New Bounds for the CLIQUE-GAP Problem using Graph Decomposition Theory

Vladimir Braverman, Zaoxing Liu, Tejasvam Singh, N. V. Vinodchandran, Lin F. Yang

Johns Hopkins University, University of Nebraska-Lincoln zaoxing@jhu.edu

Aug. 24, 2015

Overview

- Introduction
 - CLIQUE-GAP Problem
 - Prior Results
 - Our Results
- 2 Upper Bound
 - One-pass Streaming Algorithm
- 3 Lower Bound
 - Reduction from multi-party set disjointness problem

CLIQUE-GAP Problem Definition

Insert-only Stream

A graph stream G = (V, E) is an sequence of m edges, where |V| = n and |E| = m.

A typical streaming algorithm is:

CLIQUE-GAP(r, s):

Given a graph stream G, integer r and s with $0 \le s \le r$, output "1" if G has a r-clique or "0" if G has no (s+1)-clique. The output can be either 0 or 1 if the size of the max-clique w(G) is in [s+1,r].

Related Problems

- Max-Cut in Data Stream. [Ahn and Guha 2009, Zelke 2011]
- Triangle Counting in Data Stream. [Buriol et al. 2006, Pavan et al. 2013, Cormode and Jowhari 2014]
- Max-Clique Problem. [Feige 2004, Khot and Ponnuswami 2006]

Prior Results

Halldórsson, Sun, Szegedy, and Wang (*ICALP 2012*) investigated the space complexity of the CLIQUE-GAP(r, s):

- they give matching upper and lower bounds for CLIQUE-GAP(r, s) for any r and $s = c \log(n)$, for some constant c.
- for smaller values of s, the bounds are unknown.

In our paper, we answered the above open problem: for $s = \tilde{O}(\log(n))$ and for any r > s, we prove that the space complexity of CLIQUE-GAP problem is $\tilde{\Theta}(\frac{ms^2}{r^2})$.

Our Results

- Upper Bound: we give a one-pass streaming algorithm that solves CLIQUE-GAP(r,s) using $\tilde{O}(ms^2/r^2)$ space.
- Lower Bound: we give a lower bound of $\tilde{\Omega}(ms^2/r^2)$ on the space complexity of CLIQUE-GAP(r,s) when $s=O(\log n)$, by showing a new connection between graph decomposition theory (Chung, Erdös, and Spencer '83, and Chung '81) and the multi-party set disjointness problem in communication complexity

Our Results

In addition,

- we extend our results to a lower bound theorem for the general promise problem $GAP(\mathcal{P},\mathcal{Q})$, which distinguishes between any two graph properties \mathcal{P} and \mathcal{Q} satisfying some restrictions (will clarity later).
- Our results for the CLIQUE-GAP problem can be extended to distinguish between graphs with at least T triangles and triangle-free graphs.
- We also give a new lower bound for the space complexity of CLIQUE-GAP(r, 2) in the incidence model.

Pseudocode

Input A graph stream G with m edges; positive integers r and s.

Output "1" if a clique of order r is detected in G; "0" if G is (s+1)-clique free.

Init Set p = 40(s+1)/r.

Set memory buffer *M* empty.

Compute *n* pairwise independent bits $\{Q_v | \text{for all } v \in V\}$ using $O(\log n)$ space such that for each $v \in V$, $Pr[Q_v = 1] = p$.

While not the end of the stream:

Read an edge e = (a, b).

Insert e into M if $Q_a = 1$ and $Q_b = 1$.

If there is an (s+1)-clique in M, then output "1".

output "0"

The space complexity is $\tilde{O}(ms^2/r^2)$.

Main Theorem for Lower Bound

For any $0 < \delta < 1/2$ there exists a global constant c > 0 such that for any 0 < s < r, M > 0, there exists graph families \mathcal{G}_1 and \mathcal{G}_2 that satisfy the following:

- for all graph $G_1 \in \mathcal{G}_1$, $|E(G_1)| = m \ge M$, G_1 has a r-clique;
- for all graph $G_2 \in \mathcal{G}_2$; $|E(G_2)| = m \ge M$, G_2 has no (s+1)-clique;
- any randomized one-pass streaming algorithm $\mathcal A$ that distinguishes whether $G\in\mathcal G_1$ or $G\in\mathcal G_2$ with probability at least $1-\delta$ uses at least $cm/(r^2\log_s^2r)$ memory bits.

For $s = O(\log n)$ our lower bound matches, up to polylogarithmic factors, the upper bound.

Theorem (The Communication Complexity of Multi-party Set-disjointness Problem)

Denote the multi-party set disjointness problem as DISJ_k^n . Any randomized one-way communication protocol that solves DISJ_k^n correctly with probability > 3/4 requires $\Omega(n/k)$ bits of communication.

We show a reduction from $DISJ_k^n$ to CLIQUE-GAP problem using the idea of graph decomposition.

