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Need for network telemetry in software switches

Where: Virtual switches, White-box switches, DPDK, FD.io...
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Need for network telemetry in software switches

Where: Virtual switches, White-box switches, DPDK, FD.io ...

p Traffic Engineering p Anomaly Detection
"Flow Size Distribution” “Entropy”, “Traffic Changes”

£ Worm Detection £ Accounting
‘SuperSpreaders’ "Heavy Hitters”

Requirements: Performance, Accuracy



Sketches appear to be a promising alternative
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« Require small memory with bounded error rates.
« Guaranteed fidelity with arbitrary workloads.
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Reality: Sketches in software switches not performant!
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« Single core 100% CPU.
« Cannot meet high line-rates: < 10Gbps



Existing proposals to speed up sketches?

 SketchVisor [SiIGcOMM'171:

Performance increase (still < 10 Mpps)
X Not robust on arbitrary workloads.

e Elastic Sketch I[siccoMM'18]:

Performance increase (> 14.8 Mpps)
X Not robust on arbitrary workloads.

e R-HHH [siccoMM71:

Performance increase (up to 14.8 Mpps)
X Not general towards many tasks.



NitroSketch in a nutshell

A software-switch based sketching framework that simultaneously has:
- Performance: line-rate (40G) with minimal CPU and memory.
-1 Generality: support a variety of measurement tasks.

-1 Robustness: accuracy guarantees for any workload.



NitroSketch Approach

- Systematically analyze the performance bottlenecks.

- Learn key insights from strawman solutions (sampling, one-level
hash).

- Reformulate sketching for software from first principles
- Tradeoff slight memory increase, Novel counter sampling rather than packet.



Outline for this talk
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- Understanding bottlenecks

- Design Insights
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Outline for this talk

- Understanding bottlenecks
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Bottleneck Analysis

- Performance benchmarks using Intel VTune Amplifier.

- Hotspots for UnivMon [SIGCOMM'16].

Func/Call Stack Description CPU Time
xxhash32 hash computations 37.29%
__memcpy memcpy and counter update 15.91%
heap_find heap operation 10.71%
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Bottleneck B1: Many hash computations per packet
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B1: Many (independent) hash computations per packet (~37% CPU)
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Bottleneck B2: Many counter updates per packet
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Bottleneck B3: Tracking keys is also expensive
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B3: Expensive flow key data structure operations

(e.g., heap (~10% CPU))
14



Outline for this talk

- Motivation

- Understanding bottlenecks

- Design Insights
- Strawman ideas
. Our proposals

. Evaluation

. Conclusions and future work

15



- Design Insights
- Strawman ideas
. Our proposals

Outline for this talk
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Strawman 1. Reduce hashes by using single array?

Traditional Single larger hash array

z
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CPU cache DRAM

Pros: Simple idea to reduce hash computations.

Cons:
- Memory increase may cause cache misses.
- Even one lightweight hash per packet may be high!
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Strawman 2: Reduce updates by packet sampling?
e T oy
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Pros: Simple idea to reduce hash/counter updates.

Cons:
- Memory increase may cause cache misses.
- Even one coin flip per packet may be high!

- Incurs accuracy-convergence tradeoff.
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Key lessons from strawman solutions

« Can tradeoff memory for CPU reduction
But need to ensure cache residency

« Sampling is promising
But need to manage per-packet ops and convergence
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How do we tackle this?

« We trade memory for CPU reduction
while ensuring cache residency
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Key ldea: Sample counter updates not packets!
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Key ldea: Sample counter updates not packets!

Multiple independent hashes key for memory efficiency
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- Per-packet hash/counter updates can be reduced to less than one.
- Memory increase by O(1/p). Much better than uniform packet sampling.
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How do we tackle this?

« Sampling works!

but need to manage per-packet ops and convergence
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Trick: Geometric sampling to reduce per-packet ops

Uniform sampling > 3 4 5
with p F 0 0 T

ZES Coin flip Coin flip Coin flip Coin flip Coin flip Coin flip
withp withp withp withp withp with P
Equivalent
N F 2 3 4 5 F
Geometric sampling .
with p Sampled. ‘E Interval is 4 , Sampled.
Flip a coin with p Skipped Flip a coin for next
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Trick: Adapt sampling rate to manage convergence

O Sampling-based approach needs to receive enough packets
before becoming accurate (need convergence).

d When packet rate isn't high,
1 we can sample more packets = faster converge

Packet

I

Datarate Adaptive

Adaptively adjusting sampling rate:

Packet rate: iMpps, sample with 1/1

Packet rate: 8Mpps, sample with 1/8

Packet rate: 64Mpps, sample with 1/64
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NitroSketch: Putting it together

Update with +1/p

Select next 21

Skipped

OOV W (N |-

-

Update with +1/p

Adjust the sampling rate when needed

3

Array 1
Array 2
Array 3
Array 4

Trade small space for speedup on CPU
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NitroSketch is theoretically robust!

e NitroSketch offers accuracy guarantees for a variety of
measurement tasks.

Our theoretical analysis holds after receiving enough packets.

e In practice, we need ~2-4 Mil packets to converge.

Check out our paper for more details!
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NitroSketch Inline Implementation
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Other versions: FD.io-VPP, BESS
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NitroSketch achieves 40G on software switches

e [wo threads with OVS-DPDK, VPP and BESS on Intel XL710 NIC.
e NitroSketch uses no extra cores.
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NitroSketch can achieve higher throughput

e In-memory single thread (Intel E5 2620 v4 CPU)
e Algorithms use 5~10 independent hash functions
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Guaranteed accuracy after convergence

e After received 2~4 Mil packets, Sketches achieve comparable
(or better) accuracy as the original sketches.
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NitroSketch outforms other solutions

e NitroSketch achieves higher accuracy when converged.
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Conclusions

Sketching is a promising alternative for software switch based telemetry:.
Performance of sketches is far from optimal.
Existing efforts missing in performance, robustness, or generality.

NitroSketch key ideas:
Tradeoff small memory increase, Sample counters not packets,
Geometric sampling to reduce packet ops, Adaptive sampling

NitroSketch improves the performance of sketches by 1~2 orders of
magnitude while retaining the robustness and generality

https.//qgithub.com/zaoxing/NitroSketch
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https://github.com/zaoxing/NitroSketch

