
EC/CS 528: Cloud Computing

Overview of Virtualization

Instructor: Alan Liu

Boston University Slideshow Title Goes Here

2

• Project description

• Contact the mentor(s) and set up regular
communication channels

• We will use GitHub to host open-source projects.

• We will use ZenHub w/GitHub for project management.
• Two lectures next week. By Michael Daitzman

• We will set up cloud access via NERC

• Questions?

Q/A, Projects

Boston University Slideshow Title Goes Here

3

Layers

DC Building

Racks

Servers
Internal Network

Distributed File System

Distributed Computation

VMs, Containers, BM

VM/Container schedulers

Tasks/processes

A computer

Scheduling Systems

High level
computation
frameworks

File systems

(Semi) Structured
Data

Networking Software Defined
Networking

Distributed Data Base &
Streaming

Hardware level:
How do you build cloud-scale systems?

“Operating system”:
How do you manage and run cloud
applications? What about file systems?

Boston University Slideshow Title Goes Here

4

DC Building

Racks

Servers
Internal Network

Distributed File System

Distributed Computation

VMs, Containers, etc

VM/Container schedulers

Tasks/processes

A computer

Scheduling Systems

High level
computation
frameworks

File systems

(Semi) Structured
Data

Networking Software Defined
Networking

Distributed Data Base &
Streaming

Datacenter as a
computer

Xen Container-OS

MGHPCC

OpenShift

Top-down view of the course

Boston University Slideshow Title Goes Here

5

Virtualization

Boston University Slideshow Title Goes Here

6

What is it?

• A software-implemented virtual machine/computer that
you can run a full OS on top of it

• Started way back in mid 60s, share expensive
computer between multiple single-user Oses

• Went away (outside of mainframe) when OSes got
better….

• Then… came back in the 90s with VMware

Boston University Slideshow Title Goes Here

7

Simple view

CPU & devices

Operating
System

Application

“Bare Metal”
CPU & devices

Virtual machine

Operating
System

Application

Virtual machine

Operating
System

Application
. . .

Multiple “guest” operating
systems on virtual machines

“hypervisor” or “virtual machine monitor”

Boston University Slideshow Title Goes Here

8

What are the advantages of virtualization?

Boston University Slideshow Title Goes Here

9

What can you do with virt’n?

• Run one OS on another (e.g., Linux on Win/Mac)
• cool, but not a big use case

• Run lots of machines on a single machine

• Migrate, pause/resume, snapshot, AMI files...

Boston University Slideshow Title Goes Here

10

Type 1 Hypervisor

Hardware

Hypervisor

OS 3OS 1 OS 2

ApplicationsApplications Applications

Boston University Slideshow Title Goes Here

11

Type 2 Hypervisor

Hardware

Virtualization Platform

OS 3OS 1 OS 2

ApplicationsApplications Applications

Applications

Base Operating System

Boston University Slideshow Title Goes Here

12

What makes it hard?

• Isn’t VirtualBox just another program?
• No.

User programs can only run non-privileged
instructions

$ cat foo.c
main()
{

__asm__("movl %eax, %cr3"::);
}
$ gcc foo.c
$./a.out
Segmentation fault (core dumped)

Boston University Slideshow Title Goes Here

13

Some background

• Virtual memory / Address translation
• each process has separate address space
• can’t access:

• other process memory
• operating system memory

• User/Supervisor mode
• enter on interrupt / page fault / system call
• do protected stuff
• exit back to user program

Boston University Slideshow Title Goes Here

14

Really slow (~100 cycles/instruction or more)

How to run an OS on top of another

• Attempt 1 - Emulate every instruction
char memory[EMULATED_MEM_SIZE];
int R1, R2, R3, ...;
int PC, SP, CR1, CR2, CR3, ...;
bool S; /* supervisor mode */

while (true):
instr = memory[PC];
switch (instr):

case "MOV R1 -> R2”:
R2 = R1; break;

case "JMP”:
PC = … ; break;

case "STORE Rx, <addr>”:
<paddr> = TLB[<addr>]

if <paddr> is real memory:
memory[paddr] = Rx

else
simulate_IO_access(paddr, Rx)

.... Etc. (for ~1000 more instructions)

Boston University Slideshow Title Goes Here

15

Trap and emulate (“classic” virt’n)

• Since you’re emulating the same CPU…
• Run everything in user mode
• When privileged instruction traps, load the software

emulator, run for one step, load results back into CPU
and continue direct execution

Boston University Slideshow Title Goes Here

16

But it doesn’t work ☹

• Worked great on IBM machines from 1969 onwards

• But… x86 and ARM are “unvirtualizable” CPUs

• Some of the privileged instructions don’t trap when you
run them in user mode

• Some are no-ops
• Others do some but not all of what the privileged version does

Boston University Slideshow Title Goes Here

17

Solution 1: Binary translation

• Guest user mode – direct execution

• When it tries to trap into the kernel, run all kernel code
in emulation using BT

• That’s what got VMware where they are today.

