Astronomy and Computing 23 (2018) 166-179

Contents lists available at ScienceDirect

Astronomy and
Computing

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Scalable streaming tools for analyzing N-body simulations: Finding A
halos and investigating excursion sets in one pass i

N. Ivkin®*, Z. Liu?, L.F. Yang ", S.S. Kumar?, G. Lemson ?, M. Neyrinck ¢, A.S. Szalay ¢,
V. Braverman?, T. Budavari®

2 Johns Hopkins University, United States
b Princeton University, United States
¢ Institute for Computational Cosmology, Durham University, United Kingdom

ARTICLE INFO ABSTRACT

Article history:

Received 3 November 2017
Accepted 24 April 2018
Available online 1 May 2018

Cosmological N-body simulations play a vital role in studying models for the evolution of the Universe. To
compare to observations and make a scientific inference, statistic analysis on large simulation datasets,
e.g., finding halos, obtaining multi-point correlation functions, is crucial. However, traditional in-memory
methods for these tasks do not scale to the datasets that are forbiddingly large in modern simulations. Our
prior paper (Liu et al., 2015) proposes memory-efficient streaming algorithms that can find the largest
halos in a simulation with up to 10° particles on a small server or desktop. However, this approach fails
when directly scaling to larger datasets. This paper presents a robust streaming tool that leverages state-
of-the-art techniques on GPU boosting, sampling, and parallel I/0, to significantly improve performance
and scalability. Our rigorous analysis of the sketch parameters improves the previous results from finding
the centers of the 10% largest halos (Liu et al., 2015) to ~ 10* — 10, and reveals the trade-offs between
memory, running time and number of halos. Our experiments show that our tool can scale to datasets
with up to ~ 10'? particles while using less than an hour of running time on a single GPU Nvidia GTX

1080.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Cosmology is a field in physics and astrophysics that focuses on
the study of the large-scale distribution of matter in the universe.
Advanced computer simulations have become essential tools for
understanding how matter organizes itself in galaxies, clusters of
galaxies and large-scale structures (e.g., Springel, 2005). Many
such simulations operate with a set of particles in a fixed cubic
volume: at each step of the simulation the gravitational force
field is computed and the velocities and positions of particles
are recomputed according to that force field. Running large-scale
simulations of this type is very expensive in terms of computa-
tional resources, both in running time and memory. Additionally,
even if the simulation results are computed, the analysis of the
dataset requires resources that are usually beyond the capabilities
of many researchers. For example, to host a single snapshot of
a simulation with roughly a trillion particles (e.g., Angulo et al.,
2012; Potter et al., 2017) requires tens of Terabytes of memory.
Storing such a large number of particles is not only expensive but
also challenging.

* Corresponding author.
E-mail address: nivkin1@jhu.edu (N. Ivkin).

https://doi.org/10.1016/j.ascom.2018.04.003
2213-1337/© 2018 Elsevier B.V. All rights reserved.

One of the essential steps in the analysis of these simulations is
the identification of “halos” (Knebe et al., 2013), which are concen-
trations of mass. Galaxies are expected to form inside these halos.
Finding halos in the output of the simulation allows astronomers to
compute important statistics, e.g., mass functions (Karttunen et al.,
2016). These statistics are crucial for comparison between theories
and observations. Although from an astronomical perspective the
concept of a “halo” is fairly well understood, the mathematical
definition of halos in a simulation varies among simulation and
analysis methods. For instance, Planelles and Quilis (2010) defines
it as mass blobs around the density peaks above some thresholds;
Davis et al. (1985) defines it as the connected components of the
distances graph on the particles. A definition that does not use
the density, instead uses particle crossings (Falck et al., 2012).
The lack of agreement upon a single definition of a halo makes it
difficult to uniquely compare the results of different halo-finding
algorithms. Nevertheless, Knebe et al. (2011) evaluated 17 dif-
ferent algorithms and compared them using various criteria, and
found broad agreement between them, but with many differences
in detail for ambiguous cases.

Although there are a large number of algorithms and implemen-
tations (Knollmann and Knebe, 2009; Gill et al., 2004; Planelles and
Quilis, 2010; Klypin and Holtzman, 1997; Sutter and Ricker, 2010;


https://doi.org/10.1016/j.ascom.2018.04.003
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2018.04.003&domain=pdf
mailto:nivkin1@jhu.edu
https://doi.org/10.1016/j.ascom.2018.04.003

N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179 167

White et al., 2001; Neyrinck et al., 2005; Davis et al., 1985), these
approaches generally require the dataset to be stored entirely in
memory. Thus for state-of-the-art simulations (Anguloetal.,2012;
Potter et al., 2017), which reach hundreds of billions and even over
a trillion of particles, post-processing analysis becomes unfeasible
unless using supercomputers of the same size that created the
simulations in the first place. Recently in Liu et al. (2015) an
approach was proposed that attacks the problem using solutions
developed in the field of streaming algorithms. Typical applications
of streaming algorithms are very large datasets, where access to
the data is restricted to be sequential and the working memory
is much smaller than the dataset size. In their most restricted
versions, streaming algorithms are supposed to make a single pass
over the data using a polylogarithmic amount of memory in terms
of the length of the sequence. Such restrictions force streaming
algorithms to be randomized, providing approximate answers for
problems of interest. Streaming algorithms have numerous appli-
cations in networking (Zhang et al., 2004; Lall et al., 2006; Zhao
et al., 2007; Liu et al., 2016), machine learning (Beringer and
Hiillermeier, 2007; Liberty, 2013), and databases (Rusu and Dobra,
2007; Spiegel and Polyzotis, 2006). For a detailed review please
refer to Muthukrishnan et al. (2005).

In Liu et al. (2015), we developed a solution using the Count
Sketch streaming algorithm (Charikar et al., 2002) to the halo
finding problem, and presented the first results on how to find
the top-k (k ~ 1000) largest halos in a dark matter simulation. In
that paper, all experiments were running on relatively small data
streams with at most 10° items. One of the reasons for that was the
rather poor time performance of the underlying algorithms, which
would cause every experiment to take more than week to run. In
this paper, we improve the implementation and push the number
of halos’ centers to be found to ~ 10% — 10°.

Our tool needs less than 5 minutes to find the top 3 - 10°
heavy cells on a dataset with 10'° particles. Compared to previous
results (Liu et al., 2015), which required more than 8 h, it is more
than a 100x improvement. This dataset consists of a snapshot
of the Millennium dataset (Springel, 2005) and we use a grid of
10" cells in our algorithm for approximation of the density field,
which can be used further for astrophysical analysis. We port the
entire Count-Sketch infrastructure into the GPU and thus make
the tool significantly outperform the previous approach. In our
analysis, we carefully investigate the trade-off between memory
and the quality of the result.

In Liu et al. (2015) authors reduced the halo-finding problem
to the problem of finding the top-k densest cells in a regular mesh.
This reduction shows that these densest cells are closely related
to the space with the heaviest halos. In this paper, we consider
another possible application, that of determining statistics on “ex-
cursion sets”. Kaiser (Kaiser, 1984) investigated the clustering
properties of the regions with a density higher than the average in
Gaussian random fields. He showed that such regions cluster more
strongly than those with lower over-densities and the strength of
this effect increases with the density threshold. He used this as an
explanation of the observed stronger clustering of galaxy clusters
compared to the clustering of the galaxy distribution itself. Bardeen
et al. (Bardeen et al., 1986), refined this argument, focusing on
the peaks of the density fields—the locations where galaxies and
clusters are expected to form.

This biased clustering phenomenon can be examined in an
evolved density field by filtering regions in the dark matter distri-
bution field, based on their density. This is equivalent to examining
the “heavy hitters” in the counts-in-cells. We expect the random-
ized algorithms to not be exact, and it is interesting to investigate
how this affects the clustering measure.

The outline of this paper is as the following.

e In Section 2, we formally define the structure of the stream-
ing model in different settings, investigate the heavy hit-
ter problem and its connection to the spatial statistics in
N-body simulations, and describe the algorithms that are
capable of solving the problem.

e In Section 3, we describe our implementation. We outline
how successive improvements, in particular, the extensive
usage of GPUs, make it possible to run our experiments in
about 5 min, whereas in the previous paper it took 8 h.

e In Section 4, we evaluate the accuracy of the results by
comparing the streaming algorithm results with the exact
results where possible. We do the comparison not only in
the information-theoretical setting but also in the statistical
setting, which is of astrophysical interest. Evaluations show
that the approximate results accurately reproduce exact
statistics.

e InSection 5, we conclude the paper and discuss future work.

2. Methodology

In this section, we introduce our methods for efficiently ana-
lyzing cosmological datasets. First, we introduce the concept of
streaming and explain how the problem of estimating density
statistics can be approached from the perspective of finding fre-
quent items in the stream. Then we recap the general idea and
several crucial details of the heavy hitter algorithm named Count
Sketch (Charikar et al., 2002).

