
NitroSketch: Robust and General Sketch-based
Monitoring in Software Switches

Alan (Zaoxing) Liu

Joint work with Ran Ben-Basat, Gil Einziger, Yaron Kassner,
Vladimir Braverman, Roy Friedman, and Vyas Sekar

VM VM VM

Virtual SW

DPDK

Need for network telemetry in software switches

Where: Virtual switches, White-box switches, DPDK, FD.io,…

BESS

2

Apps
A A A A

Need for network telemetry in software switches

Where: Virtual switches, White-box switches, DPDK, FD.io ……

Requirements: Performance, Accuracy

Traffic Engineering
“Flow Size Distribution”

Anomaly Detection
“Entropy”, “Traffic Changes”

Worm Detection
“SuperSpreaders”

Accounting

“Heavy Hitters”

3

5

Sketches appear to be a promising alternative

4

6

3 4 6 10

9 8 4

7 9 10 3

5 7 9 11

+1

+1

Packet

• Require small memory with bounded error rates.
• Guaranteed fidelity with arbitrary workloads.

d arrays
of

counters

r counters per array

Keep
flow
keys

H1(k)

H2(k)
.
.
.

Hd (k)

Flow key k

7+1

3+1

11

Reality: Sketches in software switches not performant!

5

• Single core 100% CPU.
• Cannot meet high line-rates: < 10Gbps

SketcKeV 2VS DPDK
0
5

10
15
20
25

PD
ck

et
 5

Dt
e

(0
SS

V) Univ0Rn
CRunt SketcK
CRunt-0in

2VS-DPDK
DPDK

Existing proposals to speed up sketches?

6

• SketchVisor [SIGCOMM’17]:

• Elastic Sketch [SIGCOMM’18]:

• R-HHH [SIGCOMM’17]:

Performance increase (still < 10 Mpps)
X Not robust on arbitrary workloads.

Performance increase (up to 14.8 Mpps)
X Not general towards many tasks.

Performance increase (> 14.8 Mpps)
X Not robust on arbitrary workloads.

NitroSketch in a nutshell

7

A software-switch based sketching framework that simultaneously has:

❏ Performance: line-rate (40G) with minimal CPU and memory.

❏ Generality: support a variety of measurement tasks.

❏ Robustness: accuracy guarantees for any workload.

• Systematically analyze the performance bottlenecks.

• Learn key insights from strawman solutions (sampling, one-level
hash).

• Reformulate sketching for software from first principles
- Tradeoff slight memory increase, Novel counter sampling rather than packet.

NitroSketch Approach

8

Outline for this talk

9

• Motivation

• Understanding bottlenecks

• Design Insights
• Strawman ideas

• Our proposals

• Evaluation

• Conclusions and future work

10

• Motivation

• Understanding bottlenecks

• Design Insights
• Strawman ideas

• Our proposals

• Evaluation

• Conclusions and future work

Outline for this talk

Bottleneck Analysis

11

- Performance benchmarks using Intel VTune Amplifier.

- Hotspots for UnivMon [SIGCOMM’16].SIGCOMM ’19, August 19–23, 2019, Beijing, China Z. Liu et al.

Func/Call Stack Description CPU Time

xxhash32 hash computations 37.29%
__memcpy memcpy and counter update 15.91%
heap_find heap operation 10.71%
univmon_proc packet copy and cache 8.02%
heapify heap maintenance 4.91%
miniflow_extract retrieve miniflow info 2.93%
recv_pkts_vecs dpdk packet recv 2.71%

Table 2: CPU hotspots on UnivMon with OVS-DPDK.

with min-sized packets as a worst-case scenario to stress the through-
put of software sketch implementations. We observe similar trends
with other workloads varying packet size distributions.

For the following analysis, we instrument a single thread OVS-
DPDK with UnivMon sketch as a representative example sketch. We
use Intel VTune Amplifier [46] to identify performance bottlenecks.
Our observations are qualitatively similar for other sketches as well,
but not shown for brevity. Table 2 summarizes the results.

