CMSC818Q: Special Topics in Cloud
Networking and Computing

Distributed Training

Instructor: Alan Liu

§@ DEPARTMENT OF
; COMPUTER SCIENCE

444444

A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends

Parallelization Problem

e Parallel execution of concurrent kernels
e Overlap compute and data transfer

- —
o s o Parallel over multiple streams
Stream 21 o
:_‘S‘"::Zn | | |
- Stream 13
Stream 14
Stream 15 o .
o i ® Serial execution
. Stream 18
L Stream 19

- Stream 20

Objectives For Today

Challenges with Data Parallel Training
Model Parallelism

Pipeline Parallelism

Parallel and distributed training

Data parallelism

ol Jo{ Tl JJoct®
1 [o T o
2 Jof | Jlo®

a. Easy torealize

Cons:
a. Not work for large models
b. High allreduce overhead

Pipeline parallelism

Il:rb METS
| PO Pl P2

a. Make large model training feasible
b. No collective, only P2P

Cons:

a. Bubbles in pipeline

b. Removing bubbles leads to stale
weights

Model parallelism

input

'FDD D%‘%O

Pros:
a. Make large model training

feasible

Cons:
b. Communication for each
operator (or each layer)

Synchronous Data Parallelism

Compute the entire model on
each processor
Distribute the batch evenly across

each processor:
e 1024 batch distributed over 16 PEs: 64
images per GPU

Communicate gradient updates
through allreduce

—

—

Wl |V N

—

—

All Reduce

CYB
EZ

4 B/4 07
a; = —
: ow
1=1
U

a ‘/\/\ AT
2B /4 9.7 3B /4 9.7 B 57

=0 Fe = 2 G = 2 Gy
i=B/4 i=2B /4 i=3B /4

& U VAN 4

MPI ALLREDUCE

B
0T
2 5w

b1 dq

C1

All Reduce — A High-Level Example

Worker A Worker B Worker A Worker B

Worker C Worker D Worker D

Ring All-Reduce

Worker A

Worker D Worker B

Worker C

Ring All-Reduce — Step 1

Worker A

Worker D

Worker C

Ring All-Reduce — Step 2

Worker A

Worker D Worker B

Worker C

Ring All-Reduce — Step 3

Worker A

Worker D Worker B

7 Worker C

Ti=ai+bi+ci+di

Ring All-Reduce — Step 4

Worker A

Worker D Worker B

Worker C

1’,—=ai+bi+ci+di

Limits of Data Parallel Scaling

The maximum limit of processors that you can use is P=B
But this often leads to very low utilization of the hardware and
would not yield any speed up

—_
S
e~
(o)}
I
|

» Why?

H
()
=
[
|

Best Workload

M

1 2 4 8 16 32 64 128 256 512 1024 2048
Batch Size—

—_

)
w
o
I

One Epoch Time (sec)—

One epoch training time of AlexNet computed on an Intel KNL system

Scaling Data Parallel Training

If we want to keep scaling
synchronous SGD then we

have to keep increasing
the batch size.

Naively increasing Batch size leads to perfect
results but ...

Images/sec

200000 @ Observed
A Perfect

150000 e

100000 ﬂf”’fﬁfffﬁ

50000 /
u /

10 20 a0 40 30 60

Cloud TPU Devices

“Learning” “Learning” Record
= X
Second Record Second
Convergence Throughput
Machine Learning System

Property Property

Problems with Large Batch Training

» Larger Batch leads to sub-optimal generalization

» A common belief is that large batch training gets attracted to “sharp
minimas”

AlexNet-BN for ImageNet

0.6

Tralmng Functlon

©
wn

Testmg Function

o
IS

o
N

Top-1 Test Accuracy

o©
-

p— BatCh=512 : : : : g : ; : ‘ :
Batch=8192 Flat Minimum Sharp Minimum

0.0 A

0 20 40 60 80 100

Epochs

i Keskar et al., On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR’16.
' Z.Yao, A. Gholaml Q. Lei, K. Keutzer, M. Mahoney. Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18.

, Glnsburg Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with LARS." arXiv:1708.03888, 2018.

