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* InstructGPT uses oy _ g , mEp _ ,
. Collect demonstration data, Collect comparison data, Optimize a policy against
Rel nforcemel:]t and train a supervised policy. and train a reward model. the reward model using
Learning with Human reinforcement learning.
F.eedbac'k (RLH F) to A prompt is A prompt and A new prompt
f|ne-tune d pre- sampled from our il hs e several model Beaian e e is sampled from szmw
tl‘a in ed CI PT mo d el prompt dataset. landing to‘a 6 yearold z:,t:;,t:dére lanod-ngtoa 6ye;)ld the dataset. about' frogs
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. desired output : s "¢
evaluations on our behavior. - — |
prompt distribution, Alabele rarks N
t t t 2 upon a time..,
outputs from the 1.38 + roopusion | (@) v
pa rameter o FiecHifie GPTS /o;':{\ 0-0-0-0 The reward model o
with supervised .\.\s.a{/. calculates a 25
InstructGPT model are i oup -~ N | satomns o
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frO m th e 1 75 B CI PT‘B, reward model. '(.\s.a{f The reward is Y
despite haVing 100X 0-60-0-0 used to update p -
f » the policy
ewer parameters. using PO,

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details

_ _ on our method.
Figure from https://arxiv.org/pdf/2203.02155.pdf


https://arxiv.org/pdf/2203.02155.pdf

Memory Usage of LLMs
How to store a large language Model | MegatronlM |GPT3

model in memory? # parameters 8.3 billion 175 billion
.. ] full precision 30 Gb 651 Gb
— full precision: 32-bit floats halfprecision 15 Gb m——

— half precision: 16-bit floats
— Using half precision not only

reduces memory, it also speeds GPU/TPU

up GPU computation TPUv2 16 Cb

. T . TPU v3/v 2 Gb
— “Peak float16 matrix multiplication e ’
. . Tesla Vioo GPU 32Gb
and convolution performance is 16x
NVIDIA RTX A6000 48 Gb
faster than peak float32
Tesla A100 GPU 80 Gb

performance on A100 GPUs.”



Distributed Training: Model Parallel

CT“ a‘r e Cthe best  <eoc> N Dewce 71 i" p De;,icieizﬁ - \? i Dé\).ice 5 " ( i Transformer la“yers _ ] ' Devnce5 “ [ - g'l:raﬁn;ft;r;ﬁér]a’yérré — ]
[ ra\?s orm‘er b ] :[ Layer3part1 | | Layer3part1 ] | ' Device 4 [ Transformer layer 4 ] Dvice & [ Transformer layer 4 ] ;
J \/ I Vo - SSSS LS, o | o
[ Transformer layer N-1 ] L "I e i e S e
: /\ : lDewce 3»_ [ ___ Trensformeriayer3 ] : Device 3 [ Transformer layer 3 |
[ Layer 2 part 1 ] *(Layer2part1 J; [ — ) AT [ o ememe—s
[ Transformer layer 2 J L e i Iy e A N
i ~¢ 3 [E 5 : : VDe\ilice 27 , [ _ Transfqrmgr Iayef2 : : J I I Device 2 [ Transformer |ayer2 ] I
{ Transformer layer 1 ] : /‘;\ : ( 9 o I > Y
" g [ Layer1part1 J | Layer1part1 ]x N = - Wl p S S —S— :
' T L~ ) Deveer [ Tonwomerwyee! ] poycer (| Tenstomeriyeri ] |
<cos> Cats are the  best | ] —
(a) Transformer-based LM (b) Operation partitioning (c) Microbatch-based pipeline (d) Token-based pipeline
(Megatron-LM) parallelism (GPipe) parallelism (TeraPipe)
T'.“ere are a variety of Matrix multiplication The most natural divisionis A more efficient solution is
different options for comprises most by layer: each device to divide computation by
how to distribute the Transformer LM computes a subset of the token and layer. This
model computation / computation and canbe layers, only that device requires careful division of
parameters across divided along rows/columns  stores the parameters and work and is specific to the
multiple devices. of the respective matrices.  computation graph for Transformer LM.

those layers.
Figure from https://arxiv.org/pdf/2102.07988.pdf
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Cost to train

1T

100B

10B

Parameters

100M

/7
10“{‘017’ 1019

Figure from https://arxiv.org/pdf/2203.15556.pdf

1021
FLOPs

1023

1025

—— Approach 1
—— Approach 2
—— Approach 3

- Kaplan et al (2020)

Chinchilla (70B)

Gopher (280B)

GPT-3 (175B)
Megatron-Turing NLG (530B)
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Timeline: Image/Video Generation
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What defines good
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Research Today?
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Big Ideas in ML Research

* Generalization (Underfitting/Overfitting)
 What is being “learned”?

* Inductive Biases and Representations
 What assumptions about domain enable efficient learning?

e Efficiency (Data and Computation)
e How much data and time are needed to learn?

* Details: Objectives/Models/Algorithms



What makes a great (accepted) paper?

State of the art results
Accuracy, Sample Complexity, Qualitative Results ...

Novel settings, problem formulations, and benchmarks
Innovation in techniques: architecture, training methodology, ...
Theoretical results that provide a deeper understanding
Narrative and framing in prior work and current trends?

Parsimony? Are elaborate solutions rejected? If they work better?
Verification of prior results?



What defines good

ML-Systems

Research Today?



