EC/CS 528: Cloud Computing

Overview of Cloud Computing

Instructor: Alan Liu
Announcements

• Piazza Discussion:
 • piazza.com/bu/fall2022/eccs528
 • Access code: cloudcomputing

• User account and skill survey:
 • Group and project matchings.
 • Prepare multiple project choices.
 • Q&A.

• New project update:
 • MLOps with Databricks in Public Clouds
How to start the project?

• Meet weekly with your mentor
 • Schedule a weekly meeting time
 • Record the meeting; mentors talk fast, being able to replay what they said can be super valuable

• Each person should say:
 • What have accomplished since last meeting?
 • What are you going to accomplish by next one?
 • Are they blocked?

• Don’t be blocked until weekly meeting:
 • Set up mechanism to ask quick questions to each other, and to mentor, e.g., slack

• Remember you are a team
Building the “cloud” from scratch - spec and buy
Then receive and assemble...

then you have to run it...
Issues?

[What do you think?]

- People and skills
 - N areas of expertise $= O(N)$ people
- Scaling?
Why is Cloud Computing transformative?

• Major change in computation is managed and used:
 – Economics of central utility: Price of computers, Operational efficiency, Location (e.g., cheap power, distribution), Co-location other customers, Utilization shared capacity, shared services (e.g., DR)
 – “As with the factory-owned generators that dominated electricity production a century ago, today's private IT plants will be supplanted by large-scale, centralized utilities.” -- Nicholas Carr

• Availability of massive capacity on demand; elastically scale up and down:
 – Startups don’t need to be acquired by Google or MS: a startup won’t get money today to buy HW.
 – What happens when massive HPC becomes available to everyone?

• Gets rid of key impediments for developing & distributing SW
 – Avoids need for broad HCL, OS support, … many highly specialized software products…
Cloud in a nutshell

• On-demand access
• Economies of scale

All computing will move to the cloud
This is really nothing new…

Original vision of Utility/grid computing:

"If computers of the kind I have advocated become the computers of the future, then computing may someday be organized as a public utility just as the telephone system is a public utility... The computer utility could become the basis of a new and important industry."

When was this statement from?

Why now?
Layers of Cloud

- **Infrastructure as a Service (IaaS):** AWS, Azure, OpenStack, MOC…
- **Platform as a Service (PaaS):** Salesforce’s Force.com, Google App engine, AWS, MSFT Azure
- **Software as a Service (SaaS):** Hosted applications: Gmail, Facebook, Google docs, eBay
Motivation for using cloud

- Cloud is not inexpensive today
 - 2-20x more expensive than local

- Administrators do not come in fractional units; if you are small cheaper

- Offers elasticity: can deal with massive fluctuations on demand

- Offers huge variety of services:
 - cloud provider can afford to amortize cost over a huge number of customers
Examples

• Microsoft’s Azure
• Amazon’s AWS
• Google’s Cloud Services
Remember this?

Host it R us.

Host 4 Less
AirBnB Example

• Success of market depends on network of renters and landlords;
 — starts really small
AirBnB

https://aws.amazon.com/solutions/case-studies/airbnb/

- 2010 – 24 EC2 instances, 300 GB of data
- 2015 – 1000 EC2 instances, 50 TBytes data

- Grew up entirely on AWS, no data center, no capital purchases, no racking/stacking, no acquisition networking…
 - 5-person operations team
 - Piggyback on AWS for external network, availability zones

- Rapid growth easily accommodated.
Coursera

• Massive on-line courses from Stanford, Duke…
• Went from 0 to 3.2 million users in first year
• Accessed from around the world
• Spikes common, e.g., 75% increase in load in 5 minutes
Example Architecture

Elastic Load Balancing

EC2
Autoscaling

RDS

Red Shift

Cloud Front

S3
Technology discussed

• EC2 & Elastic Load Balancing & EC2 Autoscaling – increase/decrease number of servers as needed.
• Relational Database Service (RDS) – managed service set up DB, patching, read-only replicas, across regions, backups automatically, snapshots
• Cloud Front – CDN, moved from 500 msec to 50msec average latency
• Red Shift – Data warehouse
Layers of data center

Hardware level:
How do you build cloud-scale systems?
Layers of data centers

“Operating system”: How do you manage and run cloud applications? What about file systems?
Frameworks:
How do you write a distributed application?
Above the file system:
How do you manage and work with structured data?
Layers

Networking:
How do the parts of a cloud-scale system talk to each other?
Top-down view of the course

- A computer
 - Tasks/processes
 - Scheduling Systems
 - File systems
 - High level computation frameworks
 - (Semi) Structured Data
 - Networking

- DC Building
 - Racks
 - Servers
 - Internal Network

- Berkely view of cloud computing
 - VMs, Containers, etc
 - VM/Container schedulers
 - Distributed File System

- Datacenter as a computer
 - Distributed Computation
 - Distributed Data Base & Streaming
 - Software Defined Networking
Top-down view of the course

