EC/CS 528: Cloud Computing

Overview of Cloud Computing

Instructor: Alan Liu

Announcements

- Piazza Discussion:
 - piazza.com/bu/fall2022/eccs528
 - Access code: cloudcomputing
- User account and skill survey:
 - Group and project matchings.
 - Prepare multiple project choices.
 - Q&A.
- New project update:
 - MLOps with Databricks in Public Clouds

How to start the project?

- Meet weekly with your mentor
 - Schedule a weekly meeting time
 - Record the meeting; mentors talk fast, being able to replay what they said can be super valuable
- Each person should say:
 - What have accomplished since last meeting?
 - What are you going to accomplish by next one?
 - Are they blocked?
- Don't be blocked until weekly meeting:
 - Set up mechanism to ask quick questions to each other, and to mentor, e.g., slack
- Remember you are a team

Building the "cloud" from scratch - spec and buy

Then receive and assemble...

then you have to run it...

Issues?

[What do you think?]

- People and skills
 - N areas of expertise = O(N) people
- Scaling?

Why is Cloud Computing transformative?

- Major change in computation is managed and used:
 - Economics of central utility: Price of computers, Operational efficiency,
 Location (e.g., cheap power, distribution), Co-location other customers,
 Utilization shared capacity, shared services (e.g., DR)
 - "As with the factory-owned generators that dominated electricity production a century ago, today's private IT plants will be supplanted by large-scale, centralized utilities." -- Nicholas Carr
- Availability of massive capacity on demand; elastically scale up and down:
 - Startups don't need to be acquired by Google or MS: a startup won't get money today to buy HW.
 - What happens when massive HPC becomes available to everyone?
- Gets rid of key impediments for developing & distributing SW
 - Avoids need for broad HCL, OS support, ... many highly specialized software products...

Cloud in a nutshell

- On-demand access
- Economies of scale

All computing will move to the cloud

This is really nothing new...

Original vision of Utility/grid computing:

"If computers of the kind I have advocated become the computers of the future, then computing may someday be organized as a public utility just as the telephone system is a public utility... The computer utility could become the basis of a new and important industry."

When was this statement from?

Why now?

Layers of Cloud

- Infrastructure as a Service (IaaS): AWS, Azure,
 OpenStack, MOC...
- Platform as a Service (PaaS): Salesforce's Force.com, Google App engine, AWS, MSFT Azure
- <u>Software as a Service (SaaS)</u>: Hosted applications: Gmail, Facebook, Google docs, eBay

Hosted applications

Motivation for using cloud

- Cloud is not inexpensive today
 - 2-20x more expensive than local
- Administrators do not come in fractional units; if you are small cheaper
- Offers elasticity: can deal with massive fluctuations on demand
- Offers huge variety of services:
 - cloud provider can afford to amortize cost over a huge number of customers

Examples

- Microsoft's <u>Azure</u>
- Amazon's <u>AWS</u>
- Google's <u>Cloud Services</u>

Remember this?

AirBnB Example

- Success of market depends on network of renters and landlords;
 - -starts really small

AirBnB

https://aws.amazon.com/solutions/case-studies/airbnb/

- 2010 24 EC2 instances, 300 GB of data
- 2015 1000 EC2 instances, 50 TBytes data
- Grew up entirely on AWS, no data center, no capital purchases, no racking/stacking, no acquisition networking...
 - 5-person operations team
 - Piggyback on AWS for external network, availability zones
- Rapid growth easily accommodated.

Coursera

https://aws.amazon.com/solutions/case-studies/coursera/

- Massive on-line courses from Stanford, Duke...
- Went from 0 to 3.2 million users in first year
- Accessed from around the world
- Spikes common, e.g., 75% increase in load in 5 minutes

Example Architecture

EC2 Autoscaling

Technology discussed

- EC2 & Elastic Load Balancing & EC2 Autoscaling increase/decrease number of servers as needed.
- Relational Database Service (RDS) managed service set up DB, patching, read-only replicas, across regions, backups automatically, snapshots
- Cloud Front CDN, moved from 500 msec to 50msec average latency
- Red Shift Data warehouse

Layers of data center

DC Building Racks A computer Servers Internal Network Tasks/processes VMs, Containers, BM Scheduling Systems VM/Container schedulers File systems Distributed File System High level computation Distributed Computation frameworks Distributed Data Base & (Semi) Structured Data Streaming Software Defined Networking Networking

Hardware level: How do you build cloud-scale systems?