2.1. Streaming model

The streaming model was first formally introduced in the semi-
nal paper (Alon et al., 1996). In this model, an algorithm is required
to compute a certain function f by making a single (or a few)
pass(es) on a long stream of data S = {sq, ..., Sy} with a limited
amount of memory. Elements of the stream s; are in an arbitrary
order and belong to some given dictionary D = {dq, ..., d,}, where
d; can represent different entities, such as integers, edges in a
graph, sets, or rows of a matrix. For simplicity we will consider
a dictionary of integers D = [n] = {1, ..., n}. Typically, both m
and n are very large numbers such that it is usually infeasible to
store the entire stream or even the frequency of each element in
the dictionary. Thus in the streaming model aims for algorithms
with very low memory usage, e.g. o(n + m) bits. Due to such strong
limitations, most streaming algorithms are randomized and have
approximation error.

In this paper, we work on two cosmological N-body simulations
with 10'% and 3 x 10'" particles, respectively, resulting in several
terabytes of data. In this setting, typical approaches for finding ha-
los that require loading data into memory become inapplicable on
common computing devices (e.g. laptop, desktop, or small work-
stations) for post-processing and analysis. In contrast, a streaming
approach makes the analysis of such datasets feasible even on a
desktop by lowering the memory footprint from several terabytes
to less than a gigabyte.

Much of the analysis of cosmological N-body simulations fo-
cuses on regions with a high concentration of particles. By putting
a regular mesh on the simulation box, we can replace each par-
ticle with the ID of the cell it belongs to. Then using streaming
algorithms we can find the k most frequent cells, i.e. cells with
the largest number of particles (see Fig. 1). Such statistics are
very useful for analyzing a spatial distribution of particles on each
iteration of the simulation, as shown in Liu et al. (2015) and as we
will show in the current paper. One might think that this approach
is too naive and just keeping a counter for each cell would provide



168 N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179

- * . . - * - . -
e = 3%

Fig. 1. Finding approximate dense areas with the help of a regular mesh and a
streaming solution for finding the top k most frequent items in the stream.

the exact solution with probability 1, which is much better than
any streaming algorithm can offer. However, under the assumption
that particles are not sorted in any way, the naive solution would
increase memory usage to terabytes even for the mesh with only
10" cells in it.

Finding frequent elements is one of the most studied problems
in streaming settings, moreover, it is often used as a subroutine
in many other algorithms (Liberty, 2013; Ghashami et al., 2016;
Indyk and Woodruff, 2005; Chakrabarti et al., 2010; Monemizadeh
and Woodruff, 2010). Let us first introduce the notation. The fre-
quency (or count) of the element i is the number of its occurrences
in the stream S: f; = |{j|s; = i}|. We will call element i as («, £,)-
heavy if f; > at, where ¢, = (Z}fj")”p. An approximate scheme
for the problem is the following:

Problem 1 (Heavy Hitter). Given a stream S of m elements the
g-approximate (o, £,)-heavy hitter problem is to find a set of
elements T, such that:

e Vie[nlfi>al,—>ieT
eVienlfi<(a—e),—igT

Note that ¢ in the definition above serves as slack for the
algorithm to output some items which are not («, €)-heavy hitters,
but are “¢ close” to them. Typically smaller input e would cause the
algorithm to use more memory. Finding the k most frequent items
in the stream is the same as finding all («, £1)-heavy hitters, where
oy is the heaviness of the kth most frequent item. Note that being
£,-heavy is a weaker requirement than being ¢;-heavy: every
£1-heavy item is ¢,-heavy, but the other way around it is not
always the case. For example, consider the stream where all n
items of the dictionary appear only once. To be found in such a
stream, a £;-heavy hitter needs to appear more than en times for
some constant ¢, while an ¢,-heavy hitter needs to appear just
e4/n. Catching an item that appears in the stream significantly less
often is more difficult, thus finding all £,-heavy hitters is more
challenging than all ¢;.

The problem of finding heavy-hitters is well studied and there
are memory optimal algorithms for £; (Misra and Gries, 1982;
Monemizadeh and Woodruff, 2010) and £, (Chakrabarti et al.,
2010) heavy hitters, of which we are most interested in the latter.
Here we will describe a Count Sketch algorithm (Chakrabarti et
al., 2010) which finds (2e, £;)-heavy hitters O(1/e2log?(mn)) bits
of memory.

2.2. Count-Sketch algorithms

Consider a simplified stream with only one heavy item ', and
every other item i appears in the stream only once. Let h : [n] =
{—1, +1} be a hash function which flips a +1/—1 coin for every
item in the dictionary i € [n]. If we will go through the stream
S = {s1,...,sm} and maintain a counter ¢ = ¢ + h(s;), then
at the end of the stream, with high probability, ¢ will be equal
to the contribution of i': h(i')fy plus some small noise, while the
majority of non-heavy contributors will be canceled by each other.

Random bit

stream: (1D2AEEEERDEREER@DEEE

Basic case:

Dictionary: nnm’
1 2 -

1 O] 11| 1| it =l 71 ) <if <if il if < af 51 f <of <af a8
2| 2 gl ¢ 1232-3-43-2-3.456-7-6-5-6-7-6-7
9] al i c=-=7 - s(hh) =-1
4 2 al
hh: 5 7 1 We got an estimation of heavy hitter frequency,
Al @ and learned one bit of information about his ID
v\ 2 1

Fig. 2. Count Sketch subroutine on an example stream: each non-heavy item
appears twice, heavy hitter (5) appears 7 times, a random +1/—1 bit is assigned
to each item, the algorithm maintains the sum of the random bits, and the final
sum is an unbiased estimator of the heavy hitter frequency having the same sign as
its random bit.

sign bucket

heehes fashse table of counters

e )
L,

D CJC L J
DO, ONENE

Fig. 3. Count Sketch algorithm scheme: bucket hash to identify the counter to which
we should add the sign hash. Repeat t times to recover the IDs.

data stream

O(log n)

The absolute value of ¢ can be considered as an approximation
of the heavy item’s frequency. At the same time, the sign of ¢
coincides with the random bit assigned to heavy items; thus, it
helps us to reveal the ID of the heavy hitter by eliminating from
consideration all items of the opposite sign. Simply repeating the
experiment t = O(logn) times in parallel will reveal the entire ID
of the heavy item. However, if the number of repetitions would
be significantly smaller, we will face the problem of collisions,
i.e. there will be items with the same random bits as the heavy
item in all experiments. Thus we end up with many false positives
due to the indistinguishability of those items from the heavy hitter.
An example stream is depicted on Fig. 2. If our stream has k heavy
hitters, all we need to do is randomly distribute all items of the
dictionary into b = O(k) different substreams. Then with high
probability none of the O(k) substreams will have more than one
heavy hitter in it, thus for each stream we can apply the same
technique as before. On Fig. 3 you can see the high-level intuition
of both ideas described above:

1. Bucket hash to distribute items among b substreams (buck-
ets)

2. Sign hash to assign random bit to every update

3. Row of b counters to maintain the sum of random bits

4. t instances to recover the IDs.

Thus for each item update we need to calculate t bucket hashes
(specifying which substream/bucket this item belongs to) and t
sign hashes. We then update one counter in each row of the Count
Sketch table, which is t counters. In total the algorithm requires
t - b = O(logn) counters, which in turn requires O(log®n) bits of
memory. For simplicity, here and later, we assume that logm =
O(logn), i.e. in our application mesh size is at most polynomially
larger than the number of particles in the simulation).

All of the statements above can be proven formally (Charikar
et al, 2002). Here we only show that using such a counter ¢ pro-
vides us with an unbiased estimator f; = c - h(i) for the frequency



N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179 169

of the item i:

Vi: E(c - h(i)) = N+fi=F

Ejﬁ h(i)h

where the last equality is due to the 2-independence of hashing
h(-). However, the variance of such estimators might be quite large
and depends mainly on the second frequency moment of the other
items in the substream. At the same time we know that with high
probability there is only one heavy hitter in each substream and
we repeat the experiment t = O(log n) times. We take the median
of those estimates, which reduces the variance and boost the
probability for the final estimator to be within the approximation
error from the real value. Summarizing, we have a data structure
containing b x t = O(k) x O(log n) counters which maintain good
estimates for the frequencies of the top k most frequent items,
but we still have to find the values of their IDs. There are three
approaches to do this:

= D E(5-hG)h

i#j

1. Count Sketch with Full Search(CSFS)

When all stream updates are processed we estimate the
frequency of each possible item in the dictionary i € [n] and
find the top k most frequent.
pros: updates are fast and easy to run in parallel
cons: post-processing becomes very slow as the size of the
dictionary grows

2. Count Sketch with Heap(CSHe)

While processing each item, estimate its frequency and
maintain the heap with the top k most frequent items.
pros: post-processing takes zero time
cons: updates require extra log k time-steps to update the
heap

3. Count Sketch Hierarchical(CSHi)

Maintain two sketches, the first one for stream of super-
items S’ = {s;/1000} and the second one for the initial
stream S = {s;}. When all stream updates are processed,
we first estimate the frequency of each possible super-item
i € [n/1000] in the dictionary of S" and find the top k most
frequent super-items K’ = {hh}}};, then estimate the fre-
quencies of all potentially heavy items i € [n] s.t. i/1000 €
K’ and find the top k most frequent items. This way we
reduce the number of potentially heavy items to check. If
necessary, more than 2 layers might be created.
pros: post-processing is fast even for very large dictionaries
cons: update time is p times slower and the algorithm uses
o times more memory, where p is the number of layers.

