One Sketch to Rule Them All:
Rethinking Network Flow Monitoring
with UnivMon

Zaoxing Liu, Antonis Manousis, Greg Vorsanger,

Vyas Sekar, and Vladimir Braverman

‘i‘f" JOHNS HOPKINS Carnegie Mellon

UNIVERSITY



Many Monitoring Requirements

) Traffic Engineering @) Anomaly Detection

“Flow Size Distribution” “Entropy”, “Traffic Changes”
() Worm Detection @) Accounting
“SuperSpreaders” “Heavy Hitters”

* Who's sending a lot more traffic than 10min ago? (Change)
* Who's sending a lot from 10.0.1.0/16? (Heavy Hitter)

* Are you being DDoS-ed?



Traditional: Packet Sampling

Sample packets at random, group into flows

Flow = Packets with same pattern [Flowld| Counter
Source and Destination Address and Flow reports
Ports (v
==
S— ‘
[1[1[6]1[3][1]1] [1[1[6]1[3][1]1]

Estimate: FSD, Entropy, Heavy Hitters ...

Prior work: Not good for fine-grained analysis!



Alternative: App-Specific Sketches

Heavy Hitter Entropy Superspreader
Application-Level Application-Level e Application-Level
Metric Metric Metric
I Counter I I Counter I I Counter
I Data I I Data I ceee Data
Structures Structures Structures

l N B S
Packet Packet Packet
' Processing l I Processing I ' Processing

Pre-deployed

~ Algorithms
Traffic

Higher Complexity with more applications
Higher development time as new applications appear

Tight Binding between monitoring data and control plane
4



Motivating Question

Generality

Late Binding

e.g., NetFlow e.g., Sketches

AND

Can we achieve this?



UnivMon Vision

Application-specific 1
Computation

Configure Report Control Plane
> Data Plane
RGN 1' Update Counters>
Processing “General”
==
u Sketch

Traffic >

«  One Sketch for multiple tasks
« Naturally Late-binding




Many Natural Challenges!

Does such a construction exist?
If it exists, is it feasible to implement?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?



This Talk

Does such a construction exist?

If it exists, is it feasible to implement?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?



>

This Talk

Does such a construction exist?

If it exists, is it feasible to implement?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?



Concept of Universal Streaming

« Basic Streaming Algorithms: h
Frequency Moments Fy = )1, f;

F, : AMS Sketch, Count Sketch

=< 1Y
One algorithm

solves one problem

(A stream of length m with n unique items)
[1[1]5[1[3[3[1]2]4]6]5] ------

frequency vector < f,f... f,>

Universality:

. i ing?
Universal Streaming* arbitrary g() function?

A 5[1[3[3[1[2]4]6]5] ------

G-sum =Y, g(fy)

frequency vector <fq,fs...

10



Theory of Universal Streaming so'o, 8Bo'13]

Thm 1:
There exists a universal approach to estimate G-sum when
g() function is non-decreasing such that g(0)=0, and g(f;)
doesn’t grow monotonically faster than f;2 .

Thm 2:
A universal sketch construction can be used to estimate G-
sum with high probability using polylogarithmic memory.

11



Intuition of Universal Sketch

Informal Definition: ltem i is a g-heavy hitter if changing
its frequency f; significantly affects its G-sum.

Case 1: there is one sufficiently large a g-heavy hitter

Most of mass is concentrated in this heavy hitter.
Use L2 Heavy-Hitter algorithm to find such a heavy hitter.

Case 2: there is NO single sufficiently large g-heavy hitter

Find heavy hitters on a series of sampled substreams of
increasingly smaller size.



Universal Sketch Data Structure

Generate log(n) substreams
by zero-one hash funcs
H1....Hog(n)

Count-Sketch etc.