<table>
<thead>
<tr>
<th>Task/Process</th>
<th>Scheduling Systems</th>
<th>File Systems</th>
<th>High level computation frameworks</th>
<th>(Semi) Structured Data</th>
<th>Networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Building</td>
<td>Racks</td>
<td>Internal Network</td>
<td>VMs, Containers, etc</td>
<td>VM/Container schedulers</td>
<td>Distributed File System</td>
</tr>
<tr>
<td>Tasks/processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Distributed Computation</td>
</tr>
<tr>
<td>Scheduling Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Distributed Data Base & Streaming</td>
</tr>
<tr>
<td>File systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Software Defined Networking</td>
</tr>
</tbody>
</table>

Berkely view of cloud computing

- Datacenter as a computer
- Xen
- Container-OS

Xen Container - OS

Berkely view of cloud computing

A computer

Software Defined Networking

Networking

High level computation frameworks

(Semi) Structured Data

Networking

File systems

Distributed Data Base & Streaming

Distributed Computation

Distributed File System

VM/Container schedulers

VMs, Containers, etc

Internal Network

Servers

Racks

DC Building

A computer
Top-down view of the course

- A computer
- Tasks/processes
- Scheduling Systems
- File systems
- High level computation frameworks
- (Semi) Structured Data
- Networking

- DC Building
- Racks
- Servers
- Internal Network
- VMs, Containers, etc
- VM/Container schedulers
- Distributed File System
- Distributed Computation
- Distributed Data Base & Streaming
- Software Defined Networking

- Berkely view of cloud computing
- Datacenter as a computer
- MGHPC
- Xen
- Container-OS
- Google File Sys
- MapReduce
Top-down view of the course

<table>
<thead>
<tr>
<th>A computer</th>
<th>DC Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>Racks</td>
<td></td>
</tr>
<tr>
<td>Servers</td>
<td></td>
</tr>
<tr>
<td>Internal Network</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tasks/processes</th>
<th>VMs, Containers, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling Systems</td>
<td>VM/Container schedulers</td>
</tr>
<tr>
<td>File systems</td>
<td>Distributed File System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High level computation frameworks</th>
<th>Distributed Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Semi) Structured Data</td>
<td>Distributed Data Base & Streaming</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Networking</th>
<th>Software Defined Networking</th>
</tr>
</thead>
</table>

- Berkely view of cloud computing
- Datacenter as a computer
- MGHPC
- Xen
- Container-OS
- OpenLambda
- Borg
- Berkeley serverless
- Google File Sys
- MapReduce
- Top-down view of the course
Top-down view of the course

- DC Building
- Racks
- Servers
- Internal Network
- VMs, Containers, etc
- VM/Container schedulers
- Distributed File System
- Distributed Computation
- Distributed Data Base & Streaming
- Software Defined Networking
- Tasks/processes
- Scheduling Systems
- File systems
- High level computation frameworks
- (Semi) Structured Data
- Networking

Berkely view of cloud computing

Datacenter as a computer

MGHPCC

Xen

Container-OS

OpenLambda

OpenShift

Borg

Mesos

Berkeley serverless

Google File Sys

MapReduce

Dapper
Top-down view of the course

- A computer
- Tasks/processes
- Scheduling Systems
- File systems
- High level computation frameworks
- (Semi) Structured Data
- Networking

DC Building
- Racks
- Servers
- Internal Network

VMs, Containers, etc
- VM/Container schedulers
- Distributed File System

Distributed Computation
- Distributed Data Base & Streaming
- Software Defined Networking

Datacenter as a computer
- Berkely view of cloud computing
- MGHPC

Xen
- Container-OS
- OpenLambda
- OpenShift

Borg
- Mesos
- Berkeley serverless

Google File Sys
- MapReduce

BigTable
- Dynamo

Dapper

MGHPC

OpenShift

Dapper
Top-down view of the course

1. A computer
 - DC Building
 - Racks
 - Servers
 - Internal Network

2. Tasks/processes
 - VMs, Containers, etc
 - VM/Container schedulers
 - Distributed File System

3. Scheduling Systems
 - Distributed Computation

4. File systems
 - High level computation frameworks
 - (Semi) Structured Data

5. Networking
 - Software Defined Networking

6. Berkely view of cloud computing
 - Datacenter as a computer
 - MGHPC

 - Xen
 - Container-OS
 - OpenLambda
 - OpenShift

 - Borg
 - Mesos
 - Berkeley serverless

 - Google File Sys

 - MapReduce
 - Spark
 - Hive

 - BigTable
 - Dynamo

 - Dapper
Top-down view of the course

- A computer
 - DC Building
 - Racks
 - Servers
 - Internal Network

- Tasks/processes
 - VMs, Containers, etc
 - VM/Container schedulers
 - Distributed File System

