
NitroSketch: Robust and General Sketch-based Monitoring
in Software Switches

Zaoxing Liu1, Ran Ben-Basat2, Gil Einziger3, Yaron Kassner4,
Vladimir Braverman5, Roy Friedman4, Vyas Sekar1

1Carnegie Mellon University, 2Harvard University, 3Ben-Gurion University
4Technion, 5Johns Hopkins University

ABSTRACT
Software switches are emerging as a vital measurement vantage
point in many networked systems. Sketching algorithms or sketches,
provide high-fidelity approximate measurements, and appear as a
promising alternative to traditional approaches such as packet sam-
pling. However, sketches incur significant computation overhead in
software switches. Existing efforts in implementing sketches in vir-
tual switches make sacrifices on one or more of the following dimen-
sions: performance (handling 40 Gbps line-rate packet throughput
with low CPU footprint), robustness (accuracy guarantees across
diverse workloads), and generality (supporting various measurement
tasks).

In this work, we present the design and implementation of Ni-
troSketch, a sketching framework that systematically addresses the
performance bottlenecks of sketches without sacrificing robustness
and generality. Our key contribution is the careful synthesis of rig-
orous, yet practical solutions to reduce the number of per-packet
CPU and memory operations. We implement NitroSketch on three
popular software platforms (Open vSwitch-DPDK, FD.io-VPP, and
BESS) and evaluate the performance. We show that accuracy is com-
parable to unmodified sketches while attaining up to two orders of
magnitude speedup, and up to 45% reduction in CPU usage.

CCS CONCEPTS
• Networks→ Network monitoring; Network measurement;

KEYWORDS
Sketch, Software Switch, Virtual Switch, Flow Monitoring, Sketch-
ing Algorithm

ACM Reference Format:
Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braver-
man, Roy Friedman, Vyas Sekar. 2019. NitroSketch: Robust and General
Sketch-based Monitoring in Software Switches. In SIGCOMM ’19: 2019
Conference of the ACM Special Interest Group on Data Communication,
August 19–23, 2019, Beijing, China. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3341302.3342076

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’19, August 19–23, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5956-6/19/08. . . $15.00
https://doi.org/10.1145/3341302.3342076

1 INTRODUCTION
Traffic measurements are at the core of network functions such as
traffic engineering, fairness, load balancing, quality of service, and
intrusion detection [3, 4, 12, 28, 36, 38, 44, 49, 65, 74, 75]. While
monitoring on dedicated switching hardware continues to be impor-
tant, measurement capabilities are increasingly being deployed on
software switches with the transition to virtualized deployments and
“white-box” capabilities (e.g., Open vSwitch [67], Microsoft Hyper-
V [62], Cisco Nexus 1000V [22], FD.io VPP [34], and BESS [39]).

Naturally, we want measurement capabilities to run at high line
rates but impose a small resource footprint to avoid constraining the
main network functions and services that run atop the switch. In this
respect, sketching algorithms appear promising as they provide rigor-
ous accuracy guarantees and support a variety of measurement tasks.
Example tasks include per-flow frequency estimation [17, 27], track-
ing heavy hitters [10, 61, 63, 68, 69], detecting hierarchical heavy
hitters [8, 9, 20, 26], counting distinct flows [6, 7, 55], estimating
frequency moments [5], and change detection [51, 55].

In practice, the performance of sketching algorithms in soft-
ware switches is far from ideal [1, 2, 43]. For instance, Count-Min
Sketch [27] and Count Sketch [17] do not achieve 10M packets per
second (Mpps), and UnivMon [55, 56] runs at <2Mpps (Figure 2).
In retrospect, this may be unsurprising as sketches are theoretically
designed for memory efficiency and are not optimized for CPU con-
sumption, which is a more critical bottleneck in software switches.

In this context, recent efforts have sought to optimize the per-
formance of software sketches. These include SketchVisor [43],
Hashtable-based monitoring [1, 2], R-Hierarchical Heavy Hitters
(R-HHH) [8], and ElasticSketch [73]. Although these efforts have
made significant contributions, they compromise on one or more
dimensions (Section 2), as summarized in Table 1: (1) Performance
in handling modern line rates with minimal CPU and small mem-
ory (e.g., 40Gbps in a single thread); (2) Robustness in achieving
provable worst-case accuracy guarantees (e.g., arbitrary workload
distributions and an arbitrary number of flows); and (3) Generality
to support a variety of measurement tasks. Specifically, SketchVi-
sor relies on the skewness of the workload to achieve accuracy and
speedup, and thus does not work well for heavy-tailed workloads;
in many cases, it cannot even attain 10Gbps line-rate. ElasticSketch
lacks robustness as its accuracy guarantee breaks for various tasks
such as distinct flows and entropy if the workload contains too many
flows. While R-HHH achieves 10Gbps (14.88Mpps) line rate and
provides accurate results, it supports a specific task of hierarchical
heavy hitters and cannot be extended to other tasks.

Our motivation question is simple to state: Can we develop a
performant sketching framework in software switches that does not
sacrifice robustness and generality?

https://doi.org/10.1145/3341302.3342076
https://doi.org/10.1145/3341302.3342076

SIGCOMM ’19, August 19–23, 2019, Beijing, China Z. Liu et al.

Solutions Category OVS Packet Rate Robustness Generality

SketchVisor [43] Sketch 1.7Mpps X ✓
R-HHH [8] Sketch 14Mpps ✓ X
ElasticSketch [73] Sketch 5Mpps X ✓
Small-HT [1] Non-Sketch 13Mpps X ✓

Table 1: Summary of existing solutions on software platforms.

We answer this question by presenting NitroSketch — a software
sketching framework that optimizes performance, provides accuracy
guarantees, and supports a variety of sketches. Our design is inspired
by the observation that many sketches incur similar performance
bottlenecks as they share a similar data structure of multiple counter
arrays updated with independent hash functions. With that in mind,
we analyze the key bottlenecks of sketches in software and identify
three fundamental issues (Section 3): (1) several expensive per-
packet hash computations; (2) multiple random memory accesses
and arithmetic operations to update counters; and (3) additional
overheads in tracking some heavy flow keys.

To understand the intuition behind NitroSketch, let us consider
two natural strawman solutions to tackle these bottlenecks: (a) re-
ducing the number of hashes and using a single hash-indexed array;
or (b) retaining the sketch structure but reducing the number of pro-
cessed packets via uniform sampling [13, 25, 47]. Unfortunately,
to achieve comparable accuracy bounds, both approaches require a
large amount of memory. Given the random access patterns of sketch
counter updates, this actually hurts performance due to cache misses.
Furthermore, we observe that even a single per-packet hash opera-
tion can be expensive. While sampling avoids this hashing operation,
it still incurs per-packet coin flips. Finally, uniform sampling entails
an increase in the convergence time before the sketches can produce
useful and accurate results.

NitroSketch builds on insights from analyzing these two basic
building blocks but avoids their shortcomings. Our first insight is that
retaining the multiple independent hash arrays is vital for keeping
a small cache-resident memory footprint in the memory-accuracy
trade-off. Given this observation, our second insight is a more ef-
fective sampling strategy to reduce the number of per-packet op-
erations. Rather than sample packets to process, we sample the
counter arrays which need to be updated, which we show to be more
efficient than packet sampling. To avoid the per-packet coin flip
cost, we use a simple-yet-effective geometric sampling optimiza-
tion [30, 50]. An additional benefit of these optimizations is that it
incurs fewer updates to the flow-key data structure. Finally, while
the convergence issue is an unavoidable concern for any sampling
solution, we develop rigorous ways for adapting the sampling rate
to always produce accurate results.

NitroSketch is a general framework that applies to any sketch
structure that follows a canonical workflow of using multiple inde-
pendent hashes and counter arrays. Indeed, we support a number
of popular sketching algorithms atop NitroSketch (e.g., [17, 27,
51, 55]) and boost their packet processing performance without
sacrificing their theoretical robustness guarantees.

We implement a NitroSketch prototype and integrate it with
popular software switches, including Open vSwitch-DPDK (OVS-
DPDK) [67], FD.io-VPP [34], and BESS [39]. We implement ad-
ditional system optimizations such as buffered counter updates and
SIMD-style parallelism [45]. We evaluate NitroSketch on OVS-
DPDK, VPP, and BESS using a range of traces [11, 14, 15, 58]

+1

+1
+1

+1

Pkt

+1
d-hashes

h1…hd

w = 9

d=5

Figure 1: Count-Min Sketch example.

on commodity servers with 40GbE NICs. We demonstrate that Ni-
troSketch handles 40GbE on software switches with a single thread.
Compared to NetFlow/sFlow [21, 71], NitroSketch achieves better
accuracy and uses significantly less memory when evaluated with the
same sampling rate. Compared with SketchVisor [43], NitroSketch
runs dramatically faster in CPU (e.g., >83Mpps vs. <7Mpps), or uses
significantly less CPU to achieve the same throughput and yields
more accurate results after convergence. Our in-memory benchmarks
also suggest that NitroSketch is a promising option for future virtual
switches handling >40Gbps line rates.

We begin with background and related work in the next section.
We then present the bottleneck analysis of sketches in §3, the design
that addresses the bottlenecks in §4, and the analysis of NitroSketch
algorithms in §5. After implementation (§6) and evaluation (§7), we
summarize NitroSketch and conclude in §8.

2 RELATED WORK AND MOTIVATION
We begin by providing background on sketching algorithms and mo-
tivate the need for performance improvements in software switches.
We then discuss previous attempts to improve the performance of
software sketch implementations.

Sketches. Sketches are useful for many network measurement tasks
such as: (1) Heavy Hitter Detection to identify flows that consume
more than a threshold α of the total traffic (e.g., based on the packet
or byte counts) [17, 27, 55, 61, 69]; (2) Change Detection to identify
flows that contribute more than a threshold of the total capacity
change over two consecutive time intervals [51, 55, 68]; (3) Car-
dinality Estimation to estimate the number of distinct flows in the
traffic [7, 55]; (4) Entropy Estimation to approximate the entropy of
different header distributions (e.g., [52]); and (5) Attack Detection
to identify a destination host that receives traffic from more than a
threshold number of source hosts [76]. More recent work such as
UnivMon [55] also suggests extensions to support a range of these
tasks, rather than a specialized sketch per task.

At a high-level, sketches are approximate data structures to esti-
mate various statistics of a given streaming workload. A sketch data
structure typically consists of some arrays of counters, and uses a
set of independent hash functions to update these counters. To illus-
trate the common structure of sketches, we consider the Count-Min
Sketch (CMS) [27] as an example. As depicted in Figure 1, CMS
maintains d arrays of w counters each. On its Update procedure, it
computes d independent hash values from the packet’s flow identifier
(e.g., 5-tuple). Each such hash provides an offset within one of the
d arrays, and CMS then increases the corresponding counters. This
data structure can then be used for a number of estimation tasks.
Specifically, the estimate for a given flow’s size is the minimum
value among the corresponding counters for this flow. Using these

NitroSketch: Robust and General Sketch-based Monitoring SIGCOMM ’19, August 19–23, 2019, Beijing, China

Sketches OVS DPDK
0
5

10
15
20
25

Pa
ck

et
 R

at
e

(M
pp

s) UnivMon
Count Sketch
Count-Min

OVS-DPDK
DPDK

Figure 2: Packet rates of Sketches, OVS, and DPDK.

per-flow estimates, we can compute other derived statistics such as
quantiles or other traffic summaries.

