
New Bounds for the CLIQUE-GAP Problem using
Graph Decomposition Theory

Vladimir Braverman, Zaoxing Liu, Tejasvam Singh, N. V.
Vinodchandran, Lin F. Yang

Johns Hopkins University, University of Nebraska-Lincoln

zaoxing@jhu.edu

Aug. 24, 2015

Vladimir Braverman, Zaoxing Liu, Tejasvam Singh, N. V. Vinodchandran, Lin F. Yang (Johns Hopkins University, University of Nebraska-Lincoln )CLIQUE-GAP Problem Aug. 24, 2015 1 / 18



Overview

1 Introduction
CLIQUE-GAP Problem
Prior Results
Our Results

2 Upper Bound
One-pass Streaming Algorithm

3 Lower Bound
Reduction from multi-party set disjointness problem

Vladimir Braverman, Zaoxing Liu, Tejasvam Singh, N. V. Vinodchandran, Lin F. Yang (Johns Hopkins University, University of Nebraska-Lincoln )CLIQUE-GAP Problem Aug. 24, 2015 2 / 18



Introduction CLIQUE-GAP Problem

CLIQUE-GAP Problem Definition

Insert-only Stream

A graph stream G = (V ,E ) is an sequence of m edges, where |V | = n and
|E | = m.

A typical streaming algorithm is:

CLIQUE-GAP(r , s):

Given a graph stream G , integer r and s with 0 ≤ s ≤ r , output “1” if G
has a r -clique or “0” if G has no (s + 1)-clique. The output can be either
0 or 1 if the size of the max-clique w(G ) is in [s + 1, r ].
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Introduction CLIQUE-GAP Problem

Related Problems

Max-Cut in Data Stream. [Ahn and Guha 2009, Zelke 2011]

Triangle Counting in Data Stream. [Buriol et al. 2006, Pavan et al.
2013, Cormode and Jowhari 2014]

Max-Clique Problem. [Feige 2004, Khot and Ponnuswami 2006]
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Introduction Prior Results

Prior Results

Halldórsson, Sun, Szegedy, and Wang (ICALP 2012) investigated the
space complexity of the CLIQUE-GAP(r , s):

they give matching upper and lower bounds for CLIQUE-GAP(r , s)
for any r and s = c log(n), for some constant c.

for smaller values of s, the bounds are unknown.

In our paper, we answered the above open problem: for s = Õ(log(n)) and
for any r > s, we prove that the space complexity of CLIQUE-GAP
problem is Θ̃(ms2

r2
).
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Introduction Our Results

Our Results

Upper Bound: we give a one-pass streaming algorithm that solves
CLIQUE-GAP(r , s) using Õ(ms2/r2) space.

Lower Bound: we give a lower bound of Ω̃(ms2/r2) on the space
complexity of CLIQUE-GAP(r , s) when s = O(log n), by showing a
new connection between graph decomposition theory (Chung, Erdös,
and Spencer ’83, and Chung ’81) and the multi-party set disjointness
problem in communication complexity
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Introduction Our Results

Our Results

In addition,

we extend our results to a lower bound theorem for the general
promise problem GAP(P,Q), which distinguishes between any two
graph properties P and Q satisfying some restrictions (will clarity
later).

Our results for the CLIQUE-GAP problem can be extended to
distinguish between graphs with at least T triangles and triangle-free
graphs.

We also give a new lower bound for the space complexity of
CLIQUE-GAP(r , 2) in the incidence model.
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Upper Bound One-pass Streaming Algorithm

Pseudocode

Input A graph stream G with m edges; positive integers r and s.

Output “1” if a clique of order r is detected in G ; “0” if G is (s + 1)-clique
free.

Init Set p = 40(s + 1)/r .
Set memory buffer M empty.
Compute n pairwise independent bits {Qv |for all v ∈ V } using
O(log n) space such that for each v ∈ V , Pr [Qv = 1] = p.

While not the end of the stream:
Read an edge e = (a, b).
Insert e into M if Qa = 1 and Qb = 1.
If there is an (s + 1)-clique in M, then output “1”.

output “0”

The space complexity is Õ(ms2/r2).
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Lower Bound Reduction from multi-party set disjointness problem

Main Theorem for Lower Bound

For any 0 < δ < 1/2 there exists a global constant c > 0 such that for any
0 < s < r , M > 0, there exists graph families G1 and G2 that satisfy the
following:

for all graph G1 ∈ G1, |E (G1)| = m ≥ M, G1 has a r -clique;

for all graph G2 ∈ G2; |E (G2)| = m ≥ M, G2 has no (s + 1)-clique;

any randomized one-pass streaming algorithm A that distinguishes
whether G ∈ G1 or G ∈ G2 with probability at least 1− δ uses at least
cm/(r2 log2s r) memory bits.