CSFS contains set of b x t counters M, t hash functions hs
[n] — =1 and t hash functions h, : [n] — [b] which decides
which counter in the tth row element i corresponds to. In addition,
CSHe contains the heap of pairs (item,frequency), and CSHi con-
tains more than one sets of counters {M;}/_,. Let us define three
following operations:

e Add(M,s;):
Vi€ [t]: My, e+
e Estimate(M, j):
return median ({Mllhi,bU) . h,;s(j)}::]>
° UpdateHeap(ijJ)' .
ifGeH): Hjl=F
else if (H. top()f <f,)

= hi,s(sj)

H.pop(); H.push(j, f;);

The Add() operation updates all the counters, Estimate() out-
puts current approximation for the frequency of the element j and

UpdateHeap() maintains the top k most frequent items via updates
of (i, f;). The pseudo code for discussed functions is the following:

Algorithm 1 Count Sketch with Full Search(CSFS)
1: procedure INITIALIZATION
2: initialize b x t matrix of counters M with zeros
3: procedure PROCESSING THE STREAM
4 fors; e [m]={1,...,m}do
5 Add(M, s;)
6: procedure QUERYING THE DATA STRUCTURE
7
8
9

initialize a heap H of size k
for j € [n] do
f] Estimate(M, j);

10: UpdateHeap(H,J,jj-)
11: for i € [k] do

12: U, fj) Hpop )

13: return (1,fj)

Algorithm 2 Count Sketch with Heap(CSHe)
1: procedure INITIALIZATION
2: initialize b x t matrix of counters M with zeros
3: initialize a heap H of size k
4 procedure PROCESSING THE STREAM
5 fors; € [m] ={1,..., m}do
6 Add(M, s;)
7: f] = Estimate(M, s;)
8
9

UpdateHeap(H, s;, fj)
: procedure QUERYING THE DATA STRUCTURE
10: fori € [k] do
1 (. ) = H.pop()
12: return (j, f;)

Algorithm 3 Count Sketch Hierarchical(CSHi)

1: procedure INITIALIZATION

2: initialize two b x t matrices of counters M; and M, with
Zeros

3: procedure PROCESSING THE STREAM

4 fors; € [m] ={1,..., m}do

5 Add(My, s;/1000)

6: Add(M,, s;)

7

8

9

: procedure QUERYING THE DATA STRUCTURE
forj € [n/1000] do
f; = Estimate(My, j);

10: if f; > 6, then

11: forj’ € [1000j : 1000(j + 1)] do
12: fjv = Estimate(M,, j');

13: if fjv > 6, then

14: return (j', f;)

Similar construction is used in the algorithm Count Min
Sketch (Cormode and Muthukrishnan, 2005). The algorithm utilize
the similar logic and the same size table of counters, however for
each update it computes only one hash (to specify the bucket to
be updated) rather than two in Count Sketch, and output the mini-
mum over the estimates, rather than the median. Thus subroutines
“Add” and “Estimate” are different:

e Add(M, s;):
Vielt]: Mfshi.b(sj)+ =1



170

e Estimate(M, j):
. YA
return min ({Mi,hf.b(i) . h,-qs(])}iﬂ)

We compare Count Sketch and Count Min Sketch experimen-
tally. However the latter only finds £; heavy hitters, so we expect
it to be outperformed by Count Sketch.

2.3. Choosing the parameters for the algorithms

To calculate the parameters for the algorithm resulting in a cer-
tain desired number of heavy hitters we need to make an estimate
of the density distribution of counts in cells. Cosmological simu-
lations begin with an almost uniform lattice of particles. As time
goes on, gravity pulls particles toward tiny density fluctuations of
the early universe. As for example shown in Neyrinck et al. (2009),
the resulting density distribution can be well modeled with a log-
normal PDF.

1 —[In(1+48) +o2/2> 1
(2ro?)'/? 202 1454’

where § = p/p — 1is the over-density (p is the average density),
af(R) is the log-transformed variance of density in a sphere of
radius R. This formula can be used as a qualitative indication of the
particle distribution on a cubic grid as well, and was also assumed
in Liuetal.(2015). Based on this model, we compute the minimum
number of points in a “halo cell” (e.g., with over-density > 200,
the value corresponding to halos that have just virialized). We
denote this as N. Ideally we would then compute the square 2-
norm of all counts in cells, i.e, Z = Y. .., . (number of points
in c)?. However the claim of this paper is that this may not be
possible to do exactly, hence we assume that this value can also
be predicted by the log-normal distribution. Next, we compute
o« = N?/Z. This is the so-called heaviness, i.e., the counts in a
halo-cell is at least « fraction of the sum-of-square of the total
counts. It can be used to determine the t and b parameters used
later in this paper (in particular we shall setb ~ 1/a, t ~ logN).
We shall set the target number of heavy hitters we want to detect
as k ~ 1/a, i.e., the top-k heavy cells contain the heavy hitters.
By using standard cosmological parameters for o (see Liu et al.,
2015 for details), we can calculate that for cell size of &~ 1Mpc/h,
a ~ 1/1000. Note that we cannot determine the exact constants
for t and b since they are algorithm-dependent. We thus leave them
as tunable parameters.

Pin(s) =

3. Implementation

Paper Liu et al. (2015) presented a halo finding tool using
streaming algorithms that can be very useful even in systems with
as low as 1GB memory. However, the running time of that tool
was more than 8 h on a desktop for a relatively small dataset.
Here we provide a new algorithm based on an efficient GPU im-
plementation. The core part of the halo finding tool relies on the
implementation of the Count Sketch algorithm. All experiments
in this section were carried out on the CPU Intel Xeon X5650 @
2.67 GHz with 48 GB RAM and GPU Tesla C2050/C2070.

3.1. Count sketch implementation

The data flow of the Count Sketch algorithm consists of 5 basic
stages, i.e. for each item we need to do the following:

1. Compute cell ID from XYZ representation of the particle

2. Compute t bucket hashes and t sign hashes

3. Update t counters

4. Estimate the current frequency for the item (find median of
t updated counters)

5. Update the heap with current top-k if necessary

N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179

Below we consider different implementations of the Count
Sketch algorithm with the argument to architectural decisions

made:

1.

CPU:

Purely CPU version of the Count Sketch has all five stages
implemented on the CPU and described in details in Liu
et al. (2015). As depicted below, it takes 8.7 h to process
one snapshot of all particles from the Millennium dataset. In
the breakdown of the profiler output below, where integer
numbers denote the 5 stages of the Count Sketch algorithm
and fractions show proportional amounts of time spent on
that stage, we can see that the second stage is computa-
tionally the most expensive. The most straightforward im-
provement is to “outsource” this computation to the GPU.
We implemented this idea, and we describe it further below.

N o o n un
e & 4 & o«
°c o o© o o

Total time: 8.7 hours

. CPU + hashes on GPU

In this implementation, we are trying to “outsource” the
most time intensive operation — calculating hashes. Recall
that we need to compute 2t hashes. Aslongas t is a relatively
small number ( < 16), a naive parallelism which suggests
computing all hashes for each particle in t parallel threads,
will not provide a significant speed up due to the inability
to saturate all cores (~ 2000) of the graphics card. Thus
to improve performance even further, we need to make
use of data parallelism, which assumes computing hashes
for a batch of updates at the same time. Such an approach
is straightforward due to the fact that computing hashes
are identical operations required for all particles and those
operations can be performed independently. As illustrated
below, the GPU computes hashes almost for free, compared
to stages 3,4 and 5, and total time drops by 35%. The next
bottleneck is stage 3, during which the algorithm updates
counters. Although it is just 2t increments or decrements,
they happen at random places in the table of counters. This
makes it impossible to use CPU cache and memory access
becomes a bottleneck for the algorithm.

m © n ~ ~
SRS m ~ ~
o o o o o

Total time: 5.6 hours

. GPU + heap on CPU

Updating counters (stage 3) and estimating current fre-
quencies (stage 4) are two very connected stages. If we keep
them together we can significantly save on the number of
queries to the memory. Implementing a time efficient heap
(stage 5) on the GPU is quite challenging, due to hardware
features. Thus our next implementation takes advantage of
the CPU for maintaining the heap, while doing all other
computations and storing the table of counters on the GPU.
The basic data flow can be described as follows:

(a) CPU sends a batch of particles in XYZ representation
onto GPU

GPU processes all particles in parallel: compute cell
ID, compute hashes, update counters and estimate
frequencies

(c) GPU sends a batch of estimates back to the CPU

CPU maintains heap with top k items using estima-

tions from GPU



N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179 171

It can be seen below that adopting such an approach
pushed the total time of the algorithm down to 38 min. In
the breakdown of the profiler, one can see that updating the
heap became a new bottleneck for the algorithm.

n
«
o

Total time: 38 minutes

. GPU without heap

While heap on the CPU is quite efficient, it still slows
down the process quite seriously, especially when the top
k gets larger and reaches 10°. On large datasets this might
cause many items to have an update time close to logk.
Moreover, keeping the heap on the CPU forces the GPU to
send a lot of data back to the CPU. Avoiding this data transfer
would improve the slowest memory operation by a factor
of 2. Thus we decided to switch from Count Sketch with
Heap (CSHe) to Count Sketch with Full Search (CSES), both of
which were broadly described in the previous section. The
CSES algorithm works in two modes: update mode, which
encompasses calculating hashes and updating counters, and
estimate mode, which deals with estimating the frequency
for all cells and emitting the top k. The CSFS algorithm is first
invoked in update mode for the entire stream, and when
it finishes, the generated table of counters is used as input
to estimate mode. While in estimate mode, we still need
to maintain the top k items and do it on the GPU. This can
be done semi-dynamically by adding to the array all items
which are larger than some threshold. Then, if we have more
than k items, we will raise the threshold and rearrange ele-
ments in the array, deleting those items which do not satisfy
the new threshold. If we grow the threshold geometrically
we can guarantee that such “cleaning” step will not happen
too often. Such an approach cannot be applied to the CSHe
algorithm due to the possibility of two updates for the same
cell. In the figure below, the stream time, which includes
only the update mode, takes only 3.5 min, while the estimate
mode takes 25 min. The time of the estimate mode, i.e. query
time, linearly depends on the size of the mesh, due to the
necessity to estimate the frequency for every cell in the
mesh. For example, in the same experiment for the mesh
with 5 - 108 cells, query time would be less than 10s.