Bottleneck 1: Sketches perform multiple independent hash com-
putations per packet.

From the profiling results in Table 2, we see an obvious bottleneck
due to hash function calls, which consumes ⇡ 40% of the CPU. For
the ease of comparison later, if we denote the cost of each hash
operation as H , for a sketch using d1 hash functions, there is a d1 ·H
computation cost we incur.

Bottleneck 2: Sketches entail multiple counter updates with mem-
ory copy and arithmetic operations.

The second significant bottleneck after the hashing we see in the
table is the memory operations. More specifically, sketches also
update a number of (e.g., 3 to 10) counters based on the computed
hash values, which in turn entail memory copy operations. If we
denote the cost of the counter update operation as C and there are d2
counter updates per packet, we can define this bottleneck as d2 ·C.

Bottleneck 3: Sketches maintain extra data structures for track-
ing “heavy” flows that incur expensive per packet operations.

Along with the counters arrays, sketches use additional data struc-
tures for bookkeeping. For instance, when tracking top K heavy
hitters, users may want to know largest flows. In such cases, we can
use a heap to store the flow keys. As shown in Table 2, maintaining a
heap of top keys is not cheap. Let the cost of the per-packet operation
of updating such a heap be denoted as P .
Summary. Based on these observations, a typical sketch implemen-
tation entails �(d1 ·H +d2 ·C +P) per-packet operations. Given this,
we revisit prior attempts to improve the performance of the sketches
and see how they tackle these costs.

SketchVisor [43] partially addresses the bottlenecks by proposing
an improved Misra-Gries algorithm [63] to simplify the per-packet
per packet operations in their front-end. SketchVisor reduces the
amortized per-packet cost to 1H , 1C, 1P (d1H , d1C, 1P in worst case),
which can be much better than the original sketch implementations.
However, as we will see, with min-sized packets even this is a
high cost and cannot achieve a 10Gbps line rate. Perhaps more

importantly, the speedup comes at the cost of robustness when the
majority of packets are processed in the front-end, where the front-
end Misra-Gries algorithm is not as accurate as other sketches.

ElasticSketch [73] separates the processing of elephant and mice
flows, similarly as SketchVisor. Their approach mitigates the bottle-
neck operations to 1H , 1C, 1P per-packet even in worst-case, which
improves performance. However, this per-packet complexity is still
significant for software switches. Moreover, their back-end structure
is a Count-Min Sketch, which only provides L1 (norm) accuracy
guarantees. This implies that the accuracy guarantees do not hold
for complex functions such as entropy and L2.

4 NITROSKETCH DESIGN
We first discuss strawman alternatives and their limitations. We then
explain the key design ideas underlying NitroSketch.

4.1 Strawman Solutions and Lessons
As described in Section 3, the performance bottlenecks arise from
hash calculations (H), counter updates (C), and priority queue (or
heap) updates (P). We discuss the following strawman ideas to
address these bottlenecks:
Strawman1: Reduce the number of hash functions and arrays.
To reduce the number of bottleneck operations to 1H , 1C, 1P , we can
consider forming a one-array sketch. However, to retain the original
accuracy guarantee, we need to increase the number of counters
exponentially. For example, Count Sketch requires O(��2 log��1)
counters to provide an � additive error with 1 � � probability. This
approach requires O(��2��1) to match this accuracy. In practice,
when � = 0.01, this suggestion increases memory by ⇡ 50⇥. Sec-
ond, this approach may not be fast enough as we still perform one
hash calculation, one counter copy operation, and one heap update
operation per packet as 1H , 1C, 1P . Our evaluation shows that doing
so achieves 10G line-rate only when the sketch is Last Level Cache
(LLC) resident. However, large memory increase implies that the
sketch’s LLC residency is affected and the performance degrades.