Examples

Example (CLIQUE-GAP(4,2))

The reduction is from $DISJ_2^{n/4}$ to CLIQUE-GAP(4, 2)

Reduction from $DISJ_2^{n/4}$ to CLIQUE-GAP(4, 2)

For any instance of $\mathrm{DISJ}_2^{n/4}$, where Player 1 holds a set $S_1 \subset [n/4]$ and Player 2 holds a set $S_2 \subset [n/4]$, construct an instance G with n vertices of CLIQUE-GAP(4,2) as follows.

- Denote the set of n vertices by $\{v_{i,j}|i=1,2,3,\ldots,n/4,j=0,1,2,3\}$. Naturally this vertex set can be partitioned into n/4 groups, each of size 4 (denoting as $V_i \equiv \{v_{i,0},v_{i,1},v_{i,2},v_{i,3}\}$ for $i=1,2,3,\ldots,n/4$).
- Partition $V_i = V_{i,0} \cup V_{i,1}$, where $V_{i,0} = \{v_{i,0}, v_{i,1}\}$ and $V_{i,1} = \{v_{i,2}, v_{i,3}\}$. Further partition $V_{i,0} = V_{i,0,0} \cup V_{i,0,1}$ and $V_{i,1} = V_{i,1,0} \cup V_{i,1,1}$, where $V_{i,0,0} = \{v_{i,0}\}$, $V_{i,0,1} = \{v_{i,1}\}$, $V_{i,1,0} = \{v_{i,2}\}$ and $V_{i,1,1} = \{v_{i,3}\}$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Reduction from $DISJ_2^{n/4}$ to CLIQUE-GAP(4, 2)

Player 1 places all edges of the complete bipartite graphs between $V_{i,0}$ and $V_{i,1}$ if $i \in S_1$. Player 2 places all edges between $V_{i,0,0}$ and $V_{i,0,1}$ and edges between $V_{i,1,0}$, $V_{i,1,1}$ if $i \in S_2$.

- If $S_1 \cap S_2 = \{i\}$, then there is a clique on vertex set V_i (which is of size 4).
- If $S_1 \cap S_2 = \emptyset$, since both Player 1 and Player 2 have only bipartite graph edges on disjoint vertex sets, the output graph is triangle free.

Examples

Example (CLIQUE-GAP(8,3))

The reduction is from $DISJ_3^{n/8}$ to CLIQUE-GAP(8,3)

Finally we can generalize to a reduction from $\mathrm{DISJ}_{\lceil \log_s r \rceil}^{n/r}$ to CLIQUE-GAP(r,s).

Sketch of the Proof

- Since any one-way communication protocol that solves $\mathrm{DISJ}_{\lceil \log_s r \rceil}^{n/r}$ need in total $\Omega(n/r\log_s r)$ communication cost, a one-pass streaming algorithm requires $\Omega(n/r\log_s r)/(\log_s r-1) = \Omega(n/r\log_s^2 r)$.
- ② From our construction, for each hard instance we know $m = \Omega(r^2 \times n/r) = \Omega(nr)$. Hence any one-pass streaming algorithm that solves CLIQUE-GAP(r,s) requires $\Omega(m/r^2 \log_s^2 r)$ space.

A General Problem $GAP(\mathcal{P}, \mathcal{Q})$

$\mathsf{GAP}(\mathcal{P},\mathcal{Q})$

Let $\mathcal P$ and $\mathcal Q$ be two sets of graphs (graph properties) such that $\mathcal P\cap\mathcal Q=\emptyset$. Given an input graph G, an algorithm for $\mathsf{GAP}(\mathcal P,\mathcal Q)$ should output "1" if $G\in\mathcal P$ and '0' if $G\in\mathcal Q$. For $G\not\in\mathcal P\cup\mathcal Q$, the algorithm can output "1" or "0".

Lower Bound for General Problem GAP(P, Q)

Let \mathcal{P}, \mathcal{Q} be two graph properties such that

- $\mathcal{P} \cap \mathcal{Q} = \emptyset$;
- If $G'' \in \mathcal{P}$ and G'' is a subgraph of G', then $G' \in \mathcal{P}$;
- If $G', G'' \in \mathcal{Q}$ and $V(G') \cap V(G'') = \emptyset$, then $\tilde{G} = (V(G') \cup V(G''), E(G') \cup E(G'')) \in \mathcal{Q}$;

Let G_0 be an arbitrary graph in \mathcal{P} . Given any graph G with m edges and n vertices, if a one-pass streaming algorithm \mathcal{A} solves $GAP(\mathcal{P},\mathcal{Q})$ correctly with probability at least 3/4, then \mathcal{A} requires $\Omega(\frac{n}{|V(G_0)|}\frac{1}{\alpha_*^2(G_0,\mathcal{Q})})$ space in the worst case.

4□ > 4□ > 4 = > 4 = > = 90

Thank You!