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A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends




Parallelization Problem

e Parallel execution of concurrent kernels
e Overlap compute and data transfer
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Objectives For Today

Challenges with Data Parallel Training
Model Parallelism

Pipeline Parallelism



Parallel and distributed training

Data parallelism
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a. Easy torealize

Cons:
a. Not work for large models
b. High allreduce overhead

Pipeline parallelism
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a. Make large model training feasible
b. No collective, only P2P

Cons:

a. Bubbles in pipeline

b. Removing bubbles leads to stale
weights

Model parallelism

input
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Pros:
a. Make large model training

feasible

Cons:
b. Communication for each
operator (or each layer)



Synchronous Data Parallelism

Compute the entire model on
each processor
Distribute the batch evenly across

each processor:
e 1024 batch distributed over 16 PEs: 64
images per GPU

Communicate gradient updates
through allreduce
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All Reduce
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All Reduce — A High-Level Example

Worker A Worker B Worker A Worker B

Worker C Worker D Worker D




Ring All-Reduce

Worker A

Worker D Worker B

Worker C




Ring All-Reduce — Step 1

Worker A

Worker D

Worker C




Ring All-Reduce — Step 2

Worker A

Worker D Worker B

Worker C




Ring All-Reduce — Step 3

Worker A

Worker D Worker B

7 Worker C

Ti=ai+bi+ci+di



Ring All-Reduce — Step 4

Worker A

Worker D Worker B

Worker C

1’,—=ai+bi+ci+di



Limits of Data Parallel Scaling

The maximum limit of processors that you can use is P=B
But this often leads to very low utilization of the hardware and
would not yield any speed up
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One epoch training time of AlexNet computed on an Intel KNL system



Scaling Data Parallel Training

If we want to keep scaling
synchronous SGD then we

have to keep increasing
the batch size.




Naively increasing Batch size leads to perfect
results but ...
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Problems with Large Batch Training

» Larger Batch leads to sub-optimal generalization

» A common belief is that large batch training gets attracted to “sharp
minimas”

AlexNet-BN for ImageNet
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i Keskar et al., On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR’16.
' Z.Yao, A. Gholaml Q. Lei, K. Keutzer, M. Mahoney. Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18.

, Glnsburg Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with LARS." arXiv:1708.03888, 2018.
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Generalization Gap Problem
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Larger batch sizes harm
generalization performance.
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Data Parallelism Summary

* An efficient parallel training method where the comm time is independent of
processors with ring allreduce

* Very easy to implement. Only requires allreduce operation before updating
parameters

* Very challenging to scale. Using large batch training is not an option as it hurts
generalization performance.

* Existing solutions often require a lot of tuning (outside of ResNet-50 on ImageNet)
* Does not work for large models

* Processes are never idle



Pipeline Parallelism

Really a form of model parallelism



Parallel and distributed training

Data parallelism
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a. Easy torealize

Cons:
a. Not work for large models
b. High allreduce overhead

Pipeline parallelism
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a. Make large model training feasible
b. No collective, only P2P

Cons:

a. Bubbles in pipeline

b. Removing bubbles leads to stale
weights

Model parallelism

input
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Pros:
a. Make large model training
feasible

Cons:
b. Communication for each
operator (or each layer)
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Pipeline Parallelism

Time

Bubble where

processes are idle
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- X Forward and backward passes of
model replica0 for micro-batch x

Me Memory consumption for the weights

Ma Memory consumption for the activations




GPipe [NeurlPS'19]:
Reduce Bubble with Micro-Batching

flush 11\2/193 4 1I\2/Ia3 4
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GPipe reduces the bubble size by breaking the batch size into smaller pieces to
reduce the idle time of the processes

Pro: Reduces bubble size in an easy to implement manner

Con: Significantly increases activation memory

Bubble
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PipeDream[SOSP’19]:
Use Async Updates to remove Bubble
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with stale weights

Pipedream uses asynchronous training: Avoid any idling by always doing a
forward/backward pass irrespective of stale gradients/weights

Pro: No bubble
Con: As with other async methods this does affect model accuracy and

convergence, and as such has not been adopted in industry.



Summary
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Pipeline Parallelism Summary

e Slightly more involved algorithm than data parallel method but with the
advantage of only requiring point to point communication

» |deal for large scale training to thousands of processes where point-to-point

communication is much cheaper than collective operations such as allreduce
or all-gather

* Requires special handling of bubble that results in idle processes



Model Parallelism

AKA Operator Parallelism



Model Parallelism

Divide the model across machines and replicate the data.
»Supports large models and activations
»Requires communication within single evaluation

»How to best divide a model?

»Split individual layers
»which dimension?
»Weights or spatial 2> depends on operation
»Split across layers
»Only one set of layers active a time =
poor work balance
»Soln: Pipelining Parallelism
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Model Parallelism: Weights

It helps to think of the operations in matrix form. Consider an FC layer
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Data Parallelism: Partition input across
different Processors (batch dimension)

Model Parallelism: Partition weights
across different Processes (W dimension)
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Let’'s discuss the communication details, step by step



Model Padralle\ism: Forward Paés
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* Requires an all gather communication so that
all processes get each others activation data
« Same cost as all reduce without the 2x factor
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Model Parallelism: Backward Pass
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No communication needed as every processor only needs
the gradient of its own parameters




Backward Pass
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* Aggregating input gradient requires an
allreduce operation




Communication Complexity Analysis

In Model Parallelism we need two forms of communication:

1. All Gather operation so that all processors get all the
activations
2. All reduce operation for backpropagating activation gradients
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Model vs Data Parallelism?
When does it make sense to use Model vs Data Parallelism?
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» Model parallelism reduces the quadratic comm on d.
» Itis useful for layers with very large weights d.>> 1

» It makes sense to use an integrated/hybrid data and model parallelism



Model Parallelism Summary

 More optimal comm time for large FC layers than Data parallel approach
 Makes training large models feasible by breaking it into smaller parts

 However, requires blocking collective communication during both
forward pass (all gather), as well as backwards pass (all reduce)

e Slightly harder to implement than data parallel

e Processes are never idle
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