G VLILERN ) (1,4), (3,2),(5,2)

1 [a]afs]1] [1]2]

Heavy Hitter Alg I:> (114)) (5)2)1(211)

[5] 2]

Heavy Hitter Alg [l SENITRINPER

log(n) 2] Heavy Hitter Alg :> (2,1)

In Parallel Heavy Hitters
Levels arafie L2 Heavy Hitter(HH) Alg and Counters

13




This Talk

Does such a construction exist?
‘ If it exists, is it feasible to implement?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

14



How to Map to P4

Heavy Hitter Alg

) (1,4),(3,2),(5,2)

1 [afafsfa| [1]2]

Heavy Hitter Alg

)| (1,4), (5,2),(2,1)

| (2,1)

log(n) 2] ‘ Heavy Hitter Alg

App-Estimation

Samping PRI syccching.

15



Mapping to P4

Custom Libraries

App-Estimation

— I — X

P4 Hash Funcs P4 Registers Hash Funcs
+
P4 Registers

16



Top-K Stage on Switch

App-Estimation

_______ ____
— Emm — B

t Hard in
HW Complexity (need Priority Queue) hardware

‘ Storage/Comm Overhead (report to controller)

17



Split Top-K Stage

App-Estimation

e — B — I

‘ HW Complexity (w/o Priority Queue)

t Storage/Comm. Overhead (report to controller)

Several
MBs more

18



Implementation Summary

‘ App 1 I ...... ‘ App n I

Application-specific Computation

Sampling
(Hash func)

&
o Trffic >

Sampling M—»m App-Estimation
19




This Talk

Does such a construction exist?
If it exists, is it feasible to implement?

‘ Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

20



Network-wide Problem

One sketch for each dim _@

N nodes
D dimensions
(e.g., src, srcdst)

Trivial sol: place D*N sketches
Our goal: Place s sketches, where s<<D*N
One-big-switch abstraction

21



This talk

Does such a construction exist?
If it exists, is it feasible to implement?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

mmm) |s it competitive w.r.t. custom algorithms?

22



Evaluation Setup
Traces: CAIDA backbone traces
« Split into different “epoch” durations
Memory setup: 600KB—5MB
Application metrics: HH, Change, DDoS, etc.

Custom algorithms from OpenSketch

23



UnivMon is Competitive Per-App

Error Rate Comparison

5.00%
4.00%
3.00%
2.00%

1.00% i '

0.00% — —= mem - i N/A
Heavy Hitter DDoS Change Entropy

B OpenSketch(600KB/task) B UnivMon(600KB total)

Max error gap < 3.6%; Results hold across multiple traces

24



UnivMon Better for Larger Portfolio

5.00%
: N
O 1.00% . el
5 T
~ 3.00% [
-7.00%
Appsetl Appset2 Appset3

600KB Memory M HH M DDOoS Change

Clear advantages when handling more applications

25



Memory Usage (KB)

Memory needs are reasonable

OS trace1 5 UM- trace1 —8—

OS-trace2 —¢— UM-trace2 —x—

OS-trace3 —m— UM-trace3 —a—

OS-trace4d —eo— UM-trace4 —e—
300 + OS-trace5 —a— UM-traceb5 —a—
200 t

oS 30s im om
Monitoring Time Interval

Slow increase (logarithmically) and supports larger windows

26




Conclusions
* Network management needs many metrics

* Traditional: Generality XOR Fidelity
* E.g., NetFlow vs Custom Sketches

* New opportunity: Universal Sketches!
« Generality AND Fidelity AND Late Binding

» UnivMon brings this opportunity to fruition
* Practical, realizable in P4
« Comparable (and better) than custom
 Amenable to “network-wide” abstractions

« Many exciting future directions:
» Theoretical improvements, Native multidimensional, etc.



Network-wide coordination helps
Network Wide Evaluation (600KB per sketch)

2

000 Ingress m——
= Greedy-g.&(SJ. I—
X &S,
‘;1500 UnivMon s
)
5
< 1000
o
(@)
©
® 500 1
>
<

0

ATT-N.A. GEANT BellSouth

28