" 4 r}
s S 5
i} 2 5

Stream time: 3.5 minutes
Query time: 25 minutes
Total time: 28.5 minutes

. GPU hierarchy

As it was already discussed in the previous section, one
of the ways to decrease query time is to eliminate the full
search and implement it as a search tree instead. In our case,
the search tree (hierarchy) will contain only two layers. By
grouping cells together we can find the heavy super-cells
first (using a small mesh), then search for heavy cells only
inside heavy super-cells. We will merge cells by their IDs
in the top layer with a dictionary size of ~ 102, find top
¢ - k super-cells and find top k cells inside the selected heavy
super-cells, where ¢ > 1is a small constant. As can be seen
below, such an approach reduces query time from 25 min
down to 55 s. However, it requires twice the amount of
memory due to the need to store a table of counters for
each layer. It can also be observed that time performance
of the update mode gets worse, due to the necessity to

calculate twice as many hashes and update twice as many
counters. The total time of the algorithm is 5 min, which is
very impressive for the size of the dataset and the mesh. The
total performance improvement over the sequential CPU
implementation is more than 100-fold.

0.25

~
—
o

W 0.58

1 2

Stream time: 4 minutes
Query time: 55 seconds
Total time: 5 minutes

Here we will briefly introduce the key architectural decisions
in the implementation of the “GPU without heap” version of the
algorithm. While it is not the most efficient implementation, it is
easier to explain. At the same time, it makes it straightforward how
to extend it to the “hierarchical” version. The graphical processor is
a separate device that has many limiting features compared to the
CPU. In this project, all our experiments leverage the CUDA plat-
form to make use of the graphical processor’s capabilities (Nvidia,
2010).

A GeForce GTX 1080 has 20 multiprocessors (SM) each with
128 cores (threads). CUDA introduced a block/thread approach,
such that all computations are grouped into blocks, where one
block is always implemented on only one SM. Within a block, we
can specify how to share computation between threads. CUDA has
three layers of memory:

1. Global memory: accessible within the device and conven-
tionally is quite large (up to 8 GB). It is also the only type
of memory that can be used to copy to or from RAM. At the
same time, it is the slowest memory on the device.

2. Shared memory: accessible from within the block and
shared among all threads of that block. Shared memory is
~ 10 times faster than global memory, however, it is very
limited with ~ 48 — 64 KB per SM.

3. Registers: there are 2> 32-bit registers per SM. They are as
fast as shared memory, but visible only to the thread.

Storing a table of counters for Count Sketch is possible only
in global memory. Primarily, this is due to the large size of the
counters ~ 1 GB. Secondly, counters are accessed in random order,
which makes it impossible to store some localities in the shared
memory. In our implementation, each block is in charge of exactly
one update of the stream. In order to make an update, one needs
to calculate 2t hash functions and update t counters, thus we
distributed this work among t threads, each calculating two hashes
and updating one counter.

Note that to avoid memory access conflicts we need to use
atomic operations, which are present in CUDA. However we expect
the number of conflicts not to be very large: while the typical width
of the table is 107 counters and the maximum number requests is
bounded by the number of GPU threads (which is ~ 2000 in our
case), the probability of collision is negligible. In practice, we can
see that using non-atomic operations would give us at most a 10%-
fold gain in time performance. The pseudo code for each thread is
presented in Algorithm 4 .

After the stream is processed, we need to find the IDs of the
heavy hitters. As described earlier, we need to find an estimation
for each item in the dictionary. Here we will use the same approach
as for stream processing. Each block will be in charge of one cell.
Each thread will be in charge of an estimation based on one row of
Count Sketch counters. The procedure for each thread is described
in Algorithm 4 .

Note that we find the median using a very naive algorithm —for
each item of the array check if it is a median by definition. That is
thread i would be in charge of checking if the number of estimates



172 N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179

Algorithm 4 GPU thread code for Count Sketch
1: procedure UPDATE(cellID)
2: i = threadID;
M[i, h; p(cellID)]4+ = h; s(cellID)

3

4:

5: procedure ESTIMATE(cellID)

6: shared estimates|[t];

7 shared median;

8 j = threadID;

9:  f = MIi, hj »(cellD)] - h; s(celllD);

A

10: estimates[j] = f;

11: synchronize
12: int above, below = 0;
13: fori e [t]do
14: below + = (estimates[i] < f)
15: above + = (estimates[i] > f)
16:  if above <= t/2 and below <= t/2 then
17: median = f
18: synchronize
19: if j = 1 and median > 6 then
20: return median
4

0w

[U]

E

o

£,

[e)]

c

c

€1

4

1 2 4 8 16 32 64

Sampling rate

Fig. 4. Dependency of time performance on sampling rate.

smaller than estimates|[i] is equal to the number of estimates larger
than estimates[i], and reporting/recording the found media if so.
This is one of the reasons why all estimates should be reachable
by all threads, and thus should be stored in the shared memory.
While in sequential implementation this approach would take
0(t?) time steps, here we use t parallel threads, ending up with
time complexity of O(t).

To boost the time performance even further we can apply sam-
pling. However, one should not expect performance to improve
linearly with the sampling rate, because of necessity to compute
sampling hashes for all particles. The dependency of the time
performance on the sampling rate is depicted in Fig. 4. From that
graph, one can see that changing the subsampling rate from 8 to
16 is the last significant improvement in time performance.

4. Evaluation

In this paper, we present a tool which is capable of finding
up to 10° — 10° densest cells in state of the art cosmological
simulations for an arbitrary sized regular mesh. Moreover, the
proposed technique makes these procedures available even for
the desktop or a small server. In this section, we evaluate this
claim. We do this in two steps. In the first, which we call the
algorithmic evaluation we compare the rank order produced by the
heavy hitter algorithm directly to the exact results. In the second,
we perform a scientific evaluation and analyze what the effects
are of the randomized nature of the approximate algorithm to

various statistical measures of astrophysical interest; namely the
tail end of the counts-in-cell distribution and the spatial clustering
of excursion sets.

4.1. Evaluation setup

For testing and evaluation, we use the Millennium dataset
(Lemson et al., 2006) with 10 particles in a cube with side length
500 Mpc/h. The cell size in the grid is 0.1 Mpc/h, thus the total grid
contains 1.25 x 10" cells. Our goal is to find top 10° to 10° heaviest
cells. Those numbers are important to understand some decisions
in choosing the specific architecture of the implementation.

The data, originally stored in the GADGET (Springel, 2005) for-
mat, is reorganized, such that every 64 bits contains 3 coordinates
for one particle. This reorganization helps to reduce the number of
global memory writes inside the GPU. After such a reorganization
the entire dataset weights in at 80 GB. One of the time performance
bottlenecks in such settings is reading data from the hard drive.
We implemented a parallel I/O system that includes 3 SSDs and
24 HDDs without data replication, and this way we reduced the
pure I/O time from 15 min to 20 s. For comparison purposes all
experiments were accomplished on two different hardware con-
figurations:

1. AMD Phenom Il X4 965 @ 3.4 GHz, 16 GB RAM, GPU GeForce
GTX 1080.

2. Intel Xeon X5650 @ 2.67 GHz, 48 GB RAM, GPU Tesla
C2050/C2070.

4.2. Top-k cells

First, let us introduce different ways of finding the top k most
frequent cells with exact counts. Given a set of particles in the
simulation box and a regular grid of a fixed size we need to find
k cells of the grid containing the largest numbers of particles,
together with the IDs of those cells. The algorithm is required to
return an estimate of the number of particles in each cell. The most
straightforward solution to this problem is to count the number of
particles in each cell precisely. Such an exact algorithm might be
described as follows:

1. Create a counter for every cell in the grid

2. While making a pass through the dataset, update the cell
counters based on the position of the particles

3. Find k “heaviest” cells and return their IDs and exact counts

This solution breaks down in step 1 once the size of the mesh is
too large to store all counters in memory.

It is possible to remove the memory problem at the expense of
worsening time performance by making multiple passes over the
data, as in the following algorithm. Assuming the memory is about
a factor 1/ of the total size of the grid:

1. Create a counter for every cell in the range [i — n/A, i], and
use the basic algorithm above to find k “heaviest” cells in the
range and call them topK;.

