NitroSketch: Robust and General Sketch-based
Monitoring in Software Switches

Alan (Zaoxing) Liu

Joint work with Ran Ben-Basat, Gil Einziger, Yaron Kassner,
Vladimir Braverman, Roy Friedman, and Vyas Sekar

Carnegie -
Mellon o HARVARD

. . School of Engineering
UnlverSIty and Applied Sciences

_~
TECHNION =X\
Israel Institute il:y' JOHNS HOPKINS

UNIVERSITY

of Technology




Need for network telemetry in software switches

Where: Virtual switches, White-box switches, DPDK, FD.io...

C Ovs

Open vSwitch

The Universal Dataplane

\_  BESS




Need for network telemetry in software switches

Where: Virtual switches, White-box switches, DPDK, FD.io ...

p Traffic Engineering p Anomaly Detection
"Flow Size Distribution” “Entropy”, “Traffic Changes”

£ Worm Detection £ Accounting
‘SuperSpreaders’ "Heavy Hitters”

Requirements: Performance, Accuracy



Sketches appear to be a promising alternative

Flow key k

Packet H(K)

Hy (k)

T

d arrays
of
counters

|

"‘ r counters per array—-

« Require small memory with bounded error rates.
« Guaranteed fidelity with arbitrary workloads.

Keep
flow
keys




Reality: Sketches in software switches not performant!

® @@ UnivMon [ OVS-DPDK
§' I Count Sketch Il DPDK
E’%g I:I Count-Min

©

o 15 -

E’ 10 |

S ol

Sketches OVS DPDK

« Single core 100% CPU.
« Cannot meet high line-rates: < 10Gbps



Existing proposals to speed up sketches?

 SketchVisor [SiIGcOMM'171:

Performance increase (still < 10 Mpps)
X Not robust on arbitrary workloads.

e Elastic Sketch I[siccoMM'18]:

Performance increase (> 14.8 Mpps)
X Not robust on arbitrary workloads.

e R-HHH [siccoMM71:

Performance increase (up to 14.8 Mpps)
X Not general towards many tasks.



NitroSketch in a nutshell

A software-switch based sketching framework that simultaneously has:
- Performance: line-rate (40G) with minimal CPU and memory.
-1 Generality: support a variety of measurement tasks.

-1 Robustness: accuracy guarantees for any workload.



NitroSketch Approach

- Systematically analyze the performance bottlenecks.

- Learn key insights from strawman solutions (sampling, one-level
hash).

- Reformulate sketching for software from first principles
- Tradeoff slight memory increase, Novel counter sampling rather than packet.



Outline for this talk

- Motivation

- Understanding bottlenecks

- Design Insights
- Strawman ideas
. Our proposals

. Evaluation

. Conclusions and future work



Outline for this talk

- Understanding bottlenecks

10



Bottleneck Analysis

- Performance benchmarks using Intel VTune Amplifier.

- Hotspots for UnivMon [SIGCOMM'16].

Func/Call Stack Description CPU Time
xxhash32 hash computations 37.29%
__memcpy memcpy and counter update 15.91%
heap_find heap operation 10.71%

11



Bottleneck B1: Many hash computations per packet

!

hashing ' ‘
Packet d arrays Top
of >
counters keys
l

r counters per array—

B1: Many (independent) hash computations per packet (~37% CPU)

12



Bottleneck B2: Many counter updates per packet

Packet

T

d arrays

hashing

of
counters

|

] r counters per array—

B2: Many counter updates (~15% CPU)

’ keys

Top

13



Bottleneck B3: Tracking keys is also expensive

hashing

1 1o

Packet d arrays Top
counters keys
| o

‘ r counters per array 5

B3: Expensive flow key data structure operations

(e.g., heap (~10% CPU))
14



Outline for this talk

- Motivation

- Understanding bottlenecks

- Design Insights
- Strawman ideas
. Our proposals

. Evaluation

. Conclusions and future work

15



- Design Insights
- Strawman ideas
. Our proposals

Outline for this talk

16



Strawman 1. Reduce hashes by using single array?

Traditional Single larger hash array

z

Hd

CPU cache DRAM

Pros: Simple idea to reduce hash computations.

Cons:
- Memory increase may cause cache misses.
- Even one lightweight hash per packet may be high!

17



Strawman 2: Reduce updates by packet sampling?
e T oy

T
Flip a coin: <
with p

Pros: Simple idea to reduce hash/counter updates.

Cons:
- Memory increase may cause cache misses.
- Even one coin flip per packet may be high!

- Incurs accuracy-convergence tradeoff.
18



Key lessons from strawman solutions

« Can tradeoff memory for CPU reduction
But need to ensure cache residency

« Sampling is promising
But need to manage per-packet ops and convergence

19



How do we tackle this?

« We trade memory for CPU reduction
while ensuring cache residency

20



Key ldea: Sample counter updates not packets!