Layers of data centers

DC Building **Racks** A computer Servers Internal Network Tasks/processes VMs, Containers, BM Scheduling Systems VM/Container schedulers File systems Distributed File System High level computation Distributed Computation frameworks Distributed Data Base & (Semi) Structured Data Streaming Software Defined Networking Networking

"Operating system": How do you manage and run cloud applications? What about file systems?

Layers

DC Building Racks A computer Servers Internal Network Tasks/processes VMs, Containers, BM Scheduling Systems VM/Container schedulers File systems Distributed File System High level computation Distributed Computation frameworks Distributed Data Base & (Semi) Structured Data Streaming Software Defined Networking Networking

Frameworks:

How do you write a distributed application?

Layers

DC Building Racks A computer Servers Internal Network Tasks/processes VMs, Containers, BM Scheduling Systems VM/Container schedulers File systems Distributed File System High level computation Distributed Computation frameworks Distributed Data Base & (Semi) Structured Data Streaming Software Defined Networking Networking

Above the file system: How do you manage and work with structured data?

Layers

DC Building Racks A computer Servers Internal Network Tasks/processes VMs, Containers, BM Scheduling Systems VM/Container schedulers File systems Distributed File System High level computation Distributed Computation frameworks Distributed Data Base & (Semi) Structured Data Streaming Software Defined Networking Networking

Networking:

How do the parts of a cloud-scale system talk to each other?

A computer

DC Building

Racks

Servers

Internal Network

Tasks/processes

VMs, Containers, etc

Scheduling Systems

VM/Container schedulers

File systems

Distributed File System

High level computation frameworks

Distributed Computation

(Semi) Structured Data

Distributed Data Base & Streaming

Networking

Software Defined Networking

Berkely view of cloud computing

Datacenter as a computer

Berkely view of cloud computing DC Building Racks Datacenter as a A computer computer Servers Internal Network Tasks/processes VMs, Containers, etc Xen Container-OS Scheduling Systems VM/Container schedulers File systems Distributed File System High level computation Distributed Computation frameworks Distributed Data Base & (Semi) Structured Data Streaming Software Defined Networking Networking

Berkely view of cloud computing DC Building **Racks** Datacenter as a **MGHPCC** A computer computer Servers Internal Network Tasks/processes VMs, Containers, etc Xen Container-OS Scheduling Systems VM/Container schedulers Google File Sys File systems Distributed File System MapReduce High level computation Distributed Computation frameworks Distributed Data Base & (Semi) Structured Data Streaming Software Defined Networking Networking

Berkely view of cloud computing DC Building **Racks** Datacenter as a **MGHPCC** A computer computer Servers Internal Network Tasks/processes VMs, Containers, etc Xen Container-OS OpenLambda Scheduling Systems VM/Container schedulers Borg Berkeley serverless File systems Distributed File System Google File Sys MapReduce High level computation Distributed Computation frameworks Distributed Data Base & (Semi) Structured Data Streaming Software Defined Networking Networking

Berkely view of cloud computing DC Building **Racks** Datacenter as a **MGHPCC** A computer computer Servers Internal Network Tasks/processes VMs, Containers, etc Xen Container-OS OpenLambda **OpenShift** Scheduling Systems VM/Container schedulers Borg Mesos Berkeley serverless File systems Distributed File System Google File Sys MapReduce High level computation Distributed Computation frameworks Distributed Data Base & (Semi) Structured Data Streaming Software Defined Networking Networking

Dapper

Transformation

- Transformed how SW is developed:
 - continuous deployment; changes tested with real customers
 - example Facebook failure last year
 - massive advantage over waterfall
- It's all about distributed applications
 - change from pets to cattle
 - care about 99th% tail latency
 - stateless servers
 - huge set of higher level services: Containers as a Service, Functions as a Service, Analytics as a Service...

The challenges

- Monoculture from security perspective
- Emerging oligopoly:
 - Lack of competition limits sources innovation
 - Price is outrageously expensive
- Effort to lock in users: e.g., networking
- Big brother..., or perhaps just Giants whose incentives are not aligned with privacy and marketplace; Consider Facebook

The Datacenter as a Computer

An Introduction to the Design of Warehouse-Scale Machines – 2nd Edition

Luiz André Barroso, Jimmy Clidaras, Urs Hölzle

Enterprise IT

Traditional "wide-area" networks

Elements of data center

Storage assumptions

- Storage distributed across all machines
- Software like GFS distributes, versus NAS appliance
 - Redundancy even if rack level failure
 - Multiplex server resources (NIC/enclosure/power)
 - Exploits cheap desktop disks
- Typically network oversubscribed
 - E.g., 32 * 40Gig links nodes, 4 *100Gig Links up

Storage Hierarchy

Latency, bandwidth & capacity

Inside a data center

Self-introduction

Q&A