2. Repeat previous step for all ranges i € {n/A,2n/A,...,n}
and find top k “heaviest” cells in U;topK;

This multi-pass trick becomes unfeasible when the size of the
mesh grows too large compared to the available memory, as it
would take too many passes over the data. However, to evaluate
how well our algorithm approximates the exact top k with counts,
we do need to have exact counts. That was one of the reasons
why Liu et al. (2015) restricted themselves to relatively small
meshes. In the current paper, we show results for meshes of sizes
108, 10" and 10'?. We will provide algorithmic evaluation only



N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179 173

107

10°
103

10!

Number of cells

102 103 104
Count

Fig. 5. Cell density distribution for the top 0.5 - 10° cells found by Count Sketch (in
green) and the top 107 cells found by exact counting (in blue). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

1.0 1.0
B 0.8 0.8 P
= o
$ 0.6/ | — Estimation error for all cells 06 >
> — Estimation error for found cells v
s — o
B4 Recovery rate 049
0] O
o o

0.2 0.2

O'OO 100000 200000 300000 400000 0.0

Rank of the exact count
(a) Cell size = 0.1 Mpc/h.

0.20 1.10
_ 015/ — Estimation error for all cells ‘,"‘. 1.05
o — Estimation error for found cells ' =
@ — Recovery rate ! >
go10 4~ {1.00 g
b= n >
o N e
0] T )
© 0.05 i/ Jo9s

$ohe
0.00 - 0.90

100000 200000 300000 400000

Rank of the exact count
(b) Cell size = 1 Mpc/h.

Fig. 6. Relative error vs. rank for (a) cell size 0.1 Mpc/h and (b) cell size
1 Mpc/h. Each experiment was carried 20 times. Dashed lines depict the maximum
and the minimum, while the solid line shows the average over those 20 runs for each
rank value. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

for 108, where the naive precise algorithm can be applied, and for
10!!, where we apply the trick described above and do 20 passes
over the dataset. For the mesh of size 10'2, algorithmic evaluation
is more challenging and therefore only the scientific evaluation will
be performed.

4.3. Evaluation of algorithm:

In this section, all experiments are for the mesh size 10!', Fig. 5
shows the distribution of exact cell counts for the top 107 cells.

Most experiments in this section use a Count Sketch with pa-
rameterst = 5,b = 107 and k = 5 - 10°. A motivation for these
values will be provided later. To understand how well the Count
Sketch approximates the exact counts and how well it reproduces
the rank order, we determine how the relative error grows with the
rank inside the top-k cells. To do so, for each cell i we find its count
¢; and rank r; in the output of an exact algorithm and its count ¢; in
the Count Sketch output. If cell i is not present in the Count Sketch

10°

101 Cell size 0.1Mpc
| -
g 102} Cell size IMpc
(3]
()
=107
=
©
& 10*

10 — Estimation error for all cells

— Estimation error for found cells
10° 10t 102 103 104 10°
)
Fig. 7. Relative error vs. § of the cell.
0.30
— ranks 0 - 100000

00 — ranks 100000 - 200000
3 0.20 — ranks 200000 - 300000
S — ranks 300000 - 400000
= e ranks 400000 - 500000
£ 0.10
o
& 0.05

0.00

0 50 100 150 200
Absolute error

Fig. 8. Distribution of absolute error for different ranks.

output, i.e. not among its top k heaviest cells, we define ¢; = 0.
Fig. 6(a) shows, in blue, the dependency on rank r; of the relative
error, defined as |¢; — ;| /c;. Here we use a bin size of 100 in i for
the averaging.

The relative error is shown in green and is determined for cells
which were among the top k for both the exact and the Count
Sketch counts. By ignoring the cells not found in the Count Sketch,
the relative error is artificially reduced. On the other hand, treating
those cells as empty ¢; = 0 pushes the error rate up significantly.
This overestimates the error compared to the count that might
have been determined had the Count Sketch included those cells,
for example by using a larger value of k.

As we can see, up to a rank of ~ 250,000 the algorithm works
reliably and has quite low approximation error. However, at higher
ranks the error grows rapidly. The main cause of this is the loss of
heavy cells, rather than a bad approximation of the counts for the
cells that were accepted by the Count Sketch. This is shown by the
fact that the green line remains low.

Fig. 7 shows the same graphs, but now plotted against the over-
density §; = (N; — (N))/(N) in cells. This quantity is more mean-
ingful from an astrophysical point of view compared to the rank. It
shows that the errors are stable for a large range of over-densities,
but very quickly shoot up near a threshold. That threshold depends
on the size of the cell as the comparison in Fig. 7 shows. Note that
the size of the cell for any specific dataset would influence the
number of particles in the each of the top-k heavy cells and £, norm
of the stream.

There is a straightforward reason why the approximate algo-
rithm loses so many heavy cells. Before we explain it we need point
out three important facts. First, Fig. 8 shows that the absolute error
is about constant for all cells. This can be understood from the
theoretical arguments in Chakrabarti et al.(2010), which state that
all estimations have an additive approximation error of £¢,, i.e. for
each cell, error does not depend on the count, but only on the ¢,
norm of the entire dataset. Second, as we can see from Fig. 5, the
number of cells is increasing exponentially with the count going



174 N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179

0.8/ 450
. 400
= 350
~ 300
25 250
| 200
.8 150
£ 100
50
3.0 35 4.0
lo.glONez
(a) Cell size = 0.1 Mpc/h.
0.6 900
050 . 800
Zﬁ 04l - 700
~ 600
_— 400
% 0.0 ) 300
S 200
02 100

3.5 4.0 4.5 5.0 55
lo.glONez

(b) Cell size = 1 Mpc/h.

Fig. 9. Count distortion for the cell size = 0.1 Mpc/h on the top and for the cell size
= 1Mpc/h on the bottom.

down (this is a property of the mass function in the cosmological
simulation). Third, for the cells with ranks near 250,000, the actual
count is ~ 820, and for the cells with ranks near 500,000 the actual
count is ~ 650. While searching for the top-k cells using Count
Sketch estimations we will face two types of errors:

type 1: false rejection of heavy cells caused by underestimation of
the true count due to approximation error

type 2: false exclusion of heavy cells caused by overestimation of
counts of cells below the top-k selection criterion.

We expect that having 250,000 elements with counts between
~ 650 and ~ 820 with an average approximation error ~ 80 (and
ranging up to 250) will cause significant loss of heavy cells in the
top k. We can see this in Fig. 6(a), which also depicts the recovery
rate. Thus we can conclude that the main cause for missing heavy
cells in the output is the fact that many cells have counts which
are relatively close to the approximation error of the algorithm.
We have tested this conclusion by running the algorithm for larger
cell sizes, with significantly larger expected counts. This increases
the typical |¢; — ¢ for cells i and j with small rank distance. The
result of an experiment with a cell size of 1 Mpc/h is shown in
Fig. 6(b), which corroborates our hypothesis. The difference in the
results for different mesh sizes is even more obvious in the relative
error vs. exact count graphs in Figs. 9(a) and (b). Note that closer to
the cut-off threshold the algorithm is tending to overestimate the
count rather then underestimate. This behavior is reasonable due
to the fact that only one-way error is passing the threshold test,
while all items with underestimated counts are discarded by the
algorithm.

We know that every ¢, heavy hitters algorithm catches all ¢;
heavy items and some items which are ¢,-heavy but not £;-heavy.
While asymptotically the space requirements for both algorithms
are the same, the time performance for ¢, algorithms is better in
practice than for the ¢, algorithms. It is therefore of interest to

1.2
1.0/| — Count Min Sketch
0.8l — Count Sketch
0.6
0.4
0.2
0.0

Relative error

100000 200000 300000

Rank of the exact count

400000

Fig. 10. Relative error for the counts in the output of the Count Sketch algorithm
and Count Min Sketch algorithm, cell size = 0.1 Mpc/h.

0.20

— Original stream
Sampling rate 2
— Sampling rate 4
Sampling rate 8
— Sampling rate 16
Sampling rate 32 A

o
-
v

Relative error
o
=
=]

o
o
o

=
o
S)

200000 300000 400000

Rank of the exact count

100000

Fig. 11. Relative error for the counts in the output of the Count Sketch algorithm
with different sampling rates, cell size = 1 Mpc/h.

0.6

o5l — Original stream
5 1| — sampling rate 2
b 0.4f Sampling rate 4
_g 0.3}| — Sampling rate 8
© 02l — Sampling rate 16
2 Sampling rate 32

0.1

0.0F

200000 300000 400000

Rank of the exact count

100000

Fig. 12. Relative error for the counts in the output of the Count Sketch algorithm
with different sampling rates, cell size = 0.1 Mpc/h.

compare the two in the specific application to our problem. To do
so we compared the Count Sketch with the intuitively similar £,
Count Min Sketch algorithm. Fig. 10 shows that the approximation
error differs significantly, with the Count Sketch algorithm giving
much more accurate results.

As it was mentioned earlier, a random sampling of the particles
before feeding them to the algorithm can significantly improve
the time performance of the entire procedure. To investigate the
influence of such sampling on the approximation error we carried
out experiments comparing different sampling rates for mesh sizes
1 Mpc/h and 0.1 Mpc/h. From Figs. 11 and 12 we can see that
in both cases a sampling rate of 1/16 still provides a tolerable
approximation error. It is important to recall that the time perfor-
mance does not scale linearly with the sampling rate due to the
need to compute the sampling hash function for each element. This
operation is comparable in time to processing the element through
the entire data flow without skipping the Count Sketch.