Sketches are typically designed to reduce the memory usage
of measurement tasks and to achieve guaranteed fidelity for the
estimated statistics. Space efficiency is crucial in hardware as high-
speed memory (e.g., SRAM) is at a premium [41, 57, 72] and line-
rate processing is guaranteed once data structure fits in the memory.

Sketch performance in software switches. In a software switch
context, however, memory may be a less severe constraint. A more
critical goal is to support high line-rates with a low computation
footprint (e.g., using single CPU core). This low footprint is vital to
ensure that other concurrent services (e.g., virtual machine instances)
can make maximal use of the available resources.

To analyze the performance, we profiled a single-thread OVS-
DPDK and the result shows that the CPU room for running added
measurement algorithms is limited. Figure 2 shows the measured
performance of software implementation of sketches atop OVS-
DPDK. (We provide more details on our testbed setup in Section 7.)
We configure the memory allocation of the sketches as recommended
in the respective papers. For Count-Min Sketch, we set 5 rows of
1000 counters; for UnivMon, its Count Sketch components have
five rows of 10000 counters each. We observe that sketches impose
significant overhead and cannot meet 10Gbps line-rate with a single
CPU core for a worst-case workload (i.e., 14.88Mpps with 64B
packets). Even the light-weight Count-Min Sketch [27] is far away
from line rate processing.

Existing solutions. Indeed, we are not alone (nor the first) in point-
ing out these limitations, and these results mirror the measurements
from other efforts [1, 2, 43, 73].

To tackle this performance issue, prior efforts have taken one
of two approaches: (1) eschewing sketches altogether in favor of
simpler data structures or (2) heuristic fixes to sketches. Both ap-
proaches have fundamental limitations and do not meet our goals of
performance, robustness, and generality.

Alipourfard et al. [1, 2] suggest that small hash tables can suffice
for software switches as in skewed workloads (i.e., a small number
of flows carry most of the traffic volume) we can accurately monitor
all flows. Indeed, we can expect higher accuracy when the traffic
is only composed of a small number of elephant flows. However,
this small hash table approach is not robust since it relies on the
skewness of workloads to achieve good performance. Skewness is a
strong assumption since traffic distributions are sometimes heavy-
tailed (i.e., there are a significant number of flows with non-trivial
volumes). Further, the traffic distribution may vary at times, such
as a port scan. Even if we accept these limitations, updating a hash
table still requires a per-packet hash computation and counter update.

1K 10K 100K 1M 10M 100M
No. of Flows

0

5

10

15

P
ac

ke
t R

at
e

(M
pp

s)

Hashtable
UnivMon (5%)

CountMin (1%)
K-ary Sketch (5%)

(a) Throughput vs. #flows on 1 core OVS-
DPDK.

0 5 10 15 20 25 30 35
Number of Flows [M]

0

5

10

15

20

25

Re
la

tiv
e

Er
ro

r [
%

] Entropy
Distinct

(b) ElasticSketch (2.7MB) Accuracy vs.
#flows. in a malware trace [58].

Figure 3: Prior approaches are not performant or robust to a
large number of flows.

The performance of such actions is problematic once the table does
not fit in the last level cache.

SketchVisor [43] uses a fast path to expedite the packet process-
ing of the measurement on software switches when there is a queue
buildup before the sketches that process packets on a normal path.
The fast path maintains a hash table of k entries and each entry has
three different counters that are used for deciding whether to run an
update or a kick-out operation. The normal path contains standard,
slower sketches. Although the fast path can achieve higher packet
rate, it is less precise than the normal path as accuracy degrades sig-
nificantly when the majority of packets go to the fast path. Therefore,
it is not a robust solution.

ElasticSketch [73] splits the packet processing into two parts: a
heavy part and a light part. The heavy part is a table of hash buck-
ets, where the heavy flows are stored and evicted to the light part
when necessary; and the light part is a Count-Min Sketch (CMS),
which tracks the mice flows. The difference from SketchVisor is that
ElasticSketch has an eviction policy that further reduces the worst-
case packet operations. This design works well when the number
of flows is not large but using CMS solely in the light part loses
the generality for some measurement tasks that cannot be handled
with L11 guarantee from CMS. As depicted in Figure 3, these ap-
proaches cannot maintain acceptable accuracy and throughput when
the number of flow increases (e.g., for 20M flows the hash table’s
throughput reduces to less than 10Mpps and the error of ElasticS-
ketch exceeds 100% due to the overflow on its linear counting when
estimating the distinct flows). As depicted in Figures 11 and 12 in
the evaluation, the relative errors of the sketches that come with
better-than-L1 guarantee will not increase significantly.

R-HHH [8] reduces the update time of a deterministic Hierarchi-
cal Heavy Hitters algorithm [64] to O(1) by choosing one random
prefix per-packet to update. Although their algorithm is robust for a
specific measurement task, it does not support other measurement
tasks and is therefore not general.

In summary, existing solutions trade off robustness or generality
for improved performance as summarized in Table 1. Our goal is to
improve the performance without losing the robustness or generality.

3 BOTTLENECK ANALYSIS
We start by systematically understanding the bottlenecks of running
sketching inside software switches before we design optimizations.
For this analysis, we use the same testbed as described in Section 7

1L1 ≜
∑
fx refers to the first norm of the flow frequency vector of the workload.

SIGCOMM ’19, August 19–23, 2019, Beijing, China Z. Liu et al.

Func/Call Stack Description CPU Time

xxhash32 hash computations 37.29%
__memcpy memcpy and counter update 15.91%
heap_find heap operation 10.71%
univmon_proc packet copy and cache 8.02%
heapify heap maintenance 4.91%
miniflow_extract retrieve miniflow info 2.93%
recv_pkts_vecs dpdk packet recv 2.71%

Table 2: CPU hotspots on UnivMon with OVS-DPDK.

with min-sized packets as a worst-case scenario to stress the through-
put of software sketch implementations. We observe similar trends
with other workloads varying packet size distributions.

For the following analysis, we instrument a single thread OVS-
DPDK with UnivMon sketch as a representative example sketch. We
use Intel VTune Amplifier [46] to identify performance bottlenecks.
Our observations are qualitatively similar for other sketches as well,
but not shown for brevity. Table 2 summarizes the results.

Bottleneck 1: Sketches perform multiple independent hash com-
putations per packet.

From the profiling results in Table 2, we see an obvious bottleneck
due to hash function calls, which consumes ≈ 40% of the CPU. For
the ease of comparison later, if we denote the cost of each hash
operation as H , for a sketch using d1 hash functions, there is a d1 ·H
computation cost we incur.

Bottleneck 2: Sketches entail multiple counter updates with mem-
ory copy and arithmetic operations.

The second significant bottleneck after the hashing we see in the
table is the memory operations. More specifically, sketches also
update a number of (e.g., 3 to 10) counters based on the computed
hash values, which in turn entail memory copy operations. If we
denote the cost of the counter update operation as C and there are d2
counter updates per packet, we can define this bottleneck as d2 ·C.

Bottleneck 3: Sketches maintain extra data structures for track-
ing “heavy” flows that incur expensive per packet operations.

Along with the counters arrays, sketches use additional data struc-
tures for bookkeeping. For instance, when tracking top K heavy
hitters, users may want to know largest flows. In such cases, we can
use a heap to store the flow keys. As shown in Table 2, maintaining a
heap of top keys is not cheap. Let the cost of the per-packet operation
of updating such a heap be denoted as P .
Summary. Based on these observations, a typical sketch implemen-
tation entails Θ(d1 ·H +d2 ·C +P) per-packet operations. Given this,
we revisit prior attempts to improve the performance of the sketches
and see how they tackle these costs.

SketchVisor [43] partially addresses the bottlenecks by proposing
an improved Misra-Gries algorithm [63] to simplify the per-packet
per packet operations in their front-end. SketchVisor reduces the
amortized per-packet cost to 1H , 1C, 1P (d1H , d1C, 1P in worst case),
which can be much better than the original sketch implementations.
However, as we will see, with min-sized packets even this is a
high cost and cannot achieve a 10Gbps line rate. Perhaps more

importantly, the speedup comes at the cost of robustness when the
majority of packets are processed in the front-end, where the front-
end Misra-Gries algorithm is not as accurate as other sketches.

ElasticSketch [73] separates the processing of elephant and mice
flows, similarly as SketchVisor. Their approach mitigates the bottle-
neck operations to 1H , 1C, 1P per-packet even in worst-case, which
improves performance. However, this per-packet complexity is still
significant for software switches. Moreover, their back-end structure
is a Count-Min Sketch, which only provides L1 (norm) accuracy
guarantees. This implies that the accuracy guarantees do not hold
for complex functions such as entropy and L2.

4 NITROSKETCH DESIGN
We first discuss strawman alternatives and their limitations. We then
explain the key design ideas underlying NitroSketch.

4.1 Strawman Solutions and Lessons
As described in Section 3, the performance bottlenecks arise from
hash calculations (H), counter updates (C), and priority queue (or
heap) updates (P). We discuss the following strawman ideas to
address these bottlenecks:

Strawman1: Reduce the number of hash functions and arrays.
To reduce the number of bottleneck operations to 1H , 1C, 1P , we can
consider forming a one-array sketch. However, to retain the original
accuracy guarantee, we need to increase the number of counters
exponentially. For example, Count Sketch requires O(ϵ−2 logδ−1)
counters to provide an ϵ additive error with 1 − δ probability. This
approach requires O(ϵ−2δ−1) to match this accuracy. In practice,
when δ = 0.01, this suggestion increases memory by ≈ 50×. Sec-
ond, this approach may not be fast enough as we still perform one
hash calculation, one counter copy operation, and one heap update
operation per packet as 1H , 1C, 1P . Our evaluation shows that doing
so achieves 10G line-rate only when the sketch is Last Level Cache
(LLC) resident. However, large memory increase implies that the
sketch’s LLC residency is affected and the performance degrades.

Lessons learned: We learn two things from Approach #1: (1) In
software implementations, the memory usage of sketches should
be moderate to fit into LLC to gain the best performance; (2) Even
updating a single counter with one hash per-packet (i.e., 1H , 1C, 1P)
is non-trivial overhead under high packet rates (e.g., >15 Mpps), and
we need to optimize it further.

Strawman2: Run sketch only over sampled packets.
Uniform sampling is popular in estimating statistics in a database [13,
25, 47]. All sampling-based methods only provide accuracy guaran-
tees once the measurement is long enough. We define the waiting
time until accurate results are achieved as “convergence time”. By
using packet sampling, the number of packets that go to the sketch
is reduced, which reduces the number of per-packet operations.

