
EC/CS 528: Cloud Computing

Overview of Virtualization

Instructor: Alan Liu
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• Project description 

• Contact the mentor(s) and set up regular 
communication channels

• We will use GitHub to host open-source projects. 

• We will use ZenHub w/GitHub for project management.
• Two lectures next week. By Michael Daitzman

• We will set up cloud access via NERC 

• Questions?

Q/A, Projects
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Layers

DC Building

Racks

Servers
Internal Network

Distributed File System

Distributed Computation

VMs, Containers, BM

VM/Container schedulers

Tasks/processes 

A computer 

Scheduling Systems

High level 
computation 
frameworks

File systems

(Semi) Structured 
Data

Networking Software Defined 
Networking

Distributed Data Base & 
Streaming

Hardware level: 
How do you build cloud-scale systems?

“Operating system”:
How do you manage and run cloud 
applications? What about file systems?
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Top-down view of the course
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Virtualization
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What is it?

• A software-implemented virtual machine/computer that 
you can run a full OS on top of it

• Started way back in mid 60s, share expensive 
computer between multiple single-user Oses

• Went away (outside of mainframe) when OSes got 
better….

• Then… came back in the 90s with VMware
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Simple view

CPU & devices

Operating 
System

Application

“Bare Metal”
CPU & devices

Virtual machine

Operating 
System

Application

Virtual machine

Operating 
System

Application
. . .

Multiple “guest” operating 
systems on virtual machines

“hypervisor” or “virtual machine monitor”
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What are the advantages of virtualization?
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What can you do with virt’n?

• Run one OS on another (e.g., Linux on Win/Mac)
• cool, but not a big use case

• Run lots of machines on a single machine

• Migrate, pause/resume, snapshot, AMI files...
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Type 1 Hypervisor

Hardware

Hypervisor

OS 3OS 1 OS 2

ApplicationsApplications Applications
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Type 2 Hypervisor

Hardware

Virtualization Platform

OS 3OS 1 OS 2

ApplicationsApplications Applications

Applications

Base Operating System
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What makes it hard?

• Isn’t VirtualBox just another program?
• No. 

User programs can only run non-privileged 
instructions

$ cat foo.c
main()
{

__asm__("movl %eax, %cr3"::);
}
$ gcc foo.c
$ ./a.out
Segmentation fault (core dumped)
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Some background

• Virtual memory / Address translation
• each process has separate address space
• can’t access:

• other process memory
• operating system memory

• User/Supervisor mode
• enter on interrupt / page fault / system call
• do protected stuff
• exit back to user program
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Really slow (~100 cycles/instruction or more)

How to run an OS on top of another

• Attempt 1 - Emulate every instruction
char memory[EMULATED_MEM_SIZE];
int R1, R2, R3, ...;
int PC, SP, CR1, CR2, CR3, ...;
bool S; /* supervisor mode */

while (true):
instr = memory[PC];
switch (instr):

case "MOV R1 -> R2”:
R2 = R1; break;

case "JMP”:
PC = … ; break;

case "STORE Rx, <addr>”:
<paddr> = TLB[<addr>]

if <paddr> is real memory:
memory[paddr] = Rx

else
simulate_IO_access(paddr, Rx)

.... Etc. (for ~1000 more instructions)
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Trap and emulate (“classic” virt’n)

• Since you’re emulating the same CPU…
• Run everything in user mode
• When privileged instruction traps, load the software 

emulator, run for one step, load results back into CPU 
and continue direct execution
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But it doesn’t work ☹

• Worked great on IBM machines from 1969 onwards

• But… x86 and ARM are “unvirtualizable” CPUs

• Some of the privileged instructions don’t trap when you 
run them in user mode

• Some are no-ops
• Others do some but not all of what the privileged version does



Boston University Slideshow Title Goes Here

17

Solution 1: Binary translation

• Guest user mode – direct execution

• When it tries to trap into the kernel, run all kernel code 
in emulation using BT

• That’s what got VMware where they are today.