The crucial advantage of the algorithm presented here com-
pared to existing algorithms is the improvement in memory us-
age. Traditional algorithms often require complete snapshots to
be loaded into memory, which for state-of-the-art cosmological
simulations implies they cannot be analyzed on a small server or
even one desktop. For a cell size of 1 Mpc/h and a box size of
500 Mpc/h our mesh would contain only 1.25 - 108 cells which
require only 500 MB for a naive algorithm and provides an exact
solution. Such a low memory footprint makes the naive solution
feasible even for a laptop. For a cell size of 0.1 Mpc/hwith the same



N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179 175

Relative error
°© o o
» o o]

.
N}

&O:»,, P

100000

200000 300000
Rank of the exact count

400000

Fig. 13. Relative error for the counts in the output of the Count Sketch algorithm
with different internal parameters, cell size = 0.1 Mpc. Color is the height of the
CS table, and line type is the width of CS table: solid is 16 - 10, dashed is 8 - 106,
dash-dotted is 4 - 105, and dotted is 10° columns.

box size the memory requirements would be 1000x larger and
barely fit onto a mid-size server.

Next, we investigate the trade-off between time performance,
memory requirement and approximation error in more detail. The
Count Sketch data structure consists of t x b counters, which also
sets the memory requirements. The graph in Fig. 13 shows the
approximation error for different combinations of b and t.

The CS algorithm provides a tolerable error rate as long as
t x b > 64 - 10°, except for the case (t, b) = (4, 16 % 10%) which
has too small of a t, causing a high rate of false positives; we will
provide more details in the next paragraph. To better understand
the spectrum of possible error rates, we consider the rates at rank
400,000, where the frequencies of the cells are already quite low.
For all combinations of the parameters, the algorithms start losing
a significant fraction of correct heavy hitters near that value. The
following table shows these error rates as a function of b and t.

t 16 12 8 16 12 16 8 12
b/108 16 16 16 8 8 4 8 4
Error 0.27 0.34 0.42 0.47 051 0.64 0.67 0.72

Algorithms with a similar space usage (o t x b) have a similar
error rate, but the solution with the larger number of rows is
generally somewhat better. This can be easily explained using
a theoretical argument: the largest portion of the relative error
depicted is due to losing true heavy hitters; this happens due to
the fact that the algorithm finds “fake” heavy hitters, and those
push the true heavy hitters with a smaller frequency out of the
top group. A fake heavy hitter can appear only if it collides with
some other true heavy hitter in at least half of the rows. Thus, the
expected number of collisions can be computed as a total number
of different items n times the probability to have collided with at
least one heavy hitter, which is k/b, and then this should happen
in t/2 independent experiments. Therefore expected number of
collisions is n(k/b)"/?. From that dependency, we can see that under
fixed t x b, the larger value of t is always better. For example,
if we want to find only one heavy hitter and minimize the space
usage which is proportional to t x b, then the most efficient way
is to take b = 2 and t = clogn. However, this would force us to
increment or decrement O(log n) counters for each update, which
is much slower, O(log,n) with b > 2. Theoretically running Count
Sketch with t = 8 would be twice slower than with t" = 4, due to
the need to compute twice more hashes and increment twice more
counters. In practice, we saw almost the same, mostly due to the
fact that computing hashes and updating counters takes around
75% of the total running time in the “GPU hierarchy” implemen-
tation. From these examples, we can understand the nature of the
space versus time trade-off, and we can see this behavior in the
graph and in the table for the pairs 8 x 16 - 10°> and 16 x 8 - 10°,
16x4-10° and 8 x 8-10° and others. Note that increasing both b and

5
e, X
.
. = .
O .l i ‘
. IS 810
e % . o °
-
L““" : ! .

% " 8
Fig. 14. Finding halos from heavy cells exactly by running any offline in-memory
algorithm on the subset of particles belonging to the top heaviest cells.

.
.
$a%e

Ji

t will provide better approximation and lower false positive rate,
however increasing t would significantly push time performance
and space (if we will keep b fixed) up, while increasing b will not
influence the time performance but still push the memory usage.
In all our experiments we were limited by the memory of the GPU,
which for both devices was only 8 GB.

4.4. Evaluation of the model:

Here we will evaluate the quality of the model for two specific
problems: finding halos and the analysis of excursion sets. To do so,
we will try to solve the problem using Count Sketch and its ability
to find top k densest cells in the simulation box.

In Liu et al. (2015) authors showed a simple solution for using
the heavy cells to find heavy clusters by making a second pass
through the dataset and storing locally the particles which belong
to one of the heavy cells. This is possible because the number of
particles in those heavy cells is much smaller than that of the entire
dataset, and we can even store them in main memory. This implies
that any traditional in-memory algorithm can be applied offline.
This scheme is illustrated in Fig. 14. In this paper, we will not repeat
the entire chain of this computation, but will simply check the
number of halos contained in the top k cells.

It turns out that to find the centers of the 10°> most massive halos
we need to find the ~ 1.8 - 10° heavy cells, i.e. the centers of the
top 10° most massive halos are contained in the top ~ 1.8 - 10°
heavy cells. Then running an offline in-memory halo finder, such
as Friends of Friends (Davis et al., 1985) or any other halo finder
of choice (Knebe et al., 2011), on the particles located only inside
the top 1.8 - 10° heavy cells (and it’s immediate neighbors) will
provide us with more precise halo centers and mass distribution for
each halo. We emphasize on the fact that in current manuscript we
find only the centers of the haloes and leave finding actual borders
and mass distribution for future research. Hence the streaming ap-
proach can be considered as a sieve step, allowing us to efficiently
remove the particles which are not in the largest halos from further
consideration. The resulting filtered dataset is significantly smaller
in size, thus one can apply offline algorithms. In Liu et al. (2015)
we showed how to find 10? largest halos while working with a
dataset of size 10°: find the top 2- 103 heavy cells and run an offline
algorithm on the particles that are located only inside the heavy
cells.

Applying the same approach to find the top 10® heaviest cells
in the Millennium dataset containing 10'° particles would be chal-
lenging, but still manageable:

1. top 10° haloes contain ~ 3.8 - 10° particles = 45 GB;
2. top 10° haloes contain ~ 2.5 - 10° particles = 31 GB;
3. top 10* haloes contain ~ 1.4 - 10° particles = 16 GB;
4. top 103 haloes contain ~ 0.8 - 10° particles = 9 GB.

Thus we indeed can afford to run offline in-memory halo finder
and locate ~ 10° haloes on a desktop or a small size server. At
the first glance, it seems that the memory gain is not significant:
initial dataset weights ~ 90 GB, i.e. for the top ~ 10° haloes



176 N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179

627000
—  CS(426099)
EX (544538)

4>20000
—  CS(71045)
EX (70802)

Qi 3
vy @ p
o §> 40000 5> 60000
CS (12212) — CS (3146)
w0’ %o EX (12197) e®e EX (3155)

Fig. 15. Comparison of the 2-point correlation functions of excursion sets determined using the exact counts and the Count Sketch results for 4 over-density levels. The
numbers in parentheses indicate the number of cells that was found and used i the calculation of . Clearly the results of applying the spatial statistic to the Count Sketch
result is equivalent to that of the exact counts. The radius R is in the natural, co-moving units of the simulations, Mpc /h.

the gain is at most factor of 3 (factor of 5 for the top 10%), at
the cost of introduced approximation and non-zero probability
of failure. However, initial dataset does not provide an option of
running offline halo finder sequentially in several passes on the
machine with very low memory usage. Our filtering step provide
an opportunity to run it on the machine with just 2 GB of memory,
the algorithm will require make more passes over the data, i.e. to
find the top 10* haloes one will need to make ~ 10 passes while
working under 2 GB memory restriction.

We should take into account that number of particles in each
halo is growing with the size of the dataset. Additionally, using
10 times larger top will significantly increase the total number of
particles one need to store in the memory, while applying offline
algorithm. Hence, finding the top 10° haloes on the Millennium
XXL dataset with 3-10'1 particles is less feasible as a low-memory
solution:

top 10° haloes contain ~ 31 - 10° particles = 372 GB;
top 10° haloes contain ~ 9 - 10° particles = 108 GB;
top 104 haloes contain ~ 2 - 10° particles = 24 GB;
top 102 haloes contain ~ 0.4 - 10° particles = 4.8 GB.

=

From the list above we can see that to keep everything on the
small server, proposed approach can help to find at most top 10*
haloes in one extra pass or 10° haloes in ~ 8 — 10 passes, which we
state as a result in the current paper and keep the further improve-
ment as a subject for future investigation. Note that compression
level for the top 10° particles is 33 times (148 times for the top
10* haloes). However requirement to make more than 2 passes
and utilize ~ 24 GB on the second pass is very restrictive and
better techniques should be proposed for after-processing. Among
the most straight forward solutions are sampling and applying
streaming approach hierarchically for different cell sizes.