However, this approach comes with the following limitations: (a)
First, we need a more accurate (larger) sketch to compensate for the
accuracy loss that results from the sampling. As shown in Appen-
dix B, if we set the error ϵ , sampling rate p, measurement length

m, and 1 − δ probability, the memory usage is Ω
(
ϵ−2p−1 logδ−1 +

ϵ−2p−1.5m−0.5 log1.5 δ−1
)
. In practice, this results in 60MB+ mem-

ory, which likely results in a loss of cache residency. (b) Second,

NitroSketch: Robust and General Sketch-based Monitoring SIGCOMM ’19, August 19–23, 2019, Beijing, China

Pkt Top
Keys

Key storing
Coin flips

w.p. 𝒑

x
✓

x
x

+1

+1
✓

w.p. 𝒑

Pkt
Top
Keys

Key storing

✓
+1

+1

✓

✓
✓
✓ +1

+1

+1

Keep the structure,
Sample on the arrays.

Figure 4: Idea A: Counter array sampling to reduce per-packet
bottleneck operations.

flipping a coin requires a random number generation and doing it
for each packet has considerable overhead. Based on our test, a
single coin flip per-packet still prevents us from supporting 40Gbps
(≈ 60Mpps). (c) Third, small packet sampling rates result in long
convergence time, which is a potential issue for short-time measure-
ments [60].

Lessons learned: Sampling offers the potential for significant
speedup as it reduces the per-packet computation to less than 1H , 1C,
1P . However, it still has overheads such as random number genera-
tion and cache misses which prevent it from scaling to higher line
rates (e.g., 40G with min-sized packets). Furthermore, there is a
trade-off between the sampling probability and the convergence
time.

4.2 Key Ideas
In designing NitroSketch, we use the lessons learned from the bot-
tleneck analysis and the strawman solutions. We now describe our
key ideas and highlight how they improve the performance.

Idea A: Keep the multi-array structure as original sketches and
sample on the independent counter arrays.
Sketches use multiple high-quality and independent (usually require
pair-wise or even four-wise independent) hash functions that amplify
the success probability and play a significant role in their accuracy
guarantees. Thus, we retain the same multi-array structure and em-
ploy the same set of hash functions as the underlying sketch. For
each packet, we flip a coin for each array to decide if we need to up-
date a counter in that array, as shown in Figure 4. Doing so reduces
the per-packet hashes and counter updates to less than one by using
appropriate sampling rate p (e.g., p < 1

5 in Figure 4). Compared with
Strawman2, this idea also needs to increase the number of counters
but it is more space efficient in order to be cache resident, as we
will show in Section 5. However, this idea of counter array sampling
requires even more coin flips than packet sampling. Thus, Idea B
refines this idea to reduce the number of coin flips.

Idea B: Avoid coin flips by drawing a single geometric sample
for all the counter arrays.
The straightforward realization of Idea A needs one coin flip per
counter array when processing each packet. To avoid this, we con-
sider a simple but effective implementation that draws samples from
a geometric distribution to decide (i) which counter array will be
updated next (ii) how many packets to skip until that update. We

Uniform sampling
with probability 𝒑

Geometric sampling
with expectation 𝒑"𝟏	

Mathematically
Equivalent

Coin flip
w.p. 𝑝

Coin flip
w.p. 𝑝

Coin flip
w.p. 𝑝

Coin flip
w.p. 𝑝

Coin flip
w.p. 𝑝

✓ x x x ✓

✓ Sampled
Next is 5

1 2 3 4 5

1 2 3 4 5

3 arrays skipped ✓ Sampled
Coin flip for next

Figure 5: Idea B: Sampling the counter arrays with geometric
sampling to avoid per packet PRNG. In this way, we don’t need
“coin flips” every time.

w.p. 𝒑
Pkt Top

Keys

Key storing
𝒑 = 𝟏,

𝟏
𝟐 ,
𝟏
𝟒 ,
𝟏
𝟖 ……

x
x

✓
x +1

e.g., every 10000 packets, measure packet rate:
if 40Mpps, p=1/64; if 10Mpps, p=1/16 ……

x

Figure 6: Idea C: Adjusting geometric sampling rates based on
(estimated) packet arrival rate for faster convergence.

realize these two decisions by randomizing how many “arrays” to
skip until the next update.

We illustrate Idea B in Figure 5. The sketch has five counter
arrays, and let us assume that Array 1 was just updated. We draw a
geometric variable, with success probability p that tells us how many
arrays to skip. If the sample tells the next update is four arrays away,
we skip the following three arrays and update Array 5 (with the same
packet). If the randomization tells us to skip six arrays, then we will
skip further updates for the current packet and update Array 3 during
the next packet. Thus, we use a single geometric variable for each
sampled counter array and minimize the coin-toss overheads.
Idea C: Adaptive sampling based on packet arrival rate to re-
duce convergence time.
There is a trade-off between convergence time and the packet up-
date speed. The more packets we skip, the longer we need to wait
before providing an accuracy guarantee. When using a static counter
array sampling probability, we should determine p to be sufficiently
small for the highest possible packet rate. However, in that case, we
needlessly suffer a long convergence time as most workloads have
a lower average packet rate and occasional traffic bursts. When the
packet arrival rate is low, we do not need to statically skip many
packets (to achieve this rate) and we can thus enlarge p to sample
more packets for the sketch, as shown in Figure 6.

We propose two adaptive approaches:
(1) AlwaysLineRate. We dynamically set the counter array sam-

pling probability p to be inversely proportional to the current packet
arrival rate. We use a large p when the packet rate is low and reduce
p as it increases. This mode performs on average the same number
of operations within a time unit regardless of the packet rate.

(2) AlwaysCorrect. In this mode, we start with p = 1.0 (same as
the original sketches), and switch to AlwaysLineRate once we can
guarantee convergence. Doing so allows us to maintain the accuracy
guarantees throughout the measurement. This is required to maintain
the fidelity of composite sketches such as UnivMon.

SIGCOMM ’19, August 19–23, 2019, Beijing, China Z. Liu et al.

Packet batch

Step 1:
Hash each pkt
multiple times.

Step 2:
Update multiple counters

Top
Keys

Step 3:
Query & update
to top keys

+1

+1
+1

+1

Pkt

+1

(a) Original sketch.

Geometric Samples

Step 1:
Pick a pkt to update
e.g., select array 2.

Step 2:
Hash with the
flow key

Step 3:
Update one counter

Step 4:
Query and update to top
keys with probability 𝑝

Top
Keys

+1
Pkt

(b) Sketch with NitroSketch

Figure 7: (a) Before using NitroSketch, each packet goes through multiple hash computations (e.g., O(logδ−1)), update multiple
counters, and query and update to a top-k flow key storage (e.g., heap). (b) After applying NitroSketch, only a small portion of
packets (say 5% by geometric sampling) need to go through one hash computation, update to one row of counters (instead of all rows)
and occasionally to a top-k structure. Therefore, the CPU cost is significantly reduced.

In practice, the choice of mode depends on the use cases. The
AlwaysLineRate mode usually reduces the convergence time to <1s
in a 10Gbps+ link but there is still a delay on the result. For typical
measurement statistics and their higher-layer management applica-
tions, such as heavy hitters for load balancing [48, 54], flow size
distribution for cache admission/eviction [42], and entropy for anom-
aly detection [52, 66], we recommend using this mode as this delay
is tolerable. The AlwaysCorrect mode avoids the convergence time
but there is a delay on the performance speedup. For fine-grained
network management and security applications such as detection of
dynamic DDoS attacks [33] that need visibility at finer granularities
(e.g., 100ms to 10s), the AlwaysCorrect mode is more suitable.
Idea D: Buffer counter updates and use SIMD parallelism.
Since sketch operations are independent, after applying the ideas
mentioned above, we can buffer the sampled counters and their pend-
ing flow keys to compute the hash functions and counter updates
in Single Instruction Multiple Data (SIMD) mode. For best com-
patibility with morden CPUs, we use AVX [45] (Intel and AMD
CPUs support AVX since 2011) in our implementation. We also
include non-SIMD version in the implementation to avoid potential
compatibility issues with other software platforms.

4.3 End-to-End view of NitroSketch
We now describe the end-to-end view of our approach. In NitroS-
ketch, we have a data plane component to process packets with
sketching and a control plane component to estimate the statistics
from the sketch data structure. We split the data plane packet pro-
cessing into a pre-processing stage and a sketch-updating stage.
NitroSketch is illustrated in Figure 7(b), and its pseudocode is avail-
able in Algorithm 1. We now describe the two stages.

Pre-processing stage. Once packet batches arrive (e.g., from DPDK
Polling Mode Driver), NitroSketch only “selects” the packets that
need to update a counter array. As in ideas A and B, we use a single
geometric variable to sample the packets and counter arrays which
implies that the majority of packets (say, 95%) are “skipped”.

Sketch-updating stage. NitroSketch only delivers the sampled pack-
ets to this stage which minimizes the overheads. Sampled packets
from the pre-processing stage update one (or more) counter/s in
one (or more) array/s based on the updating functions of different
sketches. For instance, in NitroSketch with Count Sketch, each sam-
pled packet will update one or more counters with {+p−1,−p−1}
where p is the geo-sampling probability.

Algorithm 1 NitroSketch Data-plane

Input: Packet stream D(m,n) = a0, . . . ,am−1 ∈ [n][m]

1: procedure Initialization
2: Generate pairwise independent hash functions:

{hi :[n] → [w]; дi :[n] → {−1,+1} or {+1}}i ∈[d]
3: ▷ дi is either ±1 getting an L2 guarantee or +1 for an L1 guarantee.

4: r ← (−1) , j ← 0 ▷ The next row (r) and packet (j) to select

5: procedure AlwaysLineRate
6: while j ≤ m do ▷ Continue to process packets
7: Update(p) ▷ Update each row w.p. p
8: if 100ms passed then ▷ Adjust p’s value
9: Set p inversely proportional to traffic rate

10: procedure AlwaysCorrect
11: T ← 121(1 + ϵ√p)ϵ−4p−2 ▷ Convergence threshold
12: while j ≤ m do ▷ Continue to process packets
13: Update(1) ▷ Before convergence, we always update
14: if (j mod Q) = 0 ∧ (mediani ∈[d]

∑w
y=1C

2
i,y) > T then

15: Switch to using AlwaysLineRate
16: procedure Update(p)
17: r += Geo(p) ▷ Geometric variable
18: j += ⌊r/d⌋ ▷ Skip packets if needed
19: r ← r mod d ▷ The row to update
20: Cr,hr (aj) += p−1 · дr (aj)

21: function Query(x)
22: return mediani ∈[d]{Ci,hi (x) · дi (x)}

With the two stages above, we design two adaptive modes in the
following for various user requirements. The AlwaysLineRate mode
offers quick convergence time and a fixed amount of bottleneck
operations per packet batch. Alternatively, the AlwaysCorrect mode
does not require convergence time but performs the same amount
of packet operations as vanilla sketches in the beginning of the
measurement.