Lessons learned: We learn two things from Approach #1: (1) In
software implementations, the memory usage of sketches should
be moderate to fit into LLC to gain the best performance; (2) Even
updating a single counter with one hash per-packet (i.e., 1H , 1C, 1P)
is non-trivial overhead under high packet rates (e.g., >15 Mpps), and
we need to optimize it further.
Strawman2: Run sketch only over sampled packets.
Uniform sampling is popular in estimating statistics in a database [13,
25, 47]. All sampling-based methods only provide accuracy guaran-
tees once the measurement is long enough. We define the waiting
time until accurate results are achieved as “convergence time”. By
using packet sampling, the number of packets that go to the sketch
is reduced, which reduces the number of per-packet operations.

However, this approach comes with the following limitations: (a)
First, we need a more accurate (larger) sketch to compensate for the
accuracy loss that results from the sampling. As shown in Appen-
dix B, if we set the error � , sampling rate p, measurement length
m, and 1 � � probability, the memory usage is �

⇣
��2p�1 log��1 +

��2p�1.5m�0.5 log1.5 ��1
⌘
. In practice, this results in 60MB+ mem-

ory, which likely results in a loss of cache residency. (b) Second,

Bottleneck B1: Many hash computations per packet

12

+1

+1Packet d arrays
of

counters

r counters per array

+1

+1

hashing

Top
keys

B1: Many (independent) hash computations per packet (~37% CPU)

Bottleneck B2: Many counter updates per packet

13

+1

+1Packet d arrays
of

counters

r counters per array

+1

+1

Top
keys

B2: Many counter updates (~15% CPU)

hashing

Bottleneck B3: Tracking keys is also expensive

14

+1

+1Packet d arrays
of

counters

r counters per array

+1

+1

hashing

Top
keys

B3: Expensive flow key data structure operations
(e.g., heap (~10% CPU))

Outline for this talk

15

• Motivation

• Understanding bottlenecks

• Design Insights
• Strawman ideas

• Our proposals

• Evaluation

• Conclusions and future work

Outline for this talk

16

• Motivation

• Understanding bottlenecks

• Design Insights
• Strawman ideas

• Our proposals

• Evaluation

• Conclusions and future work

CPU cache DRAM

Strawman 1: Reduce hashes by using single array?

17

Pros: Simple idea to reduce hash computations.

Cons:
- Memory increase may cause cache misses.
- Even one lightweight hash per packet may be high!

+1

+1

+1

+1

H1

H2
….

Hd

Single larger hash arrayTraditional

+

Strawman 2: Reduce updates by packet sampling?

18

+
+1

+

+

Sampled
Packet

Flip a coin:
with p

+

Pros: Simple idea to reduce hash/counter updates.

Cons:
- Memory increase may cause cache misses.
- Even one coin flip per packet may be high!
- Incurs accuracy-convergence tradeoff.

Key lessons from strawman solutions

19

• Can tradeoff memory for CPU reduction
But need to ensure cache residency

• Sampling is promising
But need to manage per-packet ops and convergence

How do we tackle this?

20

• We trade memory for CPU reduction
while ensuring cache residency

• Sampling is promising
But need to manage per-packet ops and convergence

+1

Key Idea: Sample counter updates not packets!

21

+
+1

+

+

Sampled
Packet +

2

4
5

3

6

Each Packet

+
2
1

4
5

3

6

Uniform
Packet

Sampling

Rethinking the way of doing sampling with sketches

Uniform
Counter

Sampling

1
Sketch

Key Idea: Sample counter updates not packets!

22

Multiple independent hashes key for memory efficiency

+1

+1

+1

+1

Packet +1

Coin flips
with p

- Per-packet hash/counter updates can be reduced to less than one.
- Memory increase by O(1/p): Much better than uniform packet sampling.

How do we tackle this?

23

• Can tradeoff memory for CPU reduction
But need to ensure still cache resident

• Sampling works!
but need to manage per-packet ops and convergence

+1
Each Packet

+1

1 2 3 4 5 6Uniform sampling
with p

Coin flip
with p

1 2 3 4 5 6
Geometric sampling

with p

Equivalent

Sampled.
Flip a coin with p Skipped

Sampled.
Flip a coin for next

Interval is 4

Coin flip
with p

Coin flip
with p

Coin flip
with p

Coin flip
with p

Coin flip
with p

24

Trick: Geometric sampling to reduce per-packet ops

❏ Sampling-based approach needs to receive enough packets
before becoming accurate (need convergence).