Boston University Slideshow Title Goes Here

18

Faster emulation through BT

• Binary translation = JIT (Just-In-Time) compilation
• Translate code fragment X into code that does 

*what the emulator would do executing X*
• Typically expands the number of instructions 

executed (e.g., have to emulate MMU)
• Think of it as eliminating the loop and switch 

overhead in the emulator, plus you get to run an 
optimizer on the translated code.
• What Apple did for PPC->Intel switch (and 68k-

>PPC), [Rosetta]
• ~3x-10x slower for good implementations
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Example

LOAD Rx <- &emulated_R1     
LOAD Ry <- &emulated_R2
LOAD Rz <- &emulated_R3
ADD Rx,Ry -> Ry             
ADD Ry,Rz -> Rz
MUL 2,Rz  -> Rz
STORE Ry -> &emulated_R2    
STORE Rz -> &emulated_R3
RET 

ADD  R1+R2 -> R2
ADD  R2+R3 -> R3
MUL  2,R3  -> R3
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Virtualized Memory

• Problem – need 2 levels of translation
• guest virtual -> “fake physical”
• “fake physical” -> real physical address

• But the CPU only has one level of translation

• Solution: fake page tables
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Shadow Page Tables

• Emulated CPU (what the guest sees) has CR3 pointing 
to “fake” page tables

• Real CPU has CR3 pointing to real page tables

• On a real page fault, first check to see if there’s a fake 
page table entry   (guest virt -> fake phys)

• If yes: calculate fake phys->real phys
install guest virt -> real phys in real page table

• Otherwise: pass the page fault to guest OS
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I/O devices

• Device registers are just addresses in the physical 
address space

• So take page faults on them, and emulate what the real 
I/O device would do

• Can implement fake devices; e.g., disk in a file
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Solution 2: Paravirtualization (vs. Full virtualization)

• When you don’t really need full hardware virtualization

• Write an OS for running other operating systems
• System calls are things like “add virtual memory mapping”
• Modifying guest OS is relatively easy vs. sophisticated BT

• Modify guest OS to run on it
• Linux/arch/x86/xen/*
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Paravirtualized I/O devices

• Everyone uses them

• No need to rewrite the OS – just load a device driver.

• Because taking page faults, disassembling instructions 
and grabbing values out of registers isn’t the most 
efficient API
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BT-based Full Virtualization vs Paravirtualization

2/3/08  25
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Solution 3: New hardware-assisted virtualization

• 3 privilege modes:
• User mode
• Supervisor mode
• Hypervisor mode

• All sorts of settings for when to trap into hypervisor 
mode.
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But I/O still sucks…

• Paravirtualization still requires trap to hypervisor

• Lets throw more HW at the problem:
• IOMMU – keep device from DMAing to wrong VM’s memory
• Single Root I/O Virtualization (SR-IOV)

• Device exposes multiple set of registers mapped directly into VM –
especially used for NIC that can support 100s

• Share enough information that, if OS running, interrupt goes 
directly to it.

• This is just getting common today

• Note not used in today’s clouds; mostly for accounting 
reasons
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Live Migration/vMotion

• Moving a VM from one computer to another

• Standard approach:
• 1 copy pages while running, detect all modified pages
• continue to copy until working set small
• pause and finish copy
• same as what we learned for fork

• Typically assumes network mounted storage

• Exploits standard networking techniques to advertise 
IP new location
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Use cases

• Server consolidation - if load imbalanced, can move 
VMs around

• Dealing with server failures

• Move VMs and power off servers

• Key feature: Resource pools
• shares/limits/reservation
• enables administrator to control resource use across many VMs
• key to increasing utilization of data center

• Not used in most of today’s clouds 
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Concluding remarks

• Virtualization has transformed data center
• Server consolidation, management, high availability, …

• Pervasiveness of virtualization resulted in hardware 
changing to support it.