AlwaysLineRate mode. In this mode, NitroSketch adapts to the
packet arrival rate. We increase the sampling probability p when the
arrival rate is low, and we lower p when the arrival rate is high to
avoid packet drops.

This mode considers choosing the sampling probability p ∈{
1, 2−1, 2−2, . . . , 2−7

}
and updating the counters by p−1 in the sketch.

In Algorithm 1, we monitor the number of processed packets within
fixed time epochs (e.g., 100ms) by measuring the received packet
timestamps (Line 8). In Line 8, we adjust the sampling probability

NitroSketch: Robust and General Sketch-based Monitoring SIGCOMM ’19, August 19–23, 2019, Beijing, China

p to keep the number of operations (roughly) fixed for each epoch.
We do so by setting p to be inversely proportional to the packet rate.
Finally, this mode is allocated with the space required for sampling
with probability pmin = 2−7. This choice assures the theoretical guar-
antees of Theorem 2 hold and provides better accuracy in practice
compared to sampling at a fixed rate of pmin.

SketchVisor and ElsaticSketch [43, 73] also have mechanisms that
adapt the running speed to the line rate. However, their approach uses
a binary fast/slow path approach. In addition, SketchVisor requires a
merge operation by the control plane (e.g., SDN controller) which
is computationally intensive, and ElasticSketch loses its accuracy
guarantee once the light part is used. In comparison, our approach
offers a spectrum of eight different processing speeds and performs
a roughly fixed amount of work in each packet batch. It retains the
accuracy guarantees without controller merging.

AlwaysCorrect mode. This mode provides accuracy guarantees
starting with the first packet, but only provides a speedup once
enough packets are processed (converged). Taking a Count Sketch
as an example, NitroSketch periodically estimates the L2 norm to de-
termine when it can justify sampling. That way, sampling starts once
the measurement is large enough to converge. The pseudocode of
this mode is given in Algorithm 1. Observe that we now update rows
with different probabilities (initially as 1 and then the varying p),
and we update the counters with the inverse sampling probabilities
(initially 1 and then p−1).

Formally, the sum of squared counters in each row i is a (1+ϵ√p)-
multiplicative estimator for the stream’s L22 with probability 3/4,
and the rows’ median with a probability of 1 − δ . We perform this
computation once per Q (e.g., Q = 1000) packets which reduces the
overheads and ensures that sampling starts at most Q packets late.
We use the union bound to get an overall error probability of 2δ –
with probability ≤ δ we start sampling too early and with probability
≤ δ the sketch’s error exceeds ϵL2.

Scope of NitroSketch. Similar as existing sketch solutions [43, 55,
73], NitroSketch relies on the control plane to query the measurement
results. The data plane component of NitroSketch is responsible
for updating the sketch data structure but not obtaining the traffic
statistics from the sketch. Thus, any applications (e.g., connectivity
checking [53] and fast rerouting [40]) that require computation
entirely in the data plane are not targeted use cases of NitroSketch.
For instance, fast data plane processing is needed to measure and
react to short-lived traffic surges (microbursts). In handling such
microbursts, a programmable hardware switch can be a vantage
point, as suggested in [18, 19].

5 ANALYSIS
We now show the theoretical guarantees of NitroSketch. To analyze
the worst-case guarantee, we assume that all packets are sampled
with probability pmin and denote p ≡ pmin. We consider two vari-
ants; first, combining the Count-Min Sketch with Nitro for achieving
an ϵL1 guarantee, and second using NitroSketch for an ϵL2 approx-

imation. Here, Lk ≜ k
√
Fk = k

√ ∑
x ∈U

f kx is the k-th norm of the

frequency vector f (i.e., fx is the size of flow x) andU is the set of
all possible flows (e.g., all 232 possible source IPs). Specifically, L1
is simply the number of packets in the measurement.

Supported sketches. Intuitively, NitroSketch improves the process-
ing performance of sketches that normally calculate multiple hash
values, and update multiple counter arrays. This criterion includes
but not limited to Count-Min Sketch [27], Count Sketch [17], Univ-
Mon [55], and K-ary [51]. Moreover, NitroSketch can further accel-
erate the slower light part (Count-Min Sketch) of ElasticSketch [73].
Formally, we show that NitroSketch provides ϵL1 and ϵL2 accuracy
guarantees which is compatible with most sketches.

ϵL1 and ϵL2 Guarantees. The ϵL1 guarantee follows from the anal-
ysis in [8]. We show the ϵL2 guarantee in the following theorems.

THEOREM 1. Let d ≜ log2 δ−1 and w ≜ 4ϵ−1. For streams in

which L1 ≥ c ·
(
ϵ−2p−1

√
logδ−1

)
for a sufficiently large constant c,

NitroSketch + Count-Min Sketch satisfies:
Pr

[
| f̂x − fx | ≥ ϵL1

]
≤ δ where fx is the real frequency of flow x ,

and f̂x is the return value of Query(x) in Algorithm 1.

Next, we state Theorem 2 and Theorem 5 that establish the cor-
rectness of both modes of NitroSketch.

THEOREM 2. Letw = 8ϵ−2p−1,d = O(logδ−1). AlwaysLineRate
NitroSketch requiresO(ϵ−2p−1 logδ−1) space, operates in amortized
O(1+dp) time (constant for p = O(1/d)), and provides the following

guarantee: Pr
[���fx − f̂x

��� > ϵL2
]
≤ δ for streams in which L2 ≥

8ϵ−2p−1.

PROOF. We consider the sequence of packets that was sampled
for each of the rows. That is, let Si ⊆ S be the subset of pack-
ets that updated row i (for i ∈ {1, . . .d}). Further, we denote by
fi,x ≜ |

{
j | (x j ∈ Si) ∧ (x j = x)

}
| the frequency of x within Si .

That is, fi,x the number of times a packet arrived from flow x and

we updated row i. Let L2 ≜
√ ∑

x ∈U
f 2x denote the second norm of the

frequency vector of S and similarly L2,i ≜
√ ∑

x ∈U
f 2i,x denote that

of Si . Clearly, we have L2,i ≤ L2 for any row i ∈ {1, . . . ,d}. Recall
that we assume that the sampling probability is fixed at p = pmin; if
the actual probability for some packets is higher it only decreases
the counter variances and therefore the error.

We proceed with a simple lemma that bounds E
[
L22,i

]
as a func-

tion of L22. Observe that fi,x ∼ Bin(fx ,p) and thus Var[fi,x] =
fxp(1 − p) and E[fi,x] = fxp.

LEMMA 3. E
[
L22,i

]
≤ 2pL22.

PROOF.

E
[
L22,i

]
=

∑
x∈U

E
[
f 2i,x

]
=

∑
x∈U

Var[fi,x] + (E[fi,x])2

=
∑
x∈U

fxp(1 − p) + (fxp)2 ≤
∑
x∈U

2pf 2x = 2pL22 . □

Next, we bound the variance of
(
Ci,hi (x)дi (x) − p

−1 fi,x
)

– the
noise that other flows add to x’s counter on the i’th row.

LEMMA 4. Var
[
Ci,hi (x)дi (x) − p

−1 fi,x
]
≤ 2p−1L22/w .

PROOF. We have Ci,hi (x) = p
−1 ∑

x ′∈U|hi (x)=hi (x ′) fi,x ′дi (x
′).

SIGCOMM ’19, August 19–23, 2019, Beijing, China Z. Liu et al.

That is, the value of x’s counter,Ci,hi (x), is affected by all x ′ ∈ U
such that hi (x) = hi (x

′), and the contribution of each such x ′ is
p−1 fi,x ′дi (x ′).

Next, notice that since E [дi (x ′)] = 0 and as дi is two-way inde-
pendent, we have that E

[
Ci,hi (x) · дi (x)

]
=

p−1
∑
x ′∈U:hi (x ′)=hi (x) E

[
fi,x ′ · дi (x ′) · дi (x)

]
= p−1E[fi,x] = fx .

Now, as hi is pairwise independent, we have that for any x ′ ∈
U \ {x}: Pr [hi (x) = hi (x ′)] = 1/w . We are now ready to prove the
lemma:

Var
[
Ci,hi (x)дi (x) − p

−1fi,x
]
= E

[
(Ci,hi (x)дi (x) − p

−1fi,x)2
]

= E
[
(Ci,hi (x)дi (x))

2 − 2p−1Ci,hi (x)дi (x)fi,x + p
−2f 2i,x

]
= E

[©­«p−1
∑

x ′∈U|hi (x)=hi (x ′)

fi,x ′дi (x ′)дi (x)
ª®¬
2

− 2p−1 ©­«p−1
∑

x ′∈U|hi (x)=hi (x ′)

fi,x ′дi (x ′)дi (x)fi,x
ª®¬ + p−2f 2i,x

]

= p−2E
©­«

∑
x ′∈U|hi (x)=hi (x ′)

f 2i,x ′
ª®¬ − f 2i,x


= p−2E


∑

x ′∈U\{x }|hi (x)=hi (x ′)

f 2i,x ′

 ≤ p−2E[L22,i]/w ≤ 2p−1L22/w,

where the last inequality is correct per Lemma 3. □

We denote A ≡ Ci,hi (x)дi (x) and B ≡ p−1 fi,x (note that since
Var[fi,x] = fxp(1−p), Var[B] = fxp

−1(1−p)). Our goal is to bound
the variance of A and use Chebyshev’s inequality.

A − B = ©­«p−1
∑

x ′∈U|hi (x)=hi (x ′)

fi,x ′дi (x ′)дi (x)
ª®¬ − p−1fi,x

= p−1
∑

x ′∈U\{x }|hi (x)=hi (x ′)

fi,x ′дi (x ′)дi (x).

Notice that A − B (the change caused by all flows but x) is indepen-
dent from B (just flow x), and thus:

VAR [A] = VAR [(A − B) + B] = VAR [A − B] + VAR [B]

≤ p−2E[L22,i]/w + fxp
−1(1 − p) ≤ 2p−1L22/w + fxp

−1.

We denote by �fx (i) ≜ A = Ci,hi (x)дi (x) the estimation for x’s
frequency provided by the i’th row. Then according to Chebyshev’s
inequality (where σ (A) =

√
Var[A]):

Pr
[����fx (i) − fx ��� ≥ ϵL2] = Pr

[
|Ci,hi (x)дi (x) − E

[
Ci,hi (x)дi (x)

]
| ≥ ϵL2

]
= Pr [|A − E [A] | ≥ ϵL2] ≤ Pr

 |A − E [A] | ≥
σ (A) · ϵL2√

2p−1L22/w + fxp−1


≤

2p−1L22/w + fxp
−1

(ϵL2)2
=

2L22/w + fx
p(ϵL2)2

=
2/w
pϵ 2
+

fx
p(ϵL2)2

≤
2/w
pϵ 2
+

1
pϵ 2L2

.

We want a constant probability of the error exceeding ϵL2 in each
row, so that the median of the rows will be correct with probability
1 − δ . Therefore, by demanding L2 ≥ 8p−1ϵ−2 and w ≥ 8p−1ϵ−2 we
get that the error probability is

Pr
[��� f̂x,i − fx

��� ≥ ϵL2
]
≤

2/w
pϵ2
+

1
pϵ2L2

≤ 3/8.