❏ When packet rate isn’t high,
❏ we can sample more packets ⇒ faster converge

+

Datarate Adaptive

Packet

Packet rate: 8Mpps, sample with 1/8

Packet rate: 1Mpps, sample with 1/1

Packet rate: 64Mpps, sample with 1/64

Adaptively adjusting sampling rate:

Trick: Adapt sampling rate to manage convergence

25

Array 1 2
1

4
5

3

6

Update with +1/p

Skipped

NitroSketch: Putting it together

26

+1

+1

+1

+1

Array 2

Array 3

Array 4

+
Select next 21

+

Update with +1/p
Adjust the sampling rate when needed

Trade small space for speedup on CPU

● NitroSketch offers accuracy guarantees for a variety of
measurement tasks.

Our theoretical analysis holds after receiving enough packets.

● In practice, we need ~2-4 Mil packets to converge.

Check out our paper for more details!

NitroSketch is theoretically robust!

27

User Space

Kernel Space

PMD PMD PMD

NIC NIC NIC

OVS-DPDK
vswitchddpif-netdev forwarding

pipeline
emc

Shared
Buffer

dp
classider

…

Controller/
Other Users

● Other versions: FD.io-VPP, BESS

NitroSketchD

28

NitroSketch Inline Implementation

● Two threads with OVS-DPDK, VPP and BESS on Intel XL710 NIC.
● NitroSketch uses no extra cores.

Univ0Rn C0 CS N-DUy
(c) 40GE(witK DDtDcenteU SDcNetV.

0
10
20
30
40

7K
UR

ug
KS

ut
 (G

ES
V)
B(SS/40G
V33/40G
2VS-D3D./40G
2UiginDO

1itURSNetcK w/2VS
1itURSNetcK w/V33
1itURSNetcK w/B(SS

0.0

2.5

5.0

7.5

10.0

3D
cN

et
 5

Dt
e

(0
SS

V)

29

NitroSketch achieves 40G on software switches

● In-memory single thread (Intel E5 2620 v4 CPU)
● Algorithms use 5~10 independent hash functions

7.02 3.7 1.5 3.5

175.6

125.2

85.7

123.1

0

50

100

150

200

Count Min Count Sketch UnivMon K-ary

Original w/ NitroSketch

30

NitroSketch can achieve higher throughput

● After received 2~4 Mil packets, Sketches achieve comparable
(or better) accuracy as the original sketches.

31

Guaranteed accuracy after convergence

0%
10%

25% HH (CRunt-0in)

0%
10%

25% HH (CRunt 6NHtch)

10 20 40 80160 640 2560 1%
(SRch 6izH (# Rf SacNHts)

 (E) Accuracy Rf 1itrR6NHtch with sNHtchHs.

0%
10%

25%5
Hl

at
iv

H
(r

rR
r

ChangH (N-ary)

● NitroSketch achieves higher accuracy when converged.

40 160 640 2560
CAIDA (SRch (# RI PDcNetV)

 (D)

0

5

10

(
UU

RU
 5

Dt
e

(%
) 6NetchViVRU(100%)

6NetchViVRU(50%)
6NetchViVRU(20%)
1itUR6Netch(Univ0Rn)

32

NitroSketch outforms other solutions

● Sketching is a promising alternative for software switch based telemetry.

● Performance of sketches is far from optimal.

● Existing efforts missing in performance, robustness, or generality.

● NitroSketch key ideas:
Tradeoff small memory increase, Sample counters not packets,
Geometric sampling to reduce packet ops, Adaptive sampling

● NitroSketch improves the performance of sketches by 1~2 orders of
magnitude while retaining the robustness and generality

https://github.com/zaoxing/NitroSketch
33

Conclusions

https://github.com/zaoxing/NitroSketch

