One Sketch to Rule Them All: Rethinking Network Flow Monitoring with UnivMon

Zaoxing Liu, Antonis Manousis, Greg Vorsanger,

Vyas Sekar, and Vladimir Braverman

Many Monitoring Requirements

- Who's sending a lot more traffic than 10min ago? (Change)
- Who's sending a lot from 10.0.1.0/16? (Heavy Hitter)
- Are you being DDoS-ed?

Traditional: Packet Sampling

Sample packets at random, group into flows

Estimate: FSD, Entropy, Heavy Hitters ...

Prior work: Not good for fine-grained analysis!

Alternative: App-Specific Sketches

Higher Complexity with more applications *Higher development time* as new applications appear *Tight Binding* between monitoring data and control plane

Motivating Question

UnivMon Vision

- One Sketch for multiple tasks
- Naturally Late-binding

Many Natural Challenges!

Does such a construction exist?

If it exists, is it feasible to implement?

Does it extend to a network-wide setting? e.g., Multiple paths, Multiple dimensions

This Talk

Does such a construction exist?

If it exists, is it feasible to implement?

Does it extend to a network-wide setting? e.g., Multiple paths, Multiple dimensions

This Talk

Does such a construction exist?

If it exists, is it feasible to implement?

Does it extend to a network-wide setting? e.g., Multiple paths, Multiple dimensions

Concept of Universal Streaming

Theory of Universal Streaming [BO'10, BO'13]

Thm 1:

There exists a universal approach to estimate G-sum when g() function is non-decreasing such that g(0)=0, and $g(f_i)$ doesn't grow monotonically faster than f_i^2 .

Thm 2:

A universal sketch construction can be used to estimate Gsum with high probability using polylogarithmic memory.

Intuition of Universal Sketch

Informal Definition: Item *i* is a *g*-heavy hitter if changing its frequency f_i significantly affects its G-sum.

Case 1: there is one sufficiently large a *g*-heavy hitter

Most of mass is concentrated in this heavy hitter. Use L2 Heavy-Hitter algorithm to find such a heavy hitter.

Case 2: there is NO single sufficiently large *g*-heavy hitter

Find heavy hitters on a series of sampled substreams of increasingly smaller size.

Universal Sketch Data Structure

This Talk

Does such a construction exist?

If it exists, is it feasible to implement?

Does it extend to a network-wide setting? e.g., Multiple paths, Multiple dimensions

Mapping to P4

Top-K Stage on Switch

Split Top-K Stage

This Talk

Does such a construction exist?

If it exists, is it feasible to implement?

Does it extend to a network-wide setting? e.g., Multiple paths, Multiple dimensions

Network-wide Problem

Trivial sol: place D*N sketches Our goal: Place s sketches, where s<<D*N One-big-switch abstraction

This talk

Does such a construction exist?

If it exists, is it feasible to implement?

Does it extend to a network-wide setting? e.g., Multiple paths, Multiple dimensions

Evaluation Setup

- Traces: CAIDA backbone traces
 - Split into different "epoch" durations
- Memory setup: 600KB-5MB
- Application metrics: HH, Change, DDoS, etc.
- Custom algorithms from OpenSketch

UnivMon is Competitive Per-App

Max error gap < 3.6%; Results hold across multiple traces

UnivMon Better for Larger Portfolio

Clear advantages when handling more applications

Memory needs are reasonable

- Network management needs many metrics
- Traditional: Generality XOR Fidelity
 - E.g., NetFlow vs Custom Sketches
- New opportunity: Universal Sketches!
 - Generality AND Fidelity AND Late Binding
- UnivMon brings this opportunity to fruition
 - Practical, realizable in P4
 - Comparable (and better) than custom
 - Amenable to "network-wide" abstractions
 - Many exciting future directions:
 - Theoretical improvements, Native multidimensional, etc.

Network-wide coordination helps