__

Generalization Gap Problem

AN
o
\

w
6))
T

Larger batch sizes harm
generalization performance.

w
o
T

N
@)
T

!
+
i
1
i
%

ImageNet top-1 validation error

| | | | | | | | | |

64 128 256 512 1K 2K 4K 8k 16k 32k 64k
mini-batch size

N
o

__

Data Parallelism Summary

* An efficient parallel training method where the comm time is independent of
processors with ring allreduce

* Very easy to implement. Only requires allreduce operation before updating
parameters

* Very challenging to scale. Using large batch training is not an option as it hurts
generalization performance.

* Existing solutions often require a lot of tuning (outside of ResNet-50 on ImageNet)
* Does not work for large models

* Processes are never idle

Pipeline Parallelism

Really a form of model parallelism

Parallel and distributed training

Data parallelism

o Jof o S
gls Mt
o[ol o S

a. Easy torealize

Cons:
a. Not work for large models
b. High allreduce overhead

Pipeline parallelism

Il=r'c> 3| [Jooe
| PO P1 P2

a. Make large model training feasible
b. No collective, only P2P

Cons:

a. Bubbles in pipeline

b. Removing bubbles leads to stale
weights

Model parallelism

input

'FDD D%‘%O

Pros:
a. Make large model training
feasible

Cons:
b. Communication for each
operator (or each layer)

PO
P1
P2
P3

Pipeline Parallelism

Time

Bubble where

processes are idle

1’\2/1834 1I\Z/Ia34
| 1234, 11234

Bubble

- X Forward and backward passes of
model replica0 for micro-batch x

Me Memory consumption for the weights

Ma Memory consumption for the activations

GPipe [NeurlPS'19]:
Reduce Bubble with Micro-Batching

flush 11\2/193 4 1I\2/Ia3 4
Po|OLIL2Y3N 0,1 ,2 1,3 g g
P1 HEEE;! 0°,177,2°,3
P2 2]3 o 1772 |3 proportional
P3 2Bl 0T 172737 to N
v v >

GPipe reduces the bubble size by breaking the batch size into smaller pieces to
reduce the idle time of the processes

Pro: Reduces bubble size in an easy to implement manner

Con: Significantly increases activation memory

Bubble

Forward an.d backward passes of

model replica0 for micro-batch x

Me Memory consumption for the weights
Ma Memory consumption for the activations

PipeDream[SOSP’19]:
Use Async Updates to remove Bubble

i 1234, | 1234
PipeDream po [GI213 o @ 1 B 2 8/ 4 "
(SOsP'19) p1 Q|1 2 0 /3| 11/4 215736 4|7
PipeDream-2BW P2 01 0O 2|13 2 |4 5 4 6 5|7
(ICML'21) 0 0 /111 2 2 |3 4 4 |5 5 6] 6 i’ u N
el PipeDream-2BW Y Me for \ o for a
asynchronous ag;)?\?gﬁggirgnts algglyrg?argients PipeDream PipeDream-28w for both

with stale weights

Pipedream uses asynchronous training: Avoid any idling by always doing a
forward/backward pass irrespective of stale gradients/weights

Pro: No bubble
Con: As with other async methods this does affect model accuracy and

convergence, and as such has not been adopted in industry.

Summary

proportional

toD

1234, | 1234,

PipeDream pg
(SOSP'19) P1

PipeDream-2BW P2
(IcML'21)

asynchronous
with stale weights

synchronous, convergence- friendly

" PO
Gpipe P1

(Neurips'19) P2
P3

PO
GEMS pP1
(sc'20) P2

P3

PO
DAPPLE pP1

(ppopp'20) P2
P3

PO
Chimera p1

P2

~ P3

v

[The number of pipeline stages (depth)

for both

Me a
1234 1234
|

|

D=N=4

0 The number of micro-batches in an iteration
Me Memory consumption for the weights

Ma Memory consumption for the activations

0 il
PipeDream PipeDream-2BW Y Mefor Y Mefor
apply gradients apply gradients PipeDream PipeDream-28w
Ma
1234
HEN
HEN
P ¥proportional
L 0N toN
flush
3| 3
2 |3 3
2 |3 3 -
2 |3 | 3
1
..proportional
. . toD '""'"%
flush M
3]0 [1] [x
0] 3]1 HER
2 1 3] ...proportional -y
1 2 ‘ 3 B to D

Forward and backward passes of
model replica0 for micro-batch x

Forward and backward passes of
model replical for micro-batchy

Pipeline Parallelism Summary

e Slightly more involved algorithm than data parallel method but with the
advantage of only requiring point to point communication

» |deal for large scale training to thousands of processes where point-to-point

communication is much cheaper than collective operations such as allreduce
or all-gather

* Requires special handling of bubble that results in idle processes

Model Parallelism

AKA Operator Parallelism

Model Parallelism

Divide the model across machines and replicate the data.
»Supports large models and activations
»Requires communication within single evaluation

»How to best divide a model?

