
CMSC818Q: Special Topics in Cloud
Networking and Computing

Distributed Training

Instructor: Alan Liu

A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends

Parallelization Problem

● Parallel execution of concurrent kernels
● Overlap compute and data transfer

Parallel over multiple streams

Serial execution

Objectives For Today

Challenges with Data Parallel Training

Model Parallelism

Pipeline Parallelism

Parallel and distributed training

Pros:

 a. Easy to realize

Cons:

 a. Not work for large models

 b. High allreduce overhead

Data parallelism

Pros:

 a. Make large model training feasible

 b. No collective, only P2P

Cons:

 a. Bubbles in pipeline

 b. Removing bubbles leads to stale

weights

Pipeline parallelism

P0

P1

P2

input

input

input

input

P0 P1 P2
Pros:

 a. Make large model training

feasible

Cons:

 b. Communication for each

operator (or each layer)

Model parallelism

input

P0
P1
P2

P0

P1

P2

P0

P1

P2

Synchronous Data Parallelism
• Compute the entire model on

each processor
• Distribute the batch evenly across

each processor:
• 1024 batch distributed over 16 PEs: 64

images per GPU

• Communicate gradient updates
through allreduce

1024

GPU 1

64

fp
ro

p
b

p
ro

p

GPU 2

64

fp
ro

p
b

p
ro

p

GPU 3

64

fp
ro

p
b

p
ro

p

…

GPU 16

64

fp
ro

p
b

p
ro

p

MPI ALLREDUCE

GPU 2 GPU 3 GPU 4

All Reduce

GPU 1

MPI ALLREDUCE

All Reduce – A High-Level Example

Ring All-Reduce

Ring All-Reduce – Step 1

Ring All-Reduce – Step 2

Ring All-Reduce – Step 3

Ring All-Reduce – Step 4

Limits of Data Parallel Scaling
The maximum limit of processors that you can use is P=B
But this often leads to very low utilization of the hardware and
would not yield any speed up

One epoch training time of AlexNet computed on an Intel KNL system

➢ Why?

Scaling Data Parallel Training
1024

GPU 1

64

fp
ro

p
b

p
ro

p

GPU 2

64

fp
ro

p
b

p
ro

p

GPU 3

64

fp
ro

p
b

p
ro

p

…

GPU 16

64

fp
ro

p
b

p
ro

p

MPI ALLREDUCE

If we want to keep scaling

synchronous SGD then we

have to keep increasing

the batch size.

Naively increasing Batch size leads to perfect
results but …

“Learning”

Record

Record

Second
x

“Learning”

Second
=

Convergence

Machine Learning

Property

Throughput

System

Property

Problems with Large Batch Training
➢ Larger Batch leads to sub-optimal generalization

➢ A common belief is that large batch training gets attracted to “sharp
minimas”

Keskar et al., On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR’16.

Z. Yao, A. Gholami, Q. Lei, K. Keutzer, M. Mahoney. Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurIPS’18.

Ginsburg, Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with LARS." arXiv:1708.03888, 2018.

Generalization Gap Problem

Larger batch sizes harm

generalization performance.

Goyal, Priya, et al. "Accurate, large minibatch SGD: Training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).

Data Parallelism Summary
• An efficient parallel training method where the comm time is independent of

processors with ring allreduce
• Very easy to implement. Only requires allreduce operation before updating

parameters
• Very challenging to scale. Using large batch training is not an option as it hurts

generalization performance.
• Existing solutions often require a lot of tuning (outside of ResNet-50 on ImageNet)

• Does not work for large models
• Processes are never idle

Pipeline Parallelism

Really a form of model parallelism

Parallel and distributed training

Pros:

 a. Easy to realize

Cons:

 a. Not work for large models

 b. High allreduce overhead

Data parallelism

Pros:

 a. Make large model training feasible

 b. No collective, only P2P

Cons:

 a. Bubbles in pipeline

 b. Removing bubbles leads to stale

weights

Pipeline parallelism

P0

P1

P2

input

input

input

input

P0 P1 P2
Pros:

 a. Make large model training

feasible

Cons:

 b. Communication for each

operator (or each layer)

Model parallelism

input

P0
P1
P2

P0

P1

P2

P0

P1

P2

Pipeline Parallelism

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
2

3
3

3
3

3
3

3
3

N / 2 = 2 micro-batches, where N = D = 4

N / 2 = 2 micro-batches, where N = D = 4

stage0

stage1

stage2

stage3

P0

P1

P2

P3

model replica0

stage3

stage2

stage1

stage0

model replica1
P0

P1

P2

P3

stage0

stage1

stage2

stage3

stage0

stage1

stage2

stage3

Time

Bubble where

processes are idle

x

y

Forward and backward passes of
model replica0 for micro-batch x

Forward and backward passes of
model replica1 for micro-batch y

y

x

Bubble

Note that a backward pass is about 2 times
workload of a forward pass.