Boston University Slideshow Title Goes Here

18

Faster emulation through BT

• Binary translation = JIT (Just-In-Time) compilation
• Translate code fragment X into code that does

what the emulator would do executing X
• Typically expands the number of instructions

executed (e.g., have to emulate MMU)
• Think of it as eliminating the loop and switch

overhead in the emulator, plus you get to run an
optimizer on the translated code.
• What Apple did for PPC->Intel switch (and 68k-

>PPC), [Rosetta]
• ~3x-10x slower for good implementations

Boston University Slideshow Title Goes Here

19

Example

LOAD Rx <- &emulated_R1
LOAD Ry <- &emulated_R2
LOAD Rz <- &emulated_R3
ADD Rx,Ry -> Ry
ADD Ry,Rz -> Rz
MUL 2,Rz -> Rz
STORE Ry -> &emulated_R2
STORE Rz -> &emulated_R3
RET

ADD R1+R2 -> R2
ADD R2+R3 -> R3
MUL 2,R3 -> R3

Boston University Slideshow Title Goes Here

20

Virtualized Memory

• Problem – need 2 levels of translation
• guest virtual -> “fake physical”
• “fake physical” -> real physical address

• But the CPU only has one level of translation

• Solution: fake page tables

Boston University Slideshow Title Goes Here

21

Shadow Page Tables

• Emulated CPU (what the guest sees) has CR3 pointing
to “fake” page tables

• Real CPU has CR3 pointing to real page tables

• On a real page fault, first check to see if there’s a fake
page table entry (guest virt -> fake phys)

• If yes: calculate fake phys->real phys
install guest virt -> real phys in real page table

• Otherwise: pass the page fault to guest OS

Boston University Slideshow Title Goes Here

22

I/O devices

• Device registers are just addresses in the physical
address space

• So take page faults on them, and emulate what the real
I/O device would do

• Can implement fake devices; e.g., disk in a file

Boston University Slideshow Title Goes Here

23

Solution 2: Paravirtualization (vs. Full virtualization)

• When you don’t really need full hardware virtualization

• Write an OS for running other operating systems
• System calls are things like “add virtual memory mapping”
• Modifying guest OS is relatively easy vs. sophisticated BT

• Modify guest OS to run on it
• Linux/arch/x86/xen/*

Boston University Slideshow Title Goes Here

24

Paravirtualized I/O devices

• Everyone uses them

• No need to rewrite the OS – just load a device driver.

• Because taking page faults, disassembling instructions
and grabbing values out of registers isn’t the most
efficient API

Boston University Slideshow Title Goes Here

25

BT-based Full Virtualization vs Paravirtualization

2/3/08 25

Boston University Slideshow Title Goes Here

26

Solution 3: New hardware-assisted virtualization

• 3 privilege modes:
• User mode
• Supervisor mode
• Hypervisor mode

• All sorts of settings for when to trap into hypervisor
mode.

Boston University Slideshow Title Goes Here

28

But I/O still sucks…

• Paravirtualization still requires trap to hypervisor

• Lets throw more HW at the problem:
• IOMMU – keep device from DMAing to wrong VM’s memory
• Single Root I/O Virtualization (SR-IOV)

• Device exposes multiple set of registers mapped directly into VM –
especially used for NIC that can support 100s

• Share enough information that, if OS running, interrupt goes
directly to it.

• This is just getting common today

• Note not used in today’s clouds; mostly for accounting
reasons

Boston University Slideshow Title Goes Here

29

Live Migration/vMotion

• Moving a VM from one computer to another

• Standard approach:
• 1 copy pages while running, detect all modified pages
• continue to copy until working set small
• pause and finish copy
• same as what we learned for fork

• Typically assumes network mounted storage

• Exploits standard networking techniques to advertise
IP new location

Boston University Slideshow Title Goes Here

30

Use cases

• Server consolidation - if load imbalanced, can move
VMs around

• Dealing with server failures

• Move VMs and power off servers

• Key feature: Resource pools
• shares/limits/reservation
• enables administrator to control resource use across many VMs
• key to increasing utilization of data center

• Not used in most of today’s clouds

Boston University Slideshow Title Goes Here

31

Concluding remarks

• Virtualization has transformed data center
• Server consolidation, management, high availability, …

• Pervasiveness of virtualization resulted in hardware
changing to support it.

• Today, with the most modern HW, virtualization is easy
and there is little cost for virtualization.