As the d = O(logδ−1) rows are independent, the algorithm’s
estimate, f̂x = mediani ∈{1, ...d }�fx (i), is correct with a probability
of at least 1 − δ using a standard Chernoff bound. Specifically, we
showed the correctness of Theorem 2. □

The formal proof of Theorem 5 is deferred to Appendix A.

THEOREM 5. Letw = 11ϵ−2p−1 andd = O(logδ−1); AlwaysCor-
rect NitroSketch guarantees:

Pr
[
| f̂x − fx | > ϵL2

]
< 2δ .

Interpretation of main theorems. Intuitively, the main theorems
prove that NitroSketch trades space for throughput while retaining
the same asymptotic error bounds as original sketches. Specifically, it
requires anO(p−1) factor more space than Count Sketch for the same
accuracy. Compared to Strawman Approach #1 (One-Array-Count-
Sketch), it provides faster updates and has lower space requirements.
The improvement in update time comes from reducing the number
of hash computations. While One-Array-Count-Sketch computes
two hashes per packet, NitroSketch only does so for each sampled
counter array. As the expected number of sampled counter arrays per
packet is dp = o(1), NitroSketch significantly reduces the processing
overheads. Space-wise, NitroSketch only requiresO(ϵ−2 logδ−1p−1)
space compared to the O(ϵ−2δ−1) memory of One-Array-Count-
Sketch and is therefore more cache resident. For example, we can set
p = d−2 = O(logδ−2) to get a space of O(ϵ−2 logδ−3). In summary,
One-Array-Count-Sketch makes two hash computations per packet
while NitroSketch makes just o(1) computations. We also formally
compare NitroSketch with Strawman Approach #2 in Appendix B.
Convergence time in practice. We use real Internet traces to esti-
mate the convergence time. For example, the first 10M source IPs
of the CAIDA 2016 [14] trace has a second norm of L2 ≈ 1.28 · 106
while 100M packets gives L2 ≈ 1.03 · 107. This means that if we fix
pmin = 2−7, we get guaranteed convergence for ϵ ≥ 2.9% after 10M
packets and ϵ ≥ 1% after 100M. In practice, we observe that the
actual error is much lower which suggests that our analysis is just
an upper bound and one can use smaller ϵ values as well. Finally,
we note that extending the counter array sizes further allows faster
convergence of the algorithm.

6 NITROSKETCH IMPLEMENTATION
We have implemented NitroSketch in C and integrated it with Open
vSwitch (OVS-DPDK), FD.io/Vector Packet Processing (VPP), and
BESS. In each platform, we perform the measurements using a
single thread measurement daemon. We integrate four sketches
with NitroSketch: UnivMon [55], Count-Min Sketch [27], Count
Sketch [17], and K-ary Sketch [51]. In each sketch implementation,
we use the xxHash library’s [23] hash function, and Intel’s AVX [45]
to parallelize the computation. The source code is available at [32].

At a high level, NitroSketch includes two modules: a data-plane
Sketching module and a control-plane Estimation module.The
Sketching module maintains the sketch data structure, and the Esti-
mation module fetches the data from the Sketching module. We now
describe the Sketching module.
OVS-DPDK Integration. OVS-DPDK enables the packet process-
ing entirely in user space, the user space vswitchd thread has a
three-tier look-up cache hierarchy. The first-level table works as an

NitroSketch: Robust and General Sketch-based Monitoring SIGCOMM ’19, August 19–23, 2019, Beijing, China

Exact Match Cache (EMC) and has the fastest look-up speed. If
a packet misses in EMC, it goes through the second-level classi-
fier as a Tuple Space Search and may trigger the third-level table
managed by an OpenFlow-compliant controller. For efficiency, we
integrate the sketching module with the OVS-DPDK’s EMC module
in dpif-netdev. We provide implementations for varying performance
requirements:
(1) All-in-one version (AIO). In this version, the Sketching module
works as a sub-module of the EMC module inside an OVS vswitchd-
PMD thread. For each packet batch received from DPDK PMD,
NitroSketch decides which packet header is measured without af-
fecting the packet batch, as described in Section 4.2. This extension
incurs a small processing overhead to the EMC module but dedicates
the CPU to all the tasks inside OVS-DPDK, such as DPDK, table
look-up, and measurement. The Sketching module in this version is
processed entirely in the OVS data plane (vswitchd).
(2) Separate-thread version. In this version the Sketching mod-
ule works as a separate thread alongside the OVS vswitchd thread.
For each batch of packets, the extended logic in EMC module (pre-
processing stage) in vswitchd decides which packets’ headers to add
into a shared buffer (modified from [16]). A separate NitroSketch
thread (sketch-updating stage) concurrently empties the buffer and
updates the sketch.

VPP and BESS Integration. VPP is a modular, flexible, and exten-
sible platform that runs entirely on the user-space. VPP is based on a
“packet processing graph”, where each node is a module and packets
are processed node by node. For instance, in a simple VPP based
L3 vSwitch, VPP first fetches packets from the network I/O as a
batch. VPP then sends the packet batch to the Ethernet-input module
(L2), and then through IP4-input and IP4-lookup modules (L3). We
implemented a measurement module in VPP 18.02 and added it to
the packet processing graph after the VPP IP stack. This module
runs both stages of NitroSketch in a dedicated thread, minimizing
the impact on other VPP plugins. Similarly, BESS is a light-weight
modular software switch, and we implement the sketching module
of NitroSketch as a plugin in the data plane processing pipeline.

Control Plane Module The control plane module uses the moni-
toring system to (i) periodically (at the end of each epoch) receive
sketching data from the data plane module through a 1GbE link
connected to the virtual switch; (ii) assign the sketching data to the
corresponding measurement tasks based on user definitions; (iii) cal-
culate the estimated results. For example, it can use UnivMon [55]
to calculate HH, Change detection, or traffic Entropy.

7 EVALUATION
Our evaluation demonstrates that NitroSketch: (a) can match 40Gbps
with a single core for measurement; (b) runs on software switches
with small CPU overheads; (c) provides accurate results once con-
verged; (d) has higher throughput (> 7.6× faster) and better accu-
racy once converged when compared to SketchVisor [43], and (e)
is more accurate and requires less memory than NetFlow [21] and
sFlow [71].

Testbed. We evaluate NitroSketch on a set of 4 commodity servers
running Ubuntu 16.04.03, each of which has an Intel Xeon E5-2620
v4 CPU@3.0Ghz, 128GB DDR4 2400Mhz memory, two Broadcom
BCM5720 1GbE NICs, and an Intel XL710 Ethernet NIC with

two 40-Gigabit ports. Our testbed has three hosts as the data plane
directly connected through 40Gbps links. The control is connected
through a 1Gbps link. Each virtual switch is configured with two
forwarding rules for bidirectional packet forwarding.

Workloads. We use four types of workloads: (a) CAIDA: 10 one-
hour public CAIDA traces from 2016 [14] and 2018 [15] each con-
taining 1 to 1.9 billion packets; (b) Min-sized: simulated traffic with
min-sized packets for stress testing; (c) Data center: data center
traces UNI1 and UNI2 from [11]; (d) Cyber attack: DDoS attack
traces from [58]. The average packet sizes in the CAIDA, Cyber
attack, and data center traces are 714, 272, and 747 bytes respec-
tively. To minimize confounding effects of overheads, we modify the
MAC addresses of packets to avoid cache misses on the Exact-Match
Cache of OVS-DPDK. We use MoonGen [31] to replay traces and
to generate random 64B packets.
Sketches and metrics. We evaluate NitroSketch with four popular
sketches Count-Min Sketch [27], Count-Sketch [17], UnivMon [55],
and K-ary Sketch [51]. We use 5-tuple as the flow key and consider
the following performance metrics:

• Throughput: in gigabits per second (Gbps) of traffic.

• Packet Rate: Millions of transmitted packets per second (Mpps).
For 64B packets, 10Gbps throughput is equivalent to 14.88Mpps,
and 40Gbps equals to 59.53Mpps.

• CPU Utilization: percentage of the CPU time spent on each
module/function, measured by Intel VTune Amplifier [46].

• Accuracy: the accuracy of three measurement tasks: Heavy Hitter
(HH), Change Detection (Change), and Entropy Estimation (En-
tropy). For HH and Change, we set a threshold 0.05% and estimate
the mean relative errors on the detected heavy flows. We report
relative error= |t−tr eal |tr eal

, where tr eal is the ground truth of a task
and t is the measured value. For each data point, we run 10 times
independently and report the median and the standard deviation.
Also, the recall rate is defined as the ratio of true instances found.

Parameters. By default, we select parameters based on a 5% accu-
racy guarantee. Note that this is a theoretical guarantee for parameter
selection purposes and NitroSketch achieves higher fidelity in prac-
tice (e.g., < 1% errors). For throughput evaluation, we set a fixed
p = 0.01 geometric sampling rate for NitroSketch and allocate the
memory based on the precision guarantee. We evaluate four sketches
in NitroSketch. (a) UnivMon: we allocate 4MB, 2MB, 1MB, 500KB
for the first HH sketches, and 250KB for the rest of sketches. (b)
Count-Min: we use 200KB memory for 5 rows of 10000 counters.
(c) Count Sketch: we allocate 2MB for 5 rows of 102400 counters.
(d) K-ary Sketch: we utilize 2MB for 10 rows of 51200 counters.

7.1 Throughput
Throughput with AIO version. We evaluate the throughput of the
all-in-one version in Figure 8(a) with 1h CAIDA traces and 1h
datacenter traces (looped). All original sketches implemented with
OVS-DPDK suffer from significant throughput degradation. Among
the four sketches, UnivMon achieves 2.1Gbps and the faster Count-
Min only reaches 5.5Gbps. With NitroSketch, all sketches achieve
10G and 40G line rates under CAIDA and datacenter traces, without
adding an extra thread. We observe that inside this vswitchd thread,

SIGCOMM ’19, August 19–23, 2019, Beijing, China Z. Liu et al.

UnivMon CM CS K-ary
(a) 40GbE AIO version with CAIDA trace.

0

20

40

Th
ro

ug
hp

ut
 (G

bp
s)

OVS-DPDK(40G)
Originial

NitroSketch w/OVS

0

2

4

6.5

Pa
ck

et
 R

at
e

(M
pp

s)

UnivMon CM CS k-ary
(b) 40GbE with 64B packets.

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s)

BESS/40G
VPP/40G
OVS-DPDK/40G
Original

NitroSketch w/OVS
NitroSketch w/VPP
NitroSketch w/BESS

0

20

40

60

Pa
ck

et
 R

at
e

(M
pp

s)

UnivMon CM CS k-ary
(c) 40GbE with Datacenter packets.