As described in the introduction, a connection can be made be-
tween the heavy hitters in the collection of grid cells and excursion
sets of the density field. We want to determine spatial clustering
properties of these over-dense cells and determine if the algorithm
by which this set is determined has an influence on the spatial
statistics. To do this we have extracted the locations of heavy hitter

grid cells in the Count Sketch result and determined their cluster-
ing properties using the two-point correlation function &£(R) (e.g.
Peebles, 1980). We compare this to the 2-pt function calculated on
the cells in the exact excursion set. Adopted cell size is 0.1 Mpc/h.
As the results in Fig. 15 show, for the over-densities that can be
reliably probed with the streaming algorithm the exact and Count
Sketch results are indistinguishable. The main deviations are due
to discreteness effects for the smaller high-density samples. As an
aside, we note that in Fig. 16, the higher-density cells cluster more
strongly than the lower-density cells, as expected (Kaiser, 1984).

4.5. Millennium XXL

Running on the Millennium dataset, we could still find the “top-
k” densest cells exactly using quite moderate time and memory.
Even when the full density grid was too large to fit in memory,
we could make multiple passes over the data and determine parts
of the grid. Those experiments are necessary for evaluating the
precision of the output from the randomized algorithm, but on our
medium sized server they take about a day to complete.

In this section, we describe an experiment on the results of the
Millennium XXL simulation (Angulo et al., 2012), which contains
around 300 billion particles, and hence is 30 times larger than the
Millennium dataset. Its box size is 3 Gpc and we will use a cell size
of 0.2 Mpc. Thus our regular mesh would contain ~ 3.4 - 102 cells
and need 13.5 TB of RAM to be kept in memory completely (using
4-byte integer counters). While this is beyond the means of most
clusters, our algorithm will be able to solve the problem with a
memory footprint under 4 GB while keeping the lapse time under
an hour.

Before we describe some technical details of the experiment, we
need to clarify the process of evaluation, as we are now not able to
produce exact counts in a reasonable amount of time. Hence, we
consider only the following two ways for evaluating the accuracy
of our results:

1. From the size of the exact counts
While we cannot determine the top-k most dense cells
precisely, we can still make a second pass over the data and



N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179 177

10°
z
\\ — 7000 (426099)
" \% — 10000 (291014)
10 — 20000 (71045)
—— 30000 (26833)
— 40000 (12212)
R 50000 (6057)
10 — 60000 (3146)
= N
v \x\
10° \\
N
\
1072
M
\\‘. |
\ |
\/
10°* |
10t 10° 10! 102

R

Fig. 16. Two-point correlation functions of excursion sets, defined as sets of cells
with a certain lower limit on the over-density. In this plot the results of the count-
sketch algorithm for detecting heavy-hitters is used to determine the excursion
sets. The number next to the line segments in the legend gives the over-density,
the numbers in parentheses indicate the number of cells at that over-density. The
radius R is in the natural, co-moving units of the simulations, Mpc /h.

maintain counters for some subset of cells. We will use this
opportunity to evaluate the approximation error from Count
Sketch, but only for those particles which were output by the
algorithm. Note that this verification is not as reliable as the
one used earlier in this paper because it does not catch any
false negative items, i.e. the items which are supposed to be
in the top-k, but were lost by the algorithm. But this way we
can evaluate the approximation error, and get a preliminary
estimation of the false positive rate.
2. From astrophysics

Running a simulation with a larger number of particles
provides us with more stable quantities. While we do not
have any way to verify them precisely, we know that the
spatial statistics should be more or less close to those from
smaller size simulations. This evaluation is more qualitative
than quantitative, but it will definitely be alarming if serious
deviations are present.

We ran the “GPU hierarchical” version of the Count Sketch. We
then made a second pass over the dataset where we determined
the exact counts, restricted to the cells found in the first pass.
While we do not know the cutoff frequency for the top-k, we can
still approximately estimate the false positive rate: if all cells in
the top-k output by Count Sketch have frequencies larger than
1700, then every item with a true frequency less than 100 would
be considered as false positive. Initially, we set the same number
of counters in the Count Sketch table as before: 16 rows and
107 columns. However the result was quite noisy and had a very
high rate of false positives: around 60,000 had a frequency lower
than 100, while the top-k frequency cutoff is around 1700. Then
we ran Count Sketch with 24 rows, and the number of collisions
dropped accordingly to approximately 800. The graph depicting
relative error of the Count Sketch can be observed in Fig. 17. It is
evident that approximation error is more than twice that of the
experiment with the Millennium dataset (refer to Fig. 6(a)). This
can be explained by the size of the dataset, as long as algorithm’s

+ 0.25
e

0 100000 200000 300000
Rank of the exact count

400000

Fig. 17. Relative error for the counts in output of Count Sketch algorithm for
Millennium XXL dataset.

107
10° — MR
10° eee XXL

103

10° 10! 102
R

Fig. 18. Comparison of CS 2-pt correlation function for excursion sets in 0.2 Mpc
cells with § > 20,000 for the XXL (dots) compared to the exact result for the
Millennium run. The two results are compatible with each other, with deviations
explained by discreteness effects in the much sparser Millennium result. The radius
R is in the natural, co-moving units of the simulations, Mpc/h.

guaranteed approximation error is ££;, then with ¢, for the XXL
dataset the error is significantly larger. If the further astrophysics
analysis will require better approximation error we can increase
the width of the Count Sketch table.

In Fig. 18 we compare the two-point correlation function for all
cells with § > 20,000 for both Millennium and Millennium XXL.
For the Millennium XXL result we use the Count Sketch, for the
Millennium we use the exact over-densities, both in cells of size
0.2 Mpc. The XXL has a volume that is 216 x the volume of the
Millennium run and hence much better statistics. Nevertheless, the
results are compatible with each other.

We ran the experiment on the small server with the following
characteristics: Intel Xeon X5650 @ 2.67 GHz, 48 GB RAM, GPU
Tesla C2050/C2070. Our I/O was based on 4 Raid-0 volumes of 6
hard drives each. The total time for the I/O is 30 min. Due to the
fact that /O is implemented in parallel, if the time of the algorithm
is higher than I/O, then 1/0 is “for free”, this happens due to the fact
that we can read a new portion of the data from the disk, while
the GPU is still processing the previous portion. Our algorithm
time on the Tesla card is 8 h. In contrast, on the GTX1080, the
estimated running time is expected to be less than an hour, which
we calculated by running a small portion of the data. However, we
were not able to carry out the entire experiment on the GTX1080,
lacking a server with this card, and parallel I/O with a significant
amount of storage.

For comparison, had we calculated the exact density field on a
grid we would have required about 13.5 TB of memory. Alterna-
tively, on the machine with 48 GB RAM, we had need about 280
passes over the data to calculate the exact field in chunks small
enough to fit on the machine.



178 N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179

5. Conclusion

In this paper, we have carried out a detailed investigation of
applying streaming algorithms to cosmological simulations. Our
first proof-of-concept results, introduced in Liu et al. (2015),
uncovered the ability of so-called “heavy hitter” streaming al-
gorithms to determine density statistics, making only one pass
over the data. In the current paper, we pushed the limits of these
algorithms toward datasets with sizes up to ~ 10'2 particles,
while still keeping all computations on a single server, or in some
cases, even a desktop. To make this possible, we implemented the
Count Sketch algorithm in a batch streaming setting and ported
it to a graphics processor (GPU) using the CUDA environment. This
approach significantly improves the time performance while using
much less memory, enabling the possibility of processing very
large datasets.

We have benchmarked several implementations, varying time,
precision, and memory usage. We conclude that GPUs offer a
perfect infrastructure for supporting the batch streaming model.
Note that in the current project, while all experiments were carried
out on a single GPU, we did not change the Count Sketch data struc-
ture. Thus, two or more sketches computed on different nodes, if
merged, will approximate the cell counts for the combined stream
of updates. Therefore, this approach can be used in distributed
settings, where each node will have its own stream of updates
and its own data sketch, and at the end all the sketches can be
summed to find the heaviest cells. An implementation of this
algorithm on distributed storage, using several GPUs, is crucial due
to 10 being the main bottleneck and will be considered in future
work. Additionally, we will investigate the application of other
classic streaming algorithms in a batch streaming model, on the
GPU. Among other future directions, we are considering structure
finding in 6D space, where each particle is described by its velocity
and location; we are also considering hierarchical sketch-based
clustering, to find the top-k heaviest cells in meshes of different
sizes in parallel.

Though the emphasis in this paper is on the technical applica-
tion of these streaming algorithms in a new context, we showed,
where possible, that these randomized algorithms provide results
consistent with their exact counterparts. In particular, we can
reproduce the positions of the most massive clusters and the two-
point correlation function of highly non-linear excursion sets. The
nature of these algorithms currently precludes the possibility of
sampling the full density field or the full halo multiplicity function,
though we are working on algorithms to at least approximate those
statistics.

Acknowledgments

The first, second and third author’s materials are based upon
work supported in part by the National Science Foundation Grants
IIS- 1447639, EAGER CCF- 1650041. The fourth, fifth and ninth
author’s materials are based upon work supported in part by
the National Science Foundation Grants IIS- 1447639. The sixth
author thanks the UK Science and Technology Facilities Council
(ST/LO0075X/1) for financial support. The eighth author’s material
is based upon work supported in part by the National Science
Foundation under Grants No. 1447639, 1650041 and 1652257,
Cisco faculty award, and by the ONR Award N00014-18-1-2364.

References

Alon, Noga, Matias, Yossi, Szegedy, Mario, 1996. The space complexity of approxi-
mating the frequency moments. In: Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing. ACM, pp. 20-29.