Ma

Mɵ

 The number of pipeline stages (depth)

 The number of micro-batches in an iteration

Memory consumption for the weights
Memory consumption for the activations

GPipe [NeurIPS’19]:
Reduce Bubble with Micro-Batching

x

y

Forward and backward passes of
model replica0 for micro-batch x

Forward and backward passes of
model replica1 for micro-batch y

y

x

Bubble

Note that a backward pass is about 2 times
workload of a forward pass.

Ma

Mɵ

 The number of pipeline stages (depth)

 The number of micro-batches in an iteration

Memory consumption for the weights
Memory consumption for the activations

DAPPLE
(ppopp'20)

GEMS
(SC'20)

P0
P1
P2
P3

Gpipe
(NeurIPS'19)

1 2
1

1

P0
P1
P2
P3

0
0

0

0 3
2

flush

P0
P1
P2
P3

0
0

0

0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3

Time

0
0

0
0

1
1

1
1

2
2

2
2

3
3

3
3

0
0

0
0

1
1

1
1

2
2

2
2

3
2

1
3

2 3 3
3

3
3

0

3
3

3
30

0
0

0

2
2

2
2

1
1

1
1 2

2
2

2

1
1

1
1 3

3
3

3
flush

…

…

sy
n

ch
ro

n
o

u
s,

 c
o

n
ve

rg
e

n
ce

-
fr

ie
n

d
ly

Ma
1 2 3 41 2 3 4

Mɵ

proportional

to N

flush

…

• GPipe reduces the bubble size by breaking the batch size into smaller pieces to
reduce the idle time of the processes

• Pro: Reduces bubble size in an easy to implement manner
• Con: Significantly increases activation memory

PipeDream[SOSP’19]:
Use Async Updates to remove Bubble

• Pipedream uses asynchronous training: Avoid any idling by always doing a
forward/backward pass irrespective of stale gradients/weights

• Pro: No bubble
• Con: As with other async methods this does affect model accuracy and

convergence, and as such has not been adopted in industry.

PipeDream
(SOSP'19)

PipeDream-2BW
(ICML'21)

asynchronous
 with stale weights

…

1 2
1

P0
P1
P2
P3

0
0

0 2
0 1

1
1

1

2
2

2
2

4
4

4
4

3
3

1 2 3

4
4

4
4

5
5

5
5 5

56
6

6
6

7
7

7
63

3
3

3

PipeDream-2BW
apply gradients

PipeDream
apply gradients

2
1

3

0
0

0
0

Ma

1 2 3 41 2 3 4 1 2 3 4

Mɵ Mɵfor for
for bothPipeDream PipeDream-2BW

M a

Mɵ

 The number of pipeline stages (depth)

 The number of micro-batches in an iteration

Memory consumption for the weights
Memory consumption for the activations

DAPPLE
(ppopp'20)

GEMS
(SC'20)

P0
P1
P2
P3

Gpipe
(NeurIPS'19)

1 2
1

1

P0
P1
P2
P3

0
0

0

0 3
2

flush

P0
P1
P2
P3

0
0

0

0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3

Time

0
0

0
0

1
1

1
1

2
2

2
2

3
3

3
3

0
0

0
0

1
1

1
1

2
2

2
2

3
2

1
3

2 3 3
3

3
3

0

3
3

3
30

0
0

0

2
2

2
2

1
1

1
1 2

2
2

2

1
1

1
1 3

3
3

3
flush

…

…

sy
n

ch
ro

n
o

u
s,

 c
o

n
ve

rg
e

n
ce

-
fr

ie
n

d
ly

M a
1 2 3 4

M
1 2 3 4

ɵ

M a
1 2 3 41 2 3 4

Mɵ

M a
1 2 3 41 2 3 4

Mɵ

PipeDream
(SOSP'19)

PipeDream -2BW
(ICML'21)

asynchronous
 with stale weights

…

1 2
1

P0
P1
P2
P3

0
0

0 2
0 1

1
1

1

2
2

2
2

4
4

4
4

3
3

1 2 3

4
4

4
4

5
5

5
5 5

56
6

6
6

7
7

7
63

3
3

3

PipeDream-2BW
apply gradients

PipeDream
apply gradients

2
1

3

0
0

0
0

M a

1 2 3 41 2 3 4 1 2 3 4

Mɵ Mɵfor for
for bothPipeDream PipeDream-2BW

M a
1 2 3 41 2 3 4

Mɵ

proportional
to N

flush

…

Chimera
(this work)