- Scheduling Systems
 - Distributed Computation

- File systems
 - Distributed Data Base & Streaming

- High level computation frameworks
 - Software Defined Networking

- (Semi) Structured Data

- Networking

- Berkely view of cloud computing
 - Datacenter as a computer
 - MGHPC

- Networking
 - Xen
 - Container-OS
 - OpenLambda
 - OpenShift

- Software Defined Networking
 - Borg
 - Mesos
 - Berkeley serverless
 - Google File Sys
 - Flat Datacenter
 - CEPH

- Distributed Data Base & Streaming
 - MapReduce
 - Spark

- (Semi) Structured Data
 - Hive

- Networking
 - BigTable
 - Dynamo

- Software Defined Networking
 - Kafka

- Berkely view of cloud computing
 - Dapper
Top-down view of the course

- A computer
 - DC Building
 - Racks
 - Servers
 - Internal Network
- Tasks/processes
 - VMs, Containers, etc
 - VM/Container schedulers
 - Distributed File System
- Scheduling Systems
- File systems
- High level computation frameworks
- (Semi) Structured Data
- Networking
- Software Defined Networking
- Berkely view of cloud computing
- Datacenter as a computer
- MGHPC
- OpenLambda
- OpenShift
- Xen
- Container-OS
- Borg
- Mesos
- Google File Sys
- Berkeley serverless
- Flat Datacenter
- CEPH
- MapReduce
- Spark
- Hive
- BigTable
- Dynamo
- Spanner
- Kafka
- Memoryv @ Facebook
- Dapper
Top-down view of the course

A computer
- DC Building
 - Racks
 - Servers
 - Internal Network
- Tasks/processes
- Scheduling Systems
- File systems
- High level computation frameworks
- (Semi) Structured Data
- Networking

VMs, Containers, etc
- VM/Container schedulers
- Distributed File System

Distributed Computation

Distributed Data Base & Streaming

Software Defined Networking

Berkely view of cloud computing
- Datacenter as a computer
 - MGHPC
- Xen
- Container-OS
- OpenLambda
- OpenShift
- Open Stack
- Borg
- Mesos
- Berkeley serverless
- Google File Sys
- Flat Datacenter
- CEPH
- MapReduce
- Spark
- Tensorflow
- Hive
- BigTable
- Spanner
- Dynamo
- Kafka
- Memoryv @ Facebook
- Dapper
Top-down view of the course

A computer

Tasks/processes

Scheduling Systems

File systems

High level computation frameworks

(Semi) Structured Data

Networking

DC Building

Racks

Servers

Internal Network

VMs, Containers, etc

VM/Container schedulers

Distributed File System

Distributed Computation

Distributed Data Base & Streaming

Software Defined Networking

Berkely view of cloud computing

Datacenter as a computer

MGHPCC

Xen

Container-OS

OpenLambda

OpenShift

Open Stack

Borg

Mesos

Berkeley serverless

Google File Sys

Flat Datacenter

CEPH

MapReduce

Spark

Tensorflow

Hive

BigTable

Dynamo

Kafka

Jupiter rising

Memoryv @ Facebook

Dapper
Transformation

- Transformed how SW is developed:
 - continuous deployment; changes tested with real customers
 - example Facebook failure last year
 - massive advantage over waterfall
- It’s all about distributed applications
 - change from pets to cattle
 - care about 99th% tail latency
 - stateless servers
 - huge set of higher level services: Containers as a Service, Functions as a Service, Analytics as a Service...
The challenges

• Monoculture from security perspective

• Emerging oligopoly:
 — Lack of competition limits sources innovation
 — Price is outrageously expensive

• Effort to lock in users: e.g., networking

• Big brother…, or perhaps just Giants whose incentives are not aligned with privacy and marketplace; Consider Facebook
The Datacenter as a Computer

An Introduction to the Design of Warehouse-Scale Machines – 2nd Edition

Luiz André Barroso, Jimmy Clidaras, Urs Hölzle
Traditional “wide-area” networks
Elements of data center
Storage assumptions

• Storage distributed across all machines
• Software like GFS distributes, versus NAS appliance
 — Redundancy even if rack level failure
 — Multiplex server resources (NIC/enclosure/power)
 — Exploits cheap desktop disks
• Typically network oversubscribed
 — E.g., 32 * 40Gig links nodes, 4 *100Gig Links up
Storage Hierarchy

One Server
- DRAM: 16 GB, 100 ns, 20 GB/s
- Disk: 2 T B, 10 ms, 200 MB/s
- Flash: 128 GB, 100 us, 1 GB/s

Local Rack (80 servers)
- DRAM: 1 TB, 300 us, 100 MB/s
- Disk: 160 TB, 11 ms, 100 MB/s
- Flash: 20 TB, 400 us, 100 MB/s

Cluster (30 racks)
- DRAM: 30 TB, 500 us, 10 MB/s
- Disk: 4.80 PB, 12 ms, 10 MB/s
- Flash: 600 TB, 600 us, 10 MB/s
Latency, bandwidth & capacity
Inside a data center
Self-introduction

Q&A