0
10
20
30
40

Th
ro

ug
hp

ut
 (G

bp
s)

BESS/40G
VPP/40G
OVS-DPDK/40G
Original

NitroSketch w/OVS
NitroSketch w/VPP
NitroSketch w/BESS

0.0

2.5

5.0

7.5

10.0

Pa
ck

et
 R

at
e

(M
pp

s)

Figure 8: Throughput (left y-axis) and packet rates (right y-axis) on OVS-DPDK, VPP, and BESS. In (a), OVS-DPDK uses single-
thread inline version while in (b) and (c) use a single-thread NitroSketch and another two threads for the switches.

0 5 10 15
Memory Usage (MB)

 (a)

0

10

20

P
ac

ke
t R

at
e

(M
pp

s)

OVS-DPDK(40G)
Error Target 5%
Error Target 3%

0 1 2 3 4
No. of speedup components applied

 (b)

0

20

40

Th
ro

ug
hp

ut
 (G

bp
s) UnivMon

+AVX2 Hashing
+Counter Array Sampling
+Batched Geometric
+Reduce Heap Update

Figure 9: (a) Throughput vs. memory for varying error targets.
(b) Throughput with different NitroSketch components applied
(Setting: one vswitchd thread with 40GbE NIC).

DPDK, OVS, and NitroSketch modules use all the potential of a
single core.

Throughput with separate-thread. Figures 8(b,c) show the through-
put of the separate-thread version. It is already difficult for virtual
switches to achieve 10G line-rate on a single core with 64B packets.
For 40G, even vanilla DPDK does not reach the line rate with 64B
packets due to the hardware limitation in Intel XL710 NIC [29].
This means that OVS-DPDK, VPP, and BESS cannot reach this
line rate under 64B packet traces. In Figure 8(b), we see that NitroS-
ketch has a negligible throughput impact on the virtual switches.
That is, it achieves 20Gbps+ line rate under any workload. As is
evident from Figure 8(b) and (c), NitroSketch is not the bottleneck
in achieving 40G line rates for 64B packets and for data center
workloads.

Throughput vs. Memory. To guarantee an error budget ϵ (for any
distribution), the sampling probability p in the pre-processing stage
depends on the amount of allocated memory. To illustrate this trade-
off, we set error guarantees 3% and 5% for UnivMon with NitroS-
ketch. Figure 9(a) shows that NitroSketch copes with 40G OVS-
DPDK with an acceptable increase in memory.

Improvement breakdown. While implementing NitroSketch, we
used multiple optimization techniques. Therefore, we evaluate the
gains of each optimization separately for UnivMon with NitroSketch.
Figure 9(b) confirms that the counter array sampling technique offers
the most significant speedup.

Throughput with AlwaysCorrect NitroSketch. To evaluate the
convergence time in this mode, we implement AlwaysCorrect Ni-
troSketch with Count-Sketch and UnivMon in OVS-DPDK with the
AIO version. In Figure 11(c), we report the measured throughput
every 0.1sec (extra measurement overhead added) under 40GbE. We
see that it needs about 0.6s for Count-Sketch and 0.8s for UnivMon
to reach full speed.

UnivMon CM CS k-ary
(a) CPU usage on 10G NIC

0

50

100

C
PU

 U
sa

ge
 (%

) OVS-DPDK
Sketches

NitroSketch-AIO

UnivMon CM CS k-ary
(b) CPU usage on 40G NIC

0

50

100

C
PU

 U
sa

ge
 (%

) OVS-DPDK NitroSketch-ST

Figure 10: CPU usage of the all-in-one version (NitroSketch-
AIO) and the separate-thread version (NitroSketch-ST).

7.2 CPU Utilization
A single DPDK PMD thread is continuously polling packets from
NIC. It “saturates” a core and utilizes 100% CPU reported from a
universal process viewer (e.g., htop). Therefore, we profile the CPU
time of each module.
CPU Time in all-in-one. We measure the CPU time in the same
setting as in Figure 8(a). As shown in Figure 10(a), when vanilla
sketches are running, most of the CPU time is spent on sketching, and
the overall switching performance drops. After applying NitroSketch-
AIO, the switch achieves line-rate while keeping the NitroSketch’s
CPU < 20%.
CPU Time in separate-thread. Figure 10(b) compares the CPU
time between OVS-DPDK and NitroSketch-Separate Thread, in a
setting as in Figure 8(b). When the switch is saturated with min-
sized packets (∼22Mpps), the cores for packet switching are running
at nearly 100% while NitroSketch is not running at full-speed and
would handle higher packet rates, if the virtual switch supports.

7.3 Accuracy and Convergence Time
We evaluate the accuracy of UnivMon, CMS, Count Sketch and
K-ary in NitroSketch with different sized epochs and report in Fig-
ures 11 and 12. Our experiments show that NitroSketch converges
to similar accurate results as vanilla sketches after receiving enough
packets. As depicted in Figure 11(a) and (b), with fixed 0.1 and 0.01
sampling rates, NitroSketch with UnivMon can achieve a similar ac-
curacy as the vanilla UnivMon after receiving 8M packets. As shown
in Figure 12(a) and (b), tested sketches with NitroSketch can achieve
better-than-guaranteed results (< 5% error) after seeing 2-4M pack-
ets and converge to similar accuracy after receiving 8-16M packets.
An interesting finding here is that Count-Min Sketch achieves better-
than-original results when NitroSketch is enabled and converged. We
believe this is because Count-Min Sketch overestimates the counts
(i.e., always +1) and produced “biased” estimates and NitroSketch’s

NitroSketch: Robust and General Sketch-based Monitoring SIGCOMM ’19, August 19–23, 2019, Beijing, China

0%
5%

10%
15% HH (UnivMon) NitroSketch w/0.01

NitroSketch w/0.1
Vanilla

0%
5%

10%
15% Change (UnivMon)

1M 2M 4M 8M 16M 64M 256M 1B
Epoch Size (# of packets)

 (a) Vanilla UnivMon vs. NitroSketch (8MB).

0%
5%

10%
15%

M
ea

n
R

el
at

iv
e

Er
ro

r

Entropy (UnivMon)

0%
5%

10%
15% HH (UnivMon) NitroSketch w/0.01

NitroSketch w/0.1
Vanilla

0%
5%

10%
15% Change (UnivMon)

1M 2M 4M 8M 16M 64M 256M 1B
Epoch Size (# of packets)

 (b) Vanilla UnivMon vs. NitroSketch (2MB).

0%
5%

10%
15%

M
ea

n
R

el
at

iv
e

Er
ro

r

Entropy (UnivMon)

0 1 2 3
Time (s)

 (c) AlwayCorrect Mode Throughput

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s)

AC-NitroSketch(Count-Sketch)
AC-NitroSketch(UnivMon)

Figure 11: (a),(b) Error rates of vanilla UnivMon and NitroSketch with different fixed sampling rates p (0.1 and 0.01) and memory
settings (8MB and 2MB). (c) Throughput over time for AlwaysCorrect NitroSketch with different sketches.

0%
5%

10%
15% HH (Count-Min) NitroSketch w/0.01

NitroSketch w/0.1
Vanilla

0%
5%

10%
15% HH (Count Sketch)

1M 2M 4M 8M 16M 64M 256M 1B
Epoch Size (# of packets)

 (a) Vanilla sketches vs. NitroSketch (2MB).

0%
5%

10%
15%

M
ea

n
R

el
at

iv
e

Er
ro

r

Change (k-ary)

0%
5%

10%
15% HH (Count-Min) NitroSketch w/0.01

NitroSketch w/0.1
Vanilla

0%
5%

10%
15% HH (Count Sketch)

1M 2M 4M 8M 16M 64M 256M 1B
Epoch Size (# of packets)

 (b) Vanilla sketches vs. NitroSketch (200KB).

0%
5%

10%
15%

M
ea

n
R

el
at

iv
e

Er
ro

r

Change (k-ary)

2 4 6 8 10
Sampling Rate (%)

 (c) Guaranteed Convergence Rate

1M

10M

100M

C
on

ve
rg

en
ce

 T
im

e
(p

ac
ke

ts
) Error Target: 1%

Error Target: 3%
Error Target: 5%

Figure 12: (a),(b) Error rates of vanilla sketches and NitroSketch with different fixed sampling rates p (0.1 and 0.01) and memory
settings (2MB and 200KB). (c) Proven convergence time on CAIDA traces.

SketchVisor NitroSketch

(a) In-memory test with CAIDA traces

0
10
20
40
60
80

Pa
ck

et
 R

at
e

(M
pp

s)

Fast-path
(20,50,100%)
UnivMon

sFlow NetFlow NitroSketch

 (b) Memory consumption on virtual switches

0

50

100

M
em

or
y

U
sa

ge
 (M

B
)

OVS-
DPDK
VPP
UnivMon

Figure 13: (a) Throughput: SketchVisor vs. NitroSketch. (b)
Memory usage: NetFlow vs. NitroSketch.

sampling procedure actually corrects such an overestimation. Fi-
nally, it is worth noting that the error results are collected based
on fixed-rate NitroSketch. When adopting AlwaysLineRate Mode
with adaptive sampling rates on real-world traffic, NitroSketch will
achieve better accuracy and faster convergence.

Since NitroSketch uses sampling to select packets, it requires a
convergence time to produce a guaranteed accurate result (analyzed
in section 5). For different error targets on CAIDA traces, we study
the trade-off between geo-sampling rate p and the convergence time
(in terms of the number of packets) and report in Figure 12(c).
Further, NitroSketch is expected to converge faster on data center
traffic due to their more skewed workload and expected larger L2
value establishment.

7.4 Comparison with Other Solutions
SketchVisor accelerates sketches using a fast path algorithm in
its front-end. Since the source code of SketchVisor [43] on Open
vSwitch is not publicly available we implement its fast-path algo-
rithm in C and carefully integrate it with UnivMon on OVS-DPDK
using the same FIFO buffer as NitroSketch [16]. SketchVisor’s per-
formance depends on the portion of the traffic that is processed by
the fast path. Thus we evaluate the throughput based on in-memory
testing with manually injecting 20%, 50%, 100% of traffic into the fast
path. We allocate memory for SketchVisor and NitroSketch to detect
top 100 HHs, we use 900 counters for the fast-path and set a 5% error
guarantee on UnivMon.

As reported in Figure 13(a), the throughput of SketchVisor im-
proves when the percentage of traffic handled by the fast-path in-
creases. When the fast-path processes 20% of the traffic, it achieves
2.12Mpps. SketchVisor reaches its maximum packet rate of 6.11Mpps
when 100% traffic goes into the fast-path. Meanwhile, NitroSketch
runs at a dramatically faster speed of 83Mpps. Unsurprisingly, this
explains the situation that SketchVisor uses 100% CPU (not shown in
the figure) while NitroSketch requires less than 50% (shown in Fig-
ure 10(b)) when running in a separate thread on OVS-DPDK.

We observe that to cope with the full 10G speed and avoid packet
drops, the fast-path has to handle 100% of the packets. For a fair
comparison on OVS, we prevent packet drop by using a very large

SIGCOMM ’19, August 19–23, 2019, Beijing, China Z. Liu et al.