»Split individual layers
»which dimension?
»Weights or spatial 2> depends on operation
»Split across layers
»Only one set of layers active a time =
poor work balance
»Soln: Pipelining Parallelism

Machine |

Machine 3

¢ duiydely

p SuIydely

Model Parallelism: Weights

It helps to think of the operations in matrix form. Consider an FC layer

*———o

Data Parallelism: Partition input across
different Processors (batch dimension)

Model Parallelism: Partition weights
across different Processes (W dimension)

d,/P

* d

Let’'s discuss the communication details, step by step

Model Padralle\ism: Forward Paés
i B

d,/P

* Requires an all gather communication so that
all processes get each others activation data
« Same cost as all reduce without the 2x factor

-

W

d,/P

1=1

Model Parallelism: Backward Pass

Po, P4 d/P
*
Po 5 !
Py
XT
Vy

No communication needed as every processor only needs
the gradient of its own parameters

Backward Pass

d

[-@ Y o

d,/P

* Aggregating input gradient requires an
allreduce operation

Communication Complexity Analysis

In Model Parallelism we need two forms of communication:

1. All Gather operation so that all processors get all the
activations
2. All reduce operation for backpropagating activation gradients

T-omm (model) i(>+22< Bd)

1=1
All Gather All Reduce

Model vs Data Parallelism?
When does it make sense to use Model vs Data Parallelism?

L L
Tcomm mOdel Z (B;h) + QZ (ﬁ(P — 1)Bgz>

i=1 i=2
L 72
Teomm (data) Z < %)
1=1

» Model parallelism reduces the quadratic comm on d.
» Itis useful for layers with very large weights d.>> 1

» It makes sense to use an integrated/hybrid data and model parallelism

Model Parallelism Summary

 More optimal comm time for large FC layers than Data parallel approach
 Makes training large models feasible by breaking it into smaller parts

 However, requires blocking collective communication during both
forward pass (all gather), as well as backwards pass (all reduce)

e Slightly harder to implement than data parallel

e Processes are never idle

	Slide 1: CMSC818Q: Special Topics in Cloud Networking and Computing
	Slide 2: A Typical Deep Learning System Stack
	Slide 3: Parallelization Problem
	Slide 4: Objectives For Today
	Slide 5: Parallel and distributed training
	Slide 6: Synchronous Data Parallelism
	Slide 7: All Reduce
	Slide 8: All Reduce – A High-Level Example
	Slide 9: Ring All-Reduce
	Slide 10: Ring All-Reduce – Step 1
	Slide 11: Ring All-Reduce – Step 2
	Slide 12: Ring All-Reduce – Step 3
	Slide 13: Ring All-Reduce – Step 4
	Slide 14: Limits of Data Parallel Scaling
	Slide 15: Scaling Data Parallel Training
	Slide 16: Naively increasing Batch size leads to perfect results but …
	Slide 17: Problems with Large Batch Training
	Slide 18: Generalization Gap Problem
	Slide 19: Data Parallelism Summary
	Slide 20: Pipeline Parallelism
	Slide 21: Parallel and distributed training
	Slide 22: Pipeline Parallelism
	Slide 23: GPipe [NeurIPS’19]: Reduce Bubble with Micro-Batching
	Slide 24: PipeDream[SOSP’19]: Use Async Updates to remove Bubble
	Slide 25: Summary
	Slide 26: Pipeline Parallelism Summary
	Slide 27: Model Parallelism
	Slide 28: Model Parallelism
	Slide 29: Model Parallelism: Weights
	Slide 30: Model Parallelism: Forward Pass
	Slide 31: Model Parallelism: Backward Pass
	Slide 32: Backward Pass
	Slide 33: Communication Complexity Analysis
	Slide 34: Model vs Data Parallelism?
	Slide 35: Model Parallelism Summary