Big Ideas in Systems Research

Managing Complexity

Abstraction, modularity, layering, and hierarchy

Tradeoffs

What are the fundamental constraints?
How can you reach new points in the trade-off space?

Problem Formulation
What are the requirements and assumptions?



What makes a great (accepted) paper?

State of the art results
throughput, latency, resource regs., scale, ...

Problem formulations and benchmarks

Innovation in techniques
Algorithms, data-structures, policies, software abstractions.

What you remove or restrictions often more important
Narrative and framing in prior work and current trends?
Verification of prior results?

Open source? Real-world use?



Goals: What can you get from this class



What Can You Get From This Class

* Ability to identify important problems
* |dentify new important problems in ML and Systems.
* Formalize problems to measurable goals.

* MLSys approach of problem solving
* Take a holistic approach (ML, different systems layers)
to solve the problem.

 Understand each part of the learning systems and how
do they interact with each other.




Example: Problem Identification and Formalization

Safety is a critical problem in autonomous driving

g

Pedestrian detection is the bottleneck and
impact the fail-safe system

g

Need to improve self-driving car’s pedestrian
detection to be X-percent accurate, at Y-ms
latency budget

46



Example: MLSys Approach to Problem Solving

Need to improve self-driving car’s
pedestrian detection to be X-percent
accurate, at Y-ms latency budget

* Collect more data
* Incorporate specialized compute hardware
 Develop models that optimizes for the specific hardware

* Built compilation solution to automate code optimization on
the target hardware.

47



What Can You Get From This Class

* Youwon’t be asked to build an end-to-end self-driving system
* You are more than welcome to do so :)

 We will be looking at sub-problems (e.g., model
training, inference)

 The same principle of MLSys approach applies



How Can We Achieve the Goals

e QOverview lectures of areas in systems and ML
* Paperreading and presentation
* Learnfrom existing examples of problem formalization.
 Understand the layers of ML systems and how do they
interact with each other.
 Write short paper reviews
* Critical thinking
 Learn and generalize ideas
* Final project
* A MLSys project




Additional Tips

There are better classes to take if you want to learn
 General ML methods (take intro to ML)
* Data science toolkits (take practical in data science)

For students with ML background

* Take this class if you want to learn what is behind the scene
and how to design model to take full advantage of systemes.

For students with Systems background

 Understand the problems in systems field, solve the right
problem.



Problems:
What makes a good problem?



What makes a good problem?

Impact: People care about the solution
... and progress advances our understanding (research)

Metrics: You know when you have succeeded
Can you measure progress on the solution?

Divisible: The problem can be divided into smaller problems
You can identify the first sub-problem.

Your Edge: Why is it a good problem for you?

Leverage your strengths and imagine a new path.



Can You Solve a Solved Problem?

ldeally you want to solve a new and important problem

A new solution to a solved problem can be impactful if:
It supports a broader set of applications (users)
It reveals a fundamental trade-off or
Provides a deeper understanding of the problem space
10x Better?
Often publishable...
Should satisfy one of the three above conditions.



Logistics



Overview of the Course

* Overview lectures of areas in machine learning and systems
* Paperreading and presentation
* Learnfrom existing examples of problem formalization.
 Understand the layers of ML systems and how do they
interact with each other.
 Write short paper reviews
* Critical thinking
 Learn and generalize ideas
* Final project
* Build Something!




Class Format

e Overview Lecture: given by the instructor, overview of a sub-area

* Paper discussions: led by students, present and discuss paper
reading materials
e Usually follows the overview lecture

* Guest Lecture: given by external speakers on systems topics
* Might be in different time, announcements will come before the class



Paper Readings and Reviews

Due before each paper discussion session.

* Papers from the reading list (~ two per week)
* One short review summarizing the first paper, in your own words
* One short review summarizing the second paper, in your own words

* One short paragraph on any connections between the papers, such as:

* Compare and contrast

 How one could apply ideas from one paper to solve the problem
in the other paper

 Anew idea that would incorporate results from both papers etc




Discussion Session

e Paper presentations: 60 minutes (25 minutes per paper * 2)
e 20 mins - presentation, 5 mins — question, 5 mins — buffer

* Presenters:
e Submit slides before the class.
* Prepare discussion questions and lead the discussions

* Discussion: 15 min
* Class discussion about the two papers



Signhup for Paper Presentations

Pick one paper from the list, present by one student. Each student
is expected to present two times in the semester.

* Sign-up link will be posted to course website



Paper Presentation

Big Ideas(Overview/Motivation)

Why is it Key
important? techniques

Discussions

Points for

discussion:
- pros, cons
- connections

High level summary
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Discussions Session

Big Ideas(Overview/Motivation)

Problem Solution Discussions

Presenter needs to lead the discussion.
e The instructor will facilitate the Q&A.

61



Course Project

* Team of 1-X students (sign up in next week), find your team-mates
early

* Discuss your project ideas. You are more than welcomed to bring
your own topic.

* Initial 1-page proposal
* Informal mid-term check-in
* Final lightning presentation and writeup



Grading

* Participation: 10%

* Paper review: 20%

* Paper presentation: 20%

* Open-source engagement: 10%

* Project: 40%

All reviews/reports are submitted via HotCRP.



Ask Questions, Anytime

* You are more than welcomed to lead your own discussion thread

* Cloud Sys+Al/ML is an open field, there may not be definitive
answers, let us explore the field together.



Always refer to the website for more details

https://zaoxing.github.io/teaching/2026-cloud-network
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