Boston University Slideshow Title Goes Here

32

Lessons learned

1. A level of indirection solves a huge set of
problems; VMware became a $30Billion dollar
company

2. Mendel/VMware had no idea what they where
unleashing; released one product at a time

3. Huge problem for large companies to eat their
own children

4. Get it working, then HW will catch up…

Boston University Slideshow Title Goes Here

33

Xen and the Art of Virtualization

Boston University Slideshow Title Goes Here

34

Philosophy

• Support user applications unmodified

• Minor changes to OS kernels to reduce complexity &
increase performance: paravirtualization

• Goal: support 100s of VMs on a single server

• Strong performance isolation
• bug, fork bomb….

Boston University Slideshow Title Goes Here

35

Experience

Boston University Slideshow Title Goes Here

36

Architecture

• Very simple base hypervisor
• Domain0 hosts the application-level management

software & I/O control

Boston University Slideshow Title Goes Here

37

Memory Management tricks

• Xen exists at the top 64MB of every address space
• Avoid TLB flushing when an guest OS enter/exist Xen

• OS creates page tables, sends to Xen, has read
access; no shadow page tables

• Writes are validated by Xen, changes can be batched

Boston University Slideshow Title Goes Here

38

CPU tricks

• Guest runs at lower level of privilege: ring 1, while
hypervisor is in ring 0 on x86; guest OS cannot directly
execute privileged instructions
• privileged instructions paravirtualized, OS needs to call Xen to install

page table or yield processor

• System-call and page-fault handlers registered to Xen

• “fast handlers” for system calls, Xen isn’t involved
• goes to ring 1 bypassing ring 0; validated by Xen when installed in

hardware table

Boston University Slideshow Title Goes Here

39

Time and Timers

• Xen provides each guest OS with
• Real time (since machine boot)
• Virtual time (time spent for execution)
• Wall-clock time

• Each guest OS can program a pair of alarm timers
• Real time
• Virtual time

Boston University Slideshow Title Goes Here

40

Data Transfer: I/O Rings

• Each request has id

• Response has same
id, so can handle out
of order

• Queue descriptors with
pointers to data
enables zero-copy

Boston University Slideshow Title Goes Here

41

Network

• Xen provides simple virtual firewall-router in hypervisor
• Dom0 controls network filters and routing rules

• Each domain has network interface attached to the
router - two I/O rings: 1) transmit, 2) receive

• To send a packet, enqueue a buffer descriptor into the
transmit ring

• Use scatter-gather DMA (no packet copying)

Boston University Slideshow Title Goes Here

42

Disk

• Only Domain0 has direct access to disks
• Other domains need to use virtual block devices

• List of extents on disk - translation table provided by Dom0
• on disk request, xen translates, and enqueues the corresponding

request
• Disk DMAs directly into guest pages

Boston University Slideshow Title Goes Here

43

Relative Performance

SPEC INT2000 score
CPU Intensive

Little I/O and OS interaction

SPEC WEB99
network and disk intensive

workstation

Boston University Slideshow Title Goes Here

44

Concurrent Virtual Machines

Multiple Apache
processes in Linux

vs.
One Apache process in

each guest OS

Similar performance to
running seperate

processes

Boston University Slideshow Title Goes Here

45

Performance Isolation

• 4 Domains configured with equal resources
• 2 running benchmarks
• 1 running dd - disk bandwidth hog
• 1 running a fork bomb in the background
• the 2 antisocial domains contributed only 4%

performance degradation
• Under native linux huge degradation

Boston University Slideshow Title Goes Here

46

Scalability

Boston University Slideshow Title Goes Here

47

Comments

• Demonstrated good performance for I/O intensive,
direct access through kernel

• Can support lots of concurrent virtual machines

• Good performance isolation

• Can run lots of CPU intensive applications

Boston University Slideshow Title Goes Here

48

Results

• Released Open Source, company to support

• After 2 years trying to release rhype, Xen came up (not
only IBM researchers got it).

• IBM got permission to release rhype:
• http://www.techrepublic.com/article/ibm-hypervisor-software-

makes-stealth-debut/
• If they agreed to work on Xen ☹, and didn’t accept patches

• Amazon created EC2 based on Xen – open source

• Citrix acquired Xen for $500 Million

http://www.techrepublic.com/article/ibm-hypervisor-software-makes-stealth-debut/

Boston University Slideshow Title Goes Here

49

Concluding remarks & lessons

• In paper Domain0 just control:
• eventually host back end drivers… simply hypervisor

• All the cute tricks of Xen largely irrelevant
• Shared address space – HW support
• Page flipping went away

• Xen was the right project at the right time:
• OpenSource alternative to VMware, enabled first IaaS cloud

• Open Source community critical:
• Xen eventually failed… poor support for community, took too long to get

into Linux, …
• KVM is eating its lunch now (Type 2)

• Stick to your guns:
• Will never know what would have happened if I had just released rhype

Boston University Slideshow Title Goes Here

64

Q&A