4M 16M 64M 256M
CAIDA Epoch (# of Packets)

 (a)

0

5

10

E
rr

or
 R

at
e

(%
) SketchVisor(100%)

SketchVisor(50%)
SketchVisor(20%)
NitroSketch(UnivMon)

4M 16M 64M 256M
DDoS Epoch (# of Packets)

 (b)

0

5

10

E
rr

or
 R

at
e

(%
) SketchVisor(100%)

SketchVisor(50%)
SketchVisor(20%)
NitroSketch (UnivMon)

4M 16M 64M 256M
DC Epoch (# of Packets)

 (c)

0

5

10

E
rr

or
 R

at
e

(%
) SketchVisor(100%)

SketchVisor(50%)
SketchVisor(20%)
NitroSketch (UnivMon)

Figure 14: HH errors of SketchVisor and NitroSketch, in CAIDA, DDoS, and datacenter traces.

1M 4M 16M 64M 256M
CAIDA Epoch (# of packets)

 (a)

0

50

100

R
ec

al
l R

at
e

(%
) NitroSketch w/0.01

NetFlow w/0.01
NetFlow w/0.002
NetFlow w/0.001

1M 4M 16M 64M 256M
DDoS Epoch (# of packets)

 (b)

0

50

100
R

ec
al

l R
at

e
(%

) NitroSketch w/0.01
NetFlow w/0.01

NetFlow w/0.002
NetFlow w/0.001

1M 4M 16M 64M 256M
DC Epoch (# of packets)

 (c)

0

50

100

R
ec

al
l R

at
e

(%
) NitroSketch w/0.01

NetFlow w/0.01
NetFlow w/0.002
NetFlow w/0.001

Figure 15: HH recalls of NetFlow with different sampling rates vs. NitroSketch with 0.01, using CAIDA, DDoS, and datacenter traces.

buffer. We manually redirect 20%, 50%, and 100% of the packets to
the fast-path. Figure 14(a), (b) and (c) report relative errors on HH
in the three traces. We can see that NitroSketch has larger errors
before convergence (< 3.61M packets) but is more accurate than
SketchVisor after convergence. In a 10G OVS-DPDK switch, this
stabilization time can be as little as 0.24 seconds. Here, SketchVisor
is inaccurate in the CAIDA and DDoS trace in Figure 14(a) and (b)
and is relatively accurate in the data center trace [11]. In contrast,
NitroSketch achieves good accuracy on all traces.

Comparison with NetFlow/sFlow. On OVS-DPDK and VPP, Net-
Flow/sFlow are default monitoring tools. We configure OVS-DPDK
to enable sFlow and VPP to enable NetFlow. We set a polling inter-
val of 10 seconds with sampling rates of 0.001, 0.002, and 0.01 for
NetFlow. For fairness, we configured NitroSketch with a sampling
probability of 0.01. In practice, it is often unreasonable to configure
NetFlow with higher sampling rates because a large sampling rate
can potentially incur huge memory consumption in high line-rate
switches. On the controller, we collect the sampled packets/reports
with Wireshark [24] directly from the port. Figure 13(b) indicates
that NetFlow consumes much more memory with 0.01 sampling
rate. In NetFlow (as in Figure 15), we observe that the recall rates of
100 HHs are low in the CAIDA and DDoS traces and are relatively
good in the UNI2 datacenter trace [11]. This is because UNI2 is
quite skewed while CAIDA and DDoS are heavy tailed. In contrast,
NitroSketch achieves high recall rates in all cases.

8 CONCLUSIONS AND DISCUSSION
Sketching continues to be a promising direction in network measure-
ment. However, its current performance on software switches is far
from ideal to serve as a viable line-rate and low CPU consumption
option. We identify the key bottlenecks and optimizations for soft-
ware sketches. Our optimization is encapsulated into NitroSketch, an

open source high-performance software sketching framework [32].
NitroSketch supports a variety of measurement tasks and provides
accuracy guarantees. Our evaluation shows that NitroSketch achieves
the line rate using multiple software switches, and offers competitive
accuracy compared to the alternatives.

Interestingly, by replacing each Count Sketch instance in Univ-
Mon with AlwaysCorrect NitroSketch, we get an optimized solution
that can provide a (1 + ϵ)-approximation for measurement tasks
which are known to be infeasible to estimate accurately from a
uniform sample [60]. Specifically, count distinct cannot be approx-
imated better than a Ω(1/√p) factor while Entropy does not admit
any constant factor approximation even if p = 1/2!

In Appendices, this paper has supporting material that has not
been peer reviewed. Finally, we can state that this work does not
raise any ethical issues.

9 ACKNOWLEDGEMENTS
We would like to thank the anonymous SIGCOMM reviewers and
our shepherd Alex C. Snoeren for their thorough comments and feed-
back that helped improve the paper. We thank Omid Alipourfard,
Sujata Banerjee, Minlan Yu, and Intel SPAN center for their helpful
suggestions. This work was supported in part by CONIX Research
Center, one of six centers in JUMP, a Semiconductor Research Cor-
poration program sponsored by DARPA, NSF grants CNS-1565343,
CNS-1700521, NSF CAREER-1652257, ONR Award N00014-18-1-
2364, Israeli Science Foundation grant 1505/16, the Lifelong Learn-
ing Machines program from DARPA/MTO, the Technion HPI re-
search school, the Zuckerman Foundation, the Technion Hiroshi Fu-
jiwara Cyber Security Research Center, the Israel Cyber Directorate,
the Cyber Security Research Center and the Lynne and William
Frankel Center for Computing Science at Ben-Gurion University.

NitroSketch: Robust and General Sketch-based Monitoring SIGCOMM ’19, August 19–23, 2019, Beijing, China

REFERENCES
[1] Omid Alipourfard, Masoud Moshref, and Minlan Yu. 2015. Re-evaluating Mea-

surement Algorithms in Software. In Proc. of ACM HotNets.
[2] Omid Alipourfard, Masoud Moshref, Yang Zhou, Tong Yang, and Minlan Yu.

2018. A Comparison of Performance and Accuracy of Measurement Algorithms
in Software. In Proc. of ACM SOSR.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-aware Load Balancing for Datacenters. In Proc. of ACM SIGCOMM.

[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKe-
own, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal Near-optimal
Datacenter Transport. In Proc. of ACM SIGCOMM.

[5] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The Space Complexity of
Approximating the Frequency Moments. In Proc. of ACM STOC.

[6] Eran Assaf, Ran Ben-Basat, Gil Einziger, and Roy Friedman. 2018. Pay for a
sliding bloom filter and get counting, distinct elements, and entropy for free. In
Proc. of IEEE INFOCOM.

[7] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
2002. Counting Distinct Elements in a Data Stream. In Proc. of RANDOM.

[8] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and Erez
Waisbard. 2017. Constant Time Updates in Hierarchical Heavy Hitters. In Proc.
of ACM SIGCOMM and CoRR/1707.06778.

[9] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and
Erez Waisbard. 2018. Volumetric Hierarchical Heavy Hitters. In Proc. of IEEE
MASCOTS.

[10] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2018. Efficient
Measurement on Programmable Switches Using Probabilistic Recirculation. In
Proc. of IEEE ICNP.

[11] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In Proc. of ACM IMC.

[12] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-
croTE: Fine Grained Traffic Engineering for Data Centers. In Proc. of ACM
CoNEXT.

[13] Supratik Bhattacharyya, Andre Madeira, S. Muthukrishnan, and Tao Ye. 2007.
How to Scalably and Accurately Skip Past Streams. In Proc. of IEEE ICDE.

[14] CAIDA. 2016. The CAIDA UCSD Anonymized Internet Traces equinix-chicago.
http://www.caida.org/data/passive/passive_2016_dataset.xml

[15] CAIDA. 2018. The CAIDA UCSD Anonymized Internet Traces equinix-chicago.
http://www.caida.org/data/passive/passive_dataset.xml

[16] Cameron. 2015. Fast Concurrent Queue. https://github.com/cameron314/
readerwriterqueue

[17] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent
Items in Data Streams. In Proc. of ICALP.

[18] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rotten-
streich. 2018. Catching the Microburst Culprits with Snappy. In Proc. of SelfDN
Workshop.

[19] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rottenstre-
ich, Steven A. Monetti, and Wang Tzuu-Yi. 2019. Fine-Grained Queue Measure-
ment in the Data Plane. In Proc. of ACM CoNEXT.

[20] Kenjiro Cho. 2017. Recursive Lattice Search: Hierarchical Heavy Hitters Revisited.
In Proc. of ACM IMC.

[21] Cisco. 2012. Introduction to Cisco IOS NetFlow. https://www.cisco.
com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_
paper0900aecd80406232.html

[22] Cisco. 2015. Cisco Nexus 1000V Switch. https://www.cisco.com/c/en/us/
products/switches/nexus-1000v-switch-vmware-vsphere/index.html

[23] Yann Collet. 2016. xxHash Library. http://www.xxhash.com/
[24] Gerald Combs. 1998. Wireshark. https://www.wireshark.org
[25] Graham Cormode and Minos Garofalakis. 2007. Sketching Probabilistic Data

Streams. In Proc. of ACM SIGMOD.
[26] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. 2008.

Finding Hierarchical Heavy Hitters in Streaming Data. ACM Trans. Knowl. Discov.
Data (2008).

[27] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream Sum-
mary: The Count-Min Sketch and Its Applications. J. Algorithms (2005).

[28] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. 2011. DevoFlow: Scaling Flow Management for
High-performance Networks. In Proc. of ACM SIGCOMM.

[29] Intel Ethernet Networking Division. 2018. Intel Ethernet Controller 710 Series
Datasheet. https://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/xl710-10-40-controller-datasheet.pdf

[30] Rick Durrett. 2010. Probability: Theory and Examples (4th ed.). Cambridge
University Press.

[31] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet Generator. In
Proc. of ACM IMC.

[32] Zaoxing Liu et al. 2019. NitroSketch Source Code. https://github.com/zaoxing/
NitroSketch

[33] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. 2015. Bohatei:
Flexible and Elastic DDoS Defense. In Proc. of USENIX Security.

[34] FD.io. 2018. Vector Packet Processing. https://fd.io/technology/
[35] William Feller. 1943. Generalization of a Probability Limit Theorem of Cramér.

Trans. Amer. Math. Soc. (1943).
[36] Pedro Garcia-Teodoro, Jesus E. Diaz-Verdejo, Gabriel Macia-Fernandez, and

E. Vazquez. 2009. Anomaly-Based Network Intrusion Detection: Techniques,
Systems and Challenges. Computers and Security (2009).

[37] Robert D Gordon. 1941. Values of Mills’ Ratio of Area to Bounding Ordinate and
of the Normal Probability Integral for Large Values of the Argument. The Annals
of Mathematical Statistics (1941).

[38] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-Driven Streaming Network Telemetry. In
Proc. of ACM SIGCOMM.

[39] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. 2015. SoftNIC: A Software NIC to Augment Hardware. Technical
Report.

[40] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti, Ste-
fano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast Connectivity Recovery
Entirely in the Data Plane. In Proc. of USENIX NSDI.