For s = O(log n) our lower bound matches, up to polylogarithmic factors,
the upper bound.
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Lower Bound Reduction from multi-party set disjointness problem

Theorem (The Communication Complexity of Multi-party Set-disjointness
Problem)

Denote the multi-party set disjointness problem as DISJnk . Any
randomized one-way communication protocol that solves DISJnk correctly
with probability > 3/4 requires Ω(n/k) bits of communication.

We show a reduction from DISJnk to CLIQUE-GAP problem using the idea
of graph decomposition.
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Lower Bound Reduction from multi-party set disjointness problem

Examples

Example (CLIQUE-GAP(4, 2))

The reduction is from DISJ
n/4
2 to CLIQUE-GAP(4, 2)
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Lower Bound Reduction from multi-party set disjointness problem

Reduction from DISJ
n/4
2 to CLIQUE-GAP(4, 2)

For any instance of DISJ
n/4
2 , where Player 1 holds a set S1 ⊂ [n/4] and

Player 2 holds a set S2 ⊂ [n/4], construct an instance G with n vertices of
CLIQUE-GAP(4, 2) as follows.

Denote the set of n vertices by {vi ,j |i = 1, 2, 3, . . . , n/4, j = 0, 1, 2, 3}.
Naturally this vertex set can be partitioned into n/4 groups, each of
size 4 (denoting as Vi ≡ {vi ,0, vi ,1, vi ,2, vi ,3} for i = 1, 2, 3, . . . , n/4).

Partition Vi = Vi ,0 ∪ Vi ,1, where Vi ,0 = {vi ,0, vi ,1} and
Vi ,1 = {vi ,2, vi ,3}. Further partition Vi ,0 = Vi ,0,0 ∪ Vi ,0,1 and
Vi ,1 = Vi ,1,0 ∪ Vi ,1,1, where Vi ,0,0 = {vi ,0}, Vi ,0,1 = {vi ,1},
Vi ,1,0 = {vi ,2} and Vi ,1,1 = {vi ,3}.
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Lower Bound Reduction from multi-party set disjointness problem

Reduction from DISJ
n/4
2 to CLIQUE-GAP(4, 2)

Player 1 places all edges of the complete bipartite graphs between Vi ,0 and
Vi ,1 if i ∈ S1. Player 2 places all edges between Vi ,0,0 and Vi ,0,1 and edges
between Vi ,1,0, Vi ,1,1 if i ∈ S2.

If S1 ∩ S2 = {i}, then there is a clique on vertex set Vi (which is of
size 4).

If S1 ∩ S2 = ∅, since both Player 1 and Player 2 have only bipartite
graph edges on disjoint vertex sets, the output graph is triangle free.
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Lower Bound Reduction from multi-party set disjointness problem

Examples

Example (CLIQUE-GAP(8, 3))

The reduction is from DISJ
n/8
3 to CLIQUE-GAP(8, 3)

Finally we can generalize to a reduction from DISJ
n/r
dlogs re

to

CLIQUE-GAP(r , s).
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Lower Bound Reduction from multi-party set disjointness problem

Sketch of the Proof

1 Since any one-way communication protocol that solves DISJ
n/r
dlogs re

need in total Ω(n/r logs r) communication cost, a one-pass streaming
algorithm requires Ω(n/r logs r)/(logs r − 1)) = Ω(n/r log2s r).

2 From our construction, for each hard instance we know
m = Ω(r2 × n/r) = Ω(nr). Hence any one-pass streaming algorithm
that solves CLIQUE-GAP(r , s) requires Ω(m/r2 log2s r) space.
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Lower Bound Reduction from multi-party set disjointness problem

A General Problem GAP(P ,Q)

GAP(P,Q)

Let P and Q be two sets of graphs (graph properties) such that
P ∩Q = ∅. Given an input graph G , an algorithm for GAP(P,Q) should
output “1” if G ∈ P and ‘0’ if G ∈ Q. For G 6∈ P ∪ Q, the algorithm can
output “1” or “0”.
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Lower Bound Reduction from multi-party set disjointness problem

Lower Bound for General Problem GAP(P ,Q)

Let P,Q be two graph properties such that
- P ∩Q = ∅;
- If G ′′ ∈ P and G ′′ is a subgraph of G ′, then G ′ ∈ P;

- If G ′,G ′′ ∈ Q and V (G ′) ∩ V (G ′′) = ∅, then
G̃ = (V (G ′) ∪ V (G ′′),E (G ′) ∪ E (G ′′)) ∈ Q;

Let G0 be an arbitrary graph in P. Given any graph G with m edges and n
vertices, if a one-pass streaming algorithm A solves GAP(P,Q) correctly
with probability at least 3/4, then A requires Ω( n

|V (G0)|
1

α2
∗(G0,Q)

) space in

the worst case.
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Lower Bound Reduction from multi-party set disjointness problem

Thank You!
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