Angulo, RE., Springel, V., White, S.D.M,, Jenkins, A., Baugh, C.M., Frenk, C.S., 2012.
Scaling relations for galaxy clusters in the Millennium-XXL simulation. Mon.
Not. R. Astron. Soc. 426 (3), 2046-2062.

Bardeen, James M., Bond, ].R., Kaiser, Nick, Szalay, A.S., 1986. The statistics of peaks
of Gaussian random fields. Astrophys. J. 304, 15-61.

Beringer, Jiirgen, Hiillermeier, Eyke, 2007. Efficient instance-based learning on data
streams. Intell. Data Anal. 11 (6), 627-650.

Chakrabarti, Amit, Cormode, Graham, McGregor, Andrew, 2010. A near-optimal
algorithm for estimating the entropy of a stream. ACM Trans. Algorith. (TALG)
6(3),51.

Charikar, Moses, Chen, Kevin, Farach-Colton, Martin, 2002. Finding frequent items
in data streams. In: International Colloquium on Automata, Languages, and
Programming. Springer, pp. 693-703.

Cormode, Graham, Muthukrishnan, Shan, 2005. An improved data stream sum-
mary: the count-min sketch and its applications. J. Algorithms 55 (1), 58-75.

Davis, Marc, Efstathiou, George, Frenk, Carlos S., White, Simon D.M., 1985. The
evolution of large-scale structure in a universe dominated by cold dark matter.
Astrophys. J. 292, 371-394.

Falck, B.L., Neyrinck, M.C., Szalay, A.S., 2012. ORIGAMI: Delineating Halos using
phase-space folds. Astrophys. J. 754, 126 arXiv:1201.2353.

Ghashami, Mina, Liberty, Edo, Phillips, Jeff M., Woodruff, David P., 2016. Frequent
directions: Simple and deterministic matrix sketching. SIAM ]. Comput. 45 (5),
1762-1792.

Gill, Stuart PD, Knebe, Alexander, Gibson, Brad K, 2004. The evolution of substru-
cture-1. A new identification method. Mon. Not. R. Astron. Soc. 351 (2),
399-409.

Indyk, Piotr, Woodruff, David, 2005. Optimal approximations of the frequency
moments of data streams. In: Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing. ACM, pp. 202-208.

Kaiser, Nick, 1984. On the spatial correlations of Abell clusters. Astrophys. J. 284,
L9-L12.

Karttunen, Hannu, Kréger, Pekka, Oja, Heikki, Poutanen, Markku, Donner, Karl Johan,
2016. Fundamental Astronomy. Springer.

Klypin, Anatoly, Holtzman, Jon, Particle-Mesh code for cosmological simulations,
1997, arXiv preprint astro-ph/9712217.

Knebe, Alexander, Knollmann, Steffen R., Muldrew, Stuart I, Pearce, Frazer R,
Aragon-Calvo, Miguel Angel, Ascasibar, Yago, Behroozi, Peter S., Ceverino,
Daniel, Colombi, Stephane, Diemand, Juerg, et al., 2011. Haloes gone MAD: the
halo-finder comparison project. Mon. Not. R. Astron. Soc. 415 (3), 2293-2318.

Knebe, Alexander, Pearce, Frazer R., Lux, Hanni, Ascasibar, Yago, Behroozi, Peter,
Casado, Javier, Moran, Christine Corbett, Diemand, Juerg, Dolag, Klaus,
Dominguez-Tenreiro, Rosa, et al., 2013. Structure finding in cosmological sim-
ulations: The state of affairs. Mon. Not. R. Astron. Soc. 435 (2), 1618-1658.

Knollmann, Steffen R, Knebe, Alexander, 2009. AHF: Amiga’s halo finder. Astrophys.
J. Suppl. Ser. 182 (2), 608.

Lall, Ashwin, Sekar, Vyas, Ogihara, Mitsunori, Xu, Jun, Zhang, Hui, 2006. Data
streaming algorithms for estimating entropy of network traffic. In: Proceedings
of the Joint International Conference on Measurement and Modeling of Com-
puter Systems, SIGMETRICS '06/Performance '06. ACM, New York, NY, USA,
pp. 145-156.

Lemson, Gerard, et al., Halo and galaxy formation histories from the millennium
simulation: public release of a vo-oriented and sql-queryable database for
studying the evolution of galaxies in the lambdacdm cosmogony, 2006, arXiv
preprint astro-ph/0608019.

Liberty, Edo, 2013. Simple and deterministic matrix sketching. In: Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, pp. 581-588.

Liu, Zaoxing, Ivkin, Nikita, Yang, Lin, Neyrinck, Mark, Lemson, Gerard, Szalay,
Alexander, Braverman, Vladimir, Budavari, Tamas, Burns, Randal, Wang, Xin,
2015. Streaming algorithms for halo finders. In: e-Science (e-Science), 2015
IEEE 11th International Conference on. IEEE, pp. 342-351.

Liu, Zaoxing, Manousis, Antonis, Vorsanger, Gregory, Sekar, Vyas, Braverman,
Vladimir, 2016. One sketch to rule them all: rethinking network flow moni-
toring with univmon. In: Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM '16. ACM, New York, NY, USA, pp. 101-114.

Misra, Jayadev, Gries, David, 1982. Finding repeated elements. Sci. Comput. Pro-
gramm. 2 (2), 143-152.

Monemizadeh, Morteza, Woodruff, David P.,2010. 1-pass relative-error Ip-sampling
with applications. In: Proceedings of the twenty-first annual ACM-SIAM sym-
posium on Discrete Algorithms. SIAM, pp. 1143-1160.

Muthukrishnan, Shanmugavelayutham, et al., 2005. Data streams: algorithms and
applications. Found. Trends® Theoret. Comput. Sci. 1(2), 117-236.

Neyrinck, Mark, et al., 2009. Rejuvenating the matter power spectrum: Restoring
information with a logarithmic density mapping. Agron. J. 698, L90-L93.

Neyrinck, Mark C., Gnedin, Nickolay Y., Hamilton, Andrew J.S., 2005. VOBOZ: An
almost-parameter-free halo-finding algorithm. Mon. Not. R. Astron. Soc. 356 (4),
1222-1232.

Nvidia, CUDA, Programming guide, 2010.

Peebles, Phillip James Edwin, 1980. The Large-Scale Structure of the Universe.
Princeton university press.

Planelles, Susana, Quilis, Vicent, 2010. ASOHF: A new adaptive spherical overdensity
halo finder. Astron. Astrophys. 519, A94.


http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb1
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb2
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb3
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb4
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb5
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb6
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb7
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb8
http://arxiv.org/abs/1201.2353
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb10
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb11
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb12
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb13
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb14
http://arxiv.org/abs/astro-ph/9712217
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb16
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb17
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb18
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb19
http://arxiv.org/abs/astro-ph/0608019
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb21
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb22
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb23
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb24
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb25
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb26
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb27
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb28
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb30
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb31

N. Ivkin et al. / Astronomy and Computing 23 (2018) 166-179 179

Potter, Douglas, Stadel, Joachim, Teyssier, Romain, 2017. Pkdgrav3: beyond trillion
particle cosmological simulations for the next era of galaxy surveys. Comput.
Astrophys. Cosmol. 4 (1), 2.

Rusu, Florin, Dobra, Alin, 2007. Statistical analysis of sketch estimators. In: Pro-
ceedings of the 2007 ACM SIGMOD International Conference on Management
of Data, SIGMOD '07. ACM, New York, NY, USA, pp. 187-198.

Spiegel, Joshua, Polyzotis, Neoklis, 2006. Graph-based synopses for relational se-
lectivity estimation. In: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, SIGMOD '06. ACM, New York, NY, USA,
pp. 205-216.

Springel, Volker, 2005. The cosmological simulation code gadget-2. Mon. Not. R.
Astron. Soc. 364 (4), 1105-1134.

Sutter, P.M., Ricker, P.M., 2010. Examining subgrid models of supermassive black
holes in cosmological simulation. Astrophys. J. 723 (2), 1308.

White, Martin, Hernquist, Lars, Springel, Volker, 2001. The halo model and numer-
ical simulations. Astrophys. J. Lett. 550 (2), L129.

Zhang, Yin, Singh, Sumeet, Sen, Subhabrata, Duffield, Nick, Lund, Carsten, 2004.
Online identification of hierarchical heavy hitters: algorithms, evaluation, and
applications. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, IMC '04. ACM, New York, NY, USA, pp. 101-114.

Zhao, Haiquan (Chuck), Lall, Ashwin, Ogihara, Mitsunori, Spatscheck, Oliver, Wang,
Jia, Xu, Jun, 2007. A data streaming algorithm for estimating entropies of
od flows. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, IMC '07. ACM, New York, NY, USA, pp. 279-290.


http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb32
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb33
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb34
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb35
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb36
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb37
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb38
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39
http://refhub.elsevier.com/S2213-1337(17)30122-1/sb39

	Scalable streaming tools for analyzing N-body simulations: Finding halos and investigating excursion sets in one pass 
	Introduction
	Methodology
	Streaming model
	Count-Sketch algorithms
	Choosing the parameters for the algorithms

	Implementation
	Count sketch implementation

	Evaluation
	Evaluation setup
	Top-k cells
	Evaluation of algorithm:
	Evaluation of the model:
	Millennium XXL

	Conclusion
	Acknowledgments
	References