• Today, with the most modern HW, virtualization is easy 
and there is little cost for virtualization.
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Lessons learned

1. A level of indirection solves a huge set of 
problems; VMware became a $30Billion dollar 
company

2. Mendel/VMware had no idea what they where 
unleashing; released one product at a time

3. Huge problem for large companies to eat their 
own children

4. Get it working, then HW will catch up… 
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Xen and the Art of Virtualization
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Philosophy

• Support user applications unmodified

• Minor changes to OS kernels to reduce complexity & 
increase performance: paravirtualization

• Goal: support 100s of VMs on a single server

• Strong performance isolation
• bug, fork bomb….
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Experience
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Architecture

• Very simple base hypervisor
• Domain0 hosts the application-level management 

software & I/O control
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Memory Management tricks

• Xen exists at the top 64MB of every address space
• Avoid TLB flushing when an guest OS enter/exist Xen

• OS creates page tables, sends to Xen, has read 
access; no shadow page tables

• Writes are validated by Xen, changes can be batched



Boston University Slideshow Title Goes Here

38

CPU tricks

• Guest runs at lower level of privilege: ring 1, while 
hypervisor is in ring 0 on x86; guest OS cannot directly 
execute privileged instructions
• privileged instructions paravirtualized, OS needs to call Xen to install 

page table or yield processor

• System-call and page-fault handlers registered to Xen

• “fast handlers” for system calls, Xen isn’t involved
• goes to ring 1 bypassing ring 0; validated by Xen when installed in 

hardware table
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Time and Timers

• Xen provides each guest OS with
• Real time (since machine boot)
• Virtual time (time spent for execution)
• Wall-clock time 

• Each guest OS can program a pair of alarm timers
• Real time
• Virtual time
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Data Transfer:  I/O Rings

• Each request has id

• Response has same 
id, so can handle out 
of order

• Queue descriptors with 
pointers to data 
enables zero-copy
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Network

• Xen provides simple virtual firewall-router in hypervisor
• Dom0 controls network filters and routing rules

• Each domain has network interface attached to the 
router - two I/O rings: 1) transmit, 2) receive

• To send a packet, enqueue a buffer descriptor into the 
transmit ring

• Use scatter-gather DMA (no packet copying)
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Disk

• Only Domain0 has direct access to disks
• Other domains need to use virtual block devices

• List of extents on disk - translation table provided by Dom0
• on disk request, xen translates, and enqueues the corresponding 

request
• Disk DMAs directly into guest pages



Boston University Slideshow Title Goes Here

43

Relative Performance

SPEC INT2000 score
CPU Intensive

Little I/O and OS interaction

SPEC WEB99
network and disk intensive

workstation
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Concurrent Virtual Machines

Multiple Apache 
processes in Linux

vs.
One Apache process in 

each guest OS

Similar performance to 
running seperate 

processes
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Performance Isolation

• 4 Domains configured with equal resources
• 2 running benchmarks
• 1 running dd - disk bandwidth hog
• 1 running a fork bomb in the background
• the 2 antisocial domains contributed only 4% 

performance degradation
• Under native linux huge degradation
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Scalability
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Comments

• Demonstrated good performance for I/O intensive, 
direct access through kernel

• Can support lots of concurrent virtual machines

• Good performance isolation 

• Can run lots of CPU intensive applications
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Results

• Released Open Source, company to support

• After 2 years trying to release rhype, Xen came up (not 
only IBM researchers got it).

• IBM got permission to release rhype:
• http://www.techrepublic.com/article/ibm-hypervisor-software-

makes-stealth-debut/
• If they agreed to work on Xen ☹, and didn’t accept patches

• Amazon created EC2 based on Xen – open source

• Citrix acquired Xen for $500 Million

http://www.techrepublic.com/article/ibm-hypervisor-software-makes-stealth-debut/
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Concluding remarks & lessons

• In paper Domain0 just control: 
• eventually host back end drivers… simply hypervisor

• All the cute tricks of Xen largely irrelevant
• Shared address space – HW support
• Page flipping went away

• Xen was the right project at the right time:
• OpenSource alternative to VMware, enabled first IaaS cloud 

• Open Source community critical:
• Xen eventually failed… poor support for community, took too long to get 

into Linux, …
• KVM is eating its lunch now (Type 2)

• Stick to your guns: 
• Will never know what would have happened if I had just released rhype
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Q&A