Uniform
Packet
Sampling

Sketch

Sampled

Packet

OOV W IN [P

Rethinking the way of doing sampling with sketches

Uniform
Counter
Sampling

.
o
.
R
.
.
.
[ i
.
.
P

LY

.....

L] g
...........

e,
e
ta
‘e
Ya
.
e
.
e

O Wik

21



Key ldea: Sample counter updates not packets!

Multiple independent hashes key for memory efficiency

.
P
.
.

"
.

Y

| aCket """ i
P
Py
.t
.
P
Y
PR

------
.................
------
LET

e
.
"y
"
‘e
e
e
"
"
e
e
ta
"
"

- Per-packet hash/counter updates can be reduced to less than one.
- Memory increase by O(1/p). Much better than uniform packet sampling.

22



How do we tackle this?

« Sampling works!

but need to manage per-packet ops and convergence

.
ot
.
.
.
.
.
.

-1

0
e

.....
.........
-------
L

e,
e
e
‘e
Y
e
e
‘e
e
e
.

23



Trick: Geometric sampling to reduce per-packet ops

Uniform sampling > 3 4 5
with p F 0 0 T

ZES Coin flip Coin flip Coin flip Coin flip Coin flip Coin flip
withp withp withp withp withp with P
Equivalent
N F 2 3 4 5 F
Geometric sampling .
with p Sampled. ‘E Interval is 4 , Sampled.
Flip a coin with p Skipped Flip a coin for next

24



Trick: Adapt sampling rate to manage convergence

O Sampling-based approach needs to receive enough packets
before becoming accurate (need convergence).

d When packet rate isn't high,
1 we can sample more packets = faster converge

Packet

I

Datarate Adaptive

Adaptively adjusting sampling rate:

Packet rate: iMpps, sample with 1/1

Packet rate: 8Mpps, sample with 1/8

Packet rate: 64Mpps, sample with 1/64

25



NitroSketch: Putting it together

Update with +1/p

Select next 21

Skipped

OOV W (N |-

-

Update with +1/p

Adjust the sampling rate when needed

3

Array 1
Array 2
Array 3
Array 4

Trade small space for speedup on CPU

26



NitroSketch is theoretically robust!

e NitroSketch offers accuracy guarantees for a variety of
measurement tasks.

Our theoretical analysis holds after receiving enough packets.

e In practice, we need ~2-4 Mil packets to converge.

Check out our paper for more details!

27



NitroSketch Inline Implementation

Controller/
Other Users

User Space

NitroSketchD

Kernel Space

OVS-DPDK

dpif-netdev forwarding

emc

dp
classider

Other versions: FD.io-VPP, BESS

28



NitroSketch achieves 40G on software switches

e [wo threads with OVS-DPDK, VPP and BESS on Intel XL710 NIC.
e NitroSketch uses no extra cores.

. BESS/40G BN NitroSketch w/OVS [
8 — VPP/40G A NitroSketch w/VPP
8 — = OVS-DPDK/40G [ NitroSketch w/BESS-
~ I Original

S 40 -

< 30

3 20

| -

< 10

UnivMon CM CS k-ary
40GbE with Datacenter packets.



NitroSketch can achieve higher throughput

e In-memory single thread (Intel E5 2620 v4 CPU)
e Algorithms use 5~10 independent hash functions

Original m m \w/ NitroSketch

200 175.6
150 125.2 123.1
100
85.7
50
7.02 3.7 1.5 3.5
0 [ ] — —
Count Min Count Sketch UnivMon K-ary

30



Guaranteed accuracy after convergence

e After received 2~4 Mil packets, Sketches achieve comparable
(or better) accuracy as the original sketches.

25% 1
10% -

0%

ror

5 25% -
210%-

0%

elati

X 25% 1
10% -

0%

HH (Count-Min)

Eii-.-.----

HH (Count Sketch)

BN AP

} Change (k-ary)
¢

® & ¢ ¢ ¢ o 4 a4 o

1M 2M 4M 8M16M 64M 256M 1B
Epoch Size (# of packets)

31



NitroSketch outforms other solutions

e NitroSketch achieves higher accuracy when converged.

10 ; —m— SketchVisor(100%)
—&— SketchVisor(50%)
—e— SketchVisor(20%)
—4— NitroSketch(UnivMon)

Error Rate (%)
@)

o

4M 16M  64M  256M
CAIDA Epoch (# of Packets)

32



Conclusions

Sketching is a promising alternative for software switch based telemetry:.
Performance of sketches is far from optimal.
Existing efforts missing in performance, robustness, or generality.

NitroSketch key ideas:
Tradeoff small memory increase, Sample counters not packets,
Geometric sampling to reduce packet ops, Adaptive sampling

NitroSketch improves the performance of sketches by 1~2 orders of
magnitude while retaining the robustness and generality

https.//qgithub.com/zaoxing/NitroSketch

33


https://github.com/zaoxing/NitroSketch