[41] Nan Hua, Bill Lin, Jun (Jim) Xu, and Haiquan (Chuck) Zhao. 2008. BRICK:
ANovel Exact Active Statistics Counter Architecture. In Proc. of ACM/IEEE
ANCS.

[42] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar, and
Harry C. Li. 2013. An Analysis of Facebook Photo Caching. In Proc. of ACM
SOSP.

[43] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and
Gong Zhang. 2017. SketchVisor: Robust Network Measurement for Software
Packet Processing. In Proc. of ACM SIGCOMM.

[44] Qun Huang, Patrick PC Lee, and Yungang Bao. 2018. SketchLearn: Relieving
User Burdens in ApproximateMeasurement with Automated Statistical Inference.
In Proc. of ACM SIGCOMM.

[45] Intel. 2012. Intel Advanced Vector Extensions. https://software.intel.com/en-us/
isa-extensions/intel-avx

[46] Intel. 2018. Intel VTune Amplifier. https://software.intel.com/en-us/vtune
[47] T. S. Jayram, Andrew McGregor, S. Muthukrishnan, and Erik Vee. 2007. Estimat-

ing Statistical Aggregates on Probabilistic Data Streams. Proc. of ACM PODS
(2007).

[48] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proc. of ACM SOSP.

[49] Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, Rong Pan, and Balaji
Prabhakar. 2010. AF-QCN: Approximate Fairness with Quantized Congestion
Notification for Multi-tenanted Data Centers. In Prof. of IEEE HOTI.

[50] Maurice George Kendall, Alan Stuart, and Keith Ord. 1987. Kendall’s Advanced
Theory of Statistics. Oxford University Press, Inc.

[51] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. 2003.
Sketch-based Change Detection: Methods, Evaluation, and Applications. In Proc.
of ACM IMC.

[52] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. 2006. Data
Streaming Algorithms for Estimating Entropy of Network Traffic. In Proc. of
ACM SIGMETRICS/Performance.

[53] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira, and
Scott Shenker. 2013. Ensuring Connectivity via Data Plane Mechanisms. In Proc.
of USENIX NSDI.

[54] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable Load Balancing
for Large-Scale Storage Systems with Distributed Caching. In Proc. of USENIX
FAST.

[55] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow
Monitoring with UnivMon. In Proc. of ACM SIGCOMM.

[56] Zaoxing Liu, Greg Vorsanger, Vladimir Braverman, and Vyas Sekar. 2015. En-
abling a "RISC" Approach for Software-Defined Monitoring Using Universal
Streaming. In Proc. of ACM HotNets.

[57] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Ab-
dul Kabbani. 2008. Counter Braids: A Novel Counter Architecture for Per-
FlowMeasurement. In Proc. of ACM SIGMETRICS.

[58] MACCDC. 2012. Capture Traces from Mid-Atlantic CCDC. http://www.netresec.
com/?page=MACCDC

[59] Jiri Matousek and Jan Vondrak. 2008. The Probabilistic Method-Lecture Notes.
http://www.cs.cmu.edu/~15850/handouts/matousek-vondrak-prob-ln.pdf

[60] Andrew McGregor, A Pavan, Srikanta Tirthapura, and David P. Woodruff. 2016.
Space-Efficient Estimation of Statistics Over Sub-Sampled Streams. Algorithmica
(2016).

http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://github.com/cameron314/readerwriterqueue
https://github.com/cameron314/readerwriterqueue
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-vsphere/index.html
https://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-vsphere/index.html
http://www.xxhash.com/
https://www.wireshark.org
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://github.com/zaoxing/NitroSketch
https://github.com/zaoxing/NitroSketch
https://fd.io/technology/
https://software.intel.com/en-us/isa-extensions/intel-avx
https://software.intel.com/en-us/isa-extensions/intel-avx
https://software.intel.com/en-us/vtune
http://www.netresec.com/?page=MACCDC
http://www.netresec.com/?page=MACCDC
http://www.cs.cmu.edu/~15850/handouts/matousek-vondrak-prob-ln.pdf

SIGCOMM ’19, August 19–23, 2019, Beijing, China Z. Liu et al.

[61] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient
Computation of Frequent and Top-k Elements in Data Streams. In Proc. of ICDT.

[62] Microsoft. 2016. Hyper-V Virtual Switch Overview. https://technet.microsoft.
com/en-us/library/hh831823.aspx

[63] Jayadev Misra and David Gries. 1982. Finding Repeated Elements. Technical
Report.

[64] M. Mitzenmacher, T. Steinke, and J. Thaler. 2012. Hierarchical Heavy Hitters
with the Space Saving Algorithm. In Proc. of ALENEX.

[65] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-Directed Hardware Design for Network Performance Monitoring. In
Proc. of ACM SIGCOMM.

[66] George Nychis, Vyas Sekar, David G. Andersen, Hyong Kim, and Hui Zhang.
2008. An Empirical Evaluation of Entropy-based Traffic Anomaly Detection. In
Proc. of ACM IMC.

[67] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-
halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martin Casado. 2015. The Design and Implementation of Open vSwitch. In Proc.
of USENIX NSDI.

[68] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. 2004. Reversible
Sketches for Efficient and Accurate Change Detection over Network Data Streams.
In Proc. of ACM IMC.

[69] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data
Plane. In Proc. of ACM SOSR.

[70] Eric V Slud. 1977. Distribution inequalities for the binomial law. The Annals of
Probability (1977).

[71] Mea Wang, Baochun Li, and Zongpeng Li. 2004. sFlow: Towards Resource-
Efficient and Agile Service Federation in Service Overlay Networks. In Proc. of
IEEE ICDCS.

[72] Li Yang, Wu Hao, Pan Tian, Dai Huichen, Lu Jianyuan, and Liu Bin. 2016. CASE:
Cache-assisted Stretchable Estimator for High Speed Per-flow Measurement. In
Proc. of IEEE INFOCOM.

[73] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui
Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and Fast
Network-wide Measurements. In Proc. of ACM SIGCOMM.

[74] Lei Ying, R. Srikant, and Xiaohan Kang. 2015. The Power of Slightly More than
One Sample in Randomized Load Balancing. In Proc. of IEEE INFOCOM.

[75] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang, Karl Deng,
and Lihua Yuan. 2019. dShark: A General, Easy to Program and Scalable Frame-
work for Analyzing In-network Packet Traces. In Proc. of USENIX NSDI.

[76] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Mea-
surement with OpenSketch. In Proc. of USENIX NSDI.

A ANALYSIS OF ALWAYSCORRECT
NITROSKETCH

We now formally analyze the accuracy guarantees of AlwaysCorrect
NitroSketch (Algorithm 1). We start with Lemma 6 that shows that
once AlwaysCorrect NitroSketch converges (see Line 14), the L2 is
large enough to justify sampling with probability pmin. We analyze
the worst case scenario here where once starting to sample we always
use the smallest probability and for convenience denote p ≡ pmin.

LEMMA 6. When AlwaysCorrect NitroSketch starts sampling:

Pr
[
L2 ≥ 11ϵ−2p−1

]
≥ 1 − δ .

PROOF. Since L2 grows monotonically with the number of pack-
ets, it is enough to show that the condition of Line 14 implies the
lower bound on the L2 value. Namely, we assume that

mediani ∈[d]
w∑
y=1

C2
i,y > 121(1 + ϵ

√
p)ϵ−4p−2. (1)

It is known that given a Count Sketch that is configured for a
(ϵ ′,δ)-guarantee, it is possible to compute a (1 + ϵ ′)-approximation
of the L2 with probability 1 − δ [5]. Specifically, as throughout
the processing of S our sketch is identical to a Count Sketch (for

ϵ ′ = ϵ
√
p), we have that:

Pr

������©­«mediani ∈[d]

w∑
y=1

C2
i,y

ª®¬ − L22
������ > ϵ ′L22

 ≤ δ .

Combining this with (1), the lemma follows. □

In AlwaysCorrect NitroSketch, there are d = O(logδ−1) rows,
each having w = 11ϵ−2p−1 counters. As long as the sketch has
not ’converged’ (see Line 14), it is indistinguishable to a Count
Sketch [17] with a guarantee of ϵ ′ ≜ ϵ

√
p. Thus, given a flow x , if

converged = 0 then Algorithm 1 guarantees:

Pr
[
| f̂x − fx | ≤ ϵL′2

]
≤ δ .

As ϵ ′ = ϵ
√
p ≤ ϵ the algorithm provides the desired accuracy

guarantee prior to convergence. Henceforth, we assume that we
converged and show that the error is still at most ϵL2.

We denote by u the index of the packet that during its processing
the condition in Line 14 was satisfied and the sketch converged. That
is, packets ai , . . . ,au were processed using a UPDATE(1), while
au+1, . . . ,am followed a UPDATE(p). Further, we denote by S ≜
a1, . . . ,au the substream of the first u packets, by ÜS ≜ au+1, . . . ,am
the remaining substream, and for a flow x we use fx and Üfx to
denote its frequency in S and ÜS . Note that the overall frequency of
x is fx = fx + Üfx . Additionally, we denote the number of times a
packet that belongs to a flow x in ÜS was sampled by the i’th row as
Üfx,i . Similarly to the analysis of Theorem 2, we first analyze the

guarantee provided by a single row. Namely, fix some flow x ∈ U
and a row i ∈ {1, . . . ,d}; the counter associated with x on this row is
Ci,hi (x). Observe that we can express the value of the i’th estimator
as:

Ci,hi (x)дi (x) =
∑

y :hi (y)=hi (x)
fyдi (x)дi (y)

+ p−1 ·
∑

y :hi (y)=hi (x)

Üfy,iдi (x)дi (y). (2)

That is, every flow y that is mapped to the same counter as x (i.e.,
hi (y) = hi (x)) changes the estimation by fyдi (x)дi (y)+p

−1 Üfy,iдi (x)дi (y)

– every packet of y in S surely adds дi (y) to the counter (Algorithm 1,
Line 13), while every sampled packet in ÜS modifies the counter by
p−1дi (y) (Algorithm 1, Line 20).

Next, we denote A ≜
∑
y :hi (y)=hi (x) fyдi (x)дi (y) and B ≜ p−1 ·∑

y :hi (y)=hi (x)
Üfy,iдi (x)дi (y) (i.e., Ci,hi (x)дi (x) = A + B). We note

that A and B are independent and that E
[
Ci,hi (x)дi (x)

]
= E [A] +

E [B] = fx + Üfx = fx . That is, the resulting estimator for row i is
unbiased.

We now turn to bound the variance of the estimator by bounding
Var[A − fx] and Var[B − p−1 Üfx,i]. First, since

Pr [hi (x) = hi (y)] = 1/w

for x , y, observe that:

Var[A − fx] = Var


∑
y :hi (y)=hi (x)

fyдi (x)дi (y) − fx



https://technet.microsoft.com/en-us/library/hh831823.aspx
https://technet.microsoft.com/en-us/library/hh831823.aspx

NitroSketch: Robust and General Sketch-based Monitoring SIGCOMM ’19, August 19–23, 2019, Beijing, China

= Var


∑
y