2

31
1

1
0

0
0

0
flush

P0
P1
P2
P3 0

0
0

0

1
1

1
12

2
2

2

3
3

3
3

2
32

32
3 1

…

x

y

Forward and backward passes of
m odel replica0 for micro-batch x

Forward and backward passes of
model replica1 for micro-batch y

y

x

Bubble

• • •• ••• • ••• •• • ••• • •• •• • ••••••• • • • ••2•••• • ••
• • •••• • • •• ••• ••• •• • •• •• • •••

D=N=4

proportional

to D

proportional

to D

proportional

to D

proportional

to D
Summary

Pipeline Parallelism Summary

• Slightly more involved algorithm than data parallel method but with the
advantage of only requiring point to point communication

• Ideal for large scale training to thousands of processes where point-to-point
communication is much cheaper than collective operations such as allreduce
or all-gather

• Requires special handling of bubble that results in idle processes

Model Parallelism
AKA Operator Parallelism

Divide the model across machines and replicate the data.
➢Supports large models and activations
➢Requires communication within single evaluation
➢How to best divide a model?

➢Split individual layers
➢which dimension?

➢Weights or spatial → depends on operation
➢Split across layers

➢Only one set of layers active a time →
poor work balance
➢Soln: Pipelining Parallelism

Model Parallelism

Model Parallelism: Weights
It helps to think of the operations in matrix form. Consider an FC layer

Data Parallelism: Partition input across

different Processors (batch dimension)

Model Parallelism: Partition weights

across different Processes (W dimension)

Let’s discuss the communication details, step by step

P0, P1 P0 P1* P0 P1
di

di B/P B/P

W X Y

di

P0

P1

P0

P1

P0

P1
*

di/P

di B

W X Y

di

Model Parallelism: Forward Pass

P0

P1

P0

P1
*

di/P

di B

W X

di

P0

P1

di/P

B

Ylocal

P0

P1

Y

• Requires an all gather communication so that

all processes get each others activation data

• Same cost as all reduce without the 2x factor

Model Parallelism: Backward Pass

P0, P1

P0

P1

*

XT

∇Y

P0

P1

di/P

∇W

No communication needed as every processor only needs

the gradient of its own parameters

Backward Pass

P0 P1
P0

P1
*

di/P

di B

WT ∇Y

di

P0

P1

∇X local

P0

P1

∇X

• Aggregating input gradient requires an

allreduce operation

Communication Complexity Analysis
In Model Parallelism we need two forms of communication:

1. All Gather operation so that all processors get all the
activations

2. All reduce operation for backpropagating activation gradients

All Gather All Reduce

Model vs Data Parallelism?
When does it make sense to use Model vs Data Parallelism?

➢ Model parallelism reduces the quadratic comm on di

➢ It is useful for layers with very large weights di >> 1

➢ It makes sense to use an integrated/hybrid data and model parallelism

Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in
training neural networks." SPAA, 2018.

Model Parallelism Summary

• More optimal comm time for large FC layers than Data parallel approach

• Makes training large models feasible by breaking it into smaller parts

• However, requires blocking collective communication during both
forward pass (all gather), as well as backwards pass (all reduce)

• Slightly harder to implement than data parallel

• Processes are never idle

	Slide 1: CMSC818Q: Special Topics in Cloud Networking and Computing
	Slide 2: A Typical Deep Learning System Stack
	Slide 3: Parallelization Problem
	Slide 4: Objectives For Today
	Slide 5: Parallel and distributed training
	Slide 6: Synchronous Data Parallelism
	Slide 7: All Reduce
	Slide 8: All Reduce – A High-Level Example
	Slide 9: Ring All-Reduce
	Slide 10: Ring All-Reduce – Step 1
	Slide 11: Ring All-Reduce – Step 2
	Slide 12: Ring All-Reduce – Step 3
	Slide 13: Ring All-Reduce – Step 4
	Slide 14: Limits of Data Parallel Scaling
	Slide 15: Scaling Data Parallel Training
	Slide 16: Naively increasing Batch size leads to perfect results but …
	Slide 17: Problems with Large Batch Training
	Slide 18: Generalization Gap Problem
	Slide 19: Data Parallelism Summary
	Slide 20: Pipeline Parallelism
	Slide 21: Parallel and distributed training
	Slide 22: Pipeline Parallelism
	Slide 23: GPipe [NeurIPS’19]: Reduce Bubble with Micro-Batching
	Slide 24: PipeDream[SOSP’19]: Use Async Updates to remove Bubble
	Slide 25: Summary
	Slide 26: Pipeline Parallelism Summary
	Slide 27: Model Parallelism
	Slide 28: Model Parallelism
	Slide 29: Model Parallelism: Weights
	Slide 30: Model Parallelism: Forward Pass
	Slide 31: Model Parallelism: Backward Pass
	Slide 32: Backward Pass
	Slide 33: Communication Complexity Analysis
	Slide 34: Model vs Data Parallelism?
	Slide 35: Model Parallelism Summary

