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A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends



Parallelization Problem

● Parallel execution of concurrent kernels
● Overlap compute and data transfer

Parallel over multiple streams

Serial execution



Objectives For Today

Challenges with Data Parallel Training

Model Parallelism

Pipeline Parallelism



Parallel and distributed training

Pros:

    a.  Easy to realize

Cons:

    a.  Not work for large models

    b.  High allreduce overhead

Data parallelism

Pros:

    a.  Make large model training feasible

    b.  No collective, only P2P

Cons:

    a.  Bubbles in pipeline

    b.  Removing bubbles leads to stale 

weights

Pipeline parallelism
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Synchronous Data Parallelism
• Compute the entire model on 

each processor
• Distribute the batch evenly across 

each processor: 
• 1024 batch distributed over 16 PEs: 64 

images per GPU

• Communicate gradient updates 
through allreduce
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GPU 2 GPU 3 GPU 4

All Reduce

GPU 1

MPI ALLREDUCE



All Reduce – A High-Level Example



Ring All-Reduce



Ring All-Reduce – Step 1



Ring All-Reduce – Step 2



Ring All-Reduce – Step 3



Ring All-Reduce – Step 4



Limits of Data Parallel Scaling
The maximum limit of processors that you can use is P=B
But this often leads to very low utilization of the hardware and 
would not yield any speed up

One epoch training time of AlexNet computed on an Intel KNL system

➢ Why?



Scaling Data Parallel Training
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If we want to keep scaling 

synchronous SGD then we 

have to keep increasing 

the batch size. 



Naively increasing Batch size leads to perfect 
results but …
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Problems with Large Batch Training
➢ Larger Batch leads to sub-optimal generalization

➢ A common belief is that large batch training gets attracted to “sharp 
minimas”

Keskar et al., On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR’16.

Z. Yao, A. Gholami, Q. Lei, K. Keutzer, M. Mahoney. Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurIPS’18.

Ginsburg, Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with LARS." arXiv:1708.03888, 2018.



Generalization Gap Problem

Larger batch sizes harm 

generalization performance.

Goyal, Priya, et al. "Accurate, large minibatch SGD: Training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).



Data Parallelism Summary
• An efficient parallel training method where the comm time is independent of 

processors with ring allreduce
• Very easy to implement. Only requires allreduce operation before updating 

parameters
• Very challenging to scale. Using large batch training is not an option as it hurts 

generalization performance.
• Existing solutions often require a lot of tuning (outside of ResNet-50 on ImageNet)

• Does not work for large models 
• Processes are never idle



Pipeline Parallelism

Really a form of model parallelism



Parallel and distributed training

Pros:

    a.  Easy to realize

Cons:

    a.  Not work for large models

    b.  High allreduce overhead

Data parallelism

Pros:

    a.  Make large model training feasible

    b.  No collective, only P2P

Cons:

    a.  Bubbles in pipeline

    b.  Removing bubbles leads to stale 

weights
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Pipeline Parallelism
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GPipe [NeurIPS’19]:
Reduce Bubble with Micro-Batching
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• GPipe reduces the bubble size by breaking the batch size into smaller pieces to 
reduce the idle time of the processes

• Pro: Reduces bubble size in an easy to implement manner
• Con: Significantly increases activation memory



PipeDream[SOSP’19]:
Use Async Updates to remove Bubble

• Pipedream uses asynchronous training: Avoid any idling by always doing a 
forward/backward pass irrespective of stale gradients/weights

• Pro: No bubble
• Con: As with other async methods this does affect model accuracy and 

convergence, and as such has not been adopted in industry.
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Pipeline Parallelism Summary

• Slightly more involved algorithm than data parallel method but with the 
advantage of only requiring point to point communication

• Ideal for large scale training to thousands of processes where point-to-point 
communication is much cheaper than collective operations such as allreduce 
or all-gather

• Requires special handling of bubble that results in idle processes



Model Parallelism
AKA Operator Parallelism



Divide the model across machines and replicate the data.
➢Supports large models and activations
➢Requires communication within single evaluation
➢How to best divide a model?

➢Split individual layers 
➢which dimension? 

➢Weights or spatial → depends on operation
➢Split across layers 

➢Only one set of layers active a time → 
poor work balance
➢Soln: Pipelining Parallelism

Model Parallelism



Model Parallelism: Weights
It helps to think of the operations in matrix form. Consider an FC layer

Data Parallelism: Partition input across 

different Processors (batch dimension)

Model Parallelism: Partition weights 

across different Processes (W dimension) 

Let’s discuss the communication details, step by step
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Model Parallelism: Forward Pass
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• Requires an all gather communication so that 

all processes get each others activation data

• Same cost as all reduce without the 2x factor



Model Parallelism: Backward Pass
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No communication needed as every processor only needs 

the gradient of its own parameters



Backward Pass
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• Aggregating input gradient requires an 

allreduce operation



Communication Complexity Analysis
In Model Parallelism we need two forms of communication:

1. All Gather operation so that all processors get all the 
activations

2. All reduce operation for backpropagating activation gradients

All Gather All Reduce



Model vs Data Parallelism?
When does it make sense to use Model vs Data Parallelism?

➢ Model parallelism reduces the quadratic comm on di

➢ It is useful for layers with very large weights di >> 1

➢ It makes sense to use an integrated/hybrid data and model parallelism

Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in 
training neural networks."  SPAA, 2018.



Model Parallelism Summary

• More optimal comm time for large FC layers than Data parallel approach

• Makes training large models feasible by breaking it into smaller parts

• However, requires blocking collective communication during both 
forward pass (all gather), as well as backwards pass (all reduce)

• Slightly harder to implement than data parallel

• Processes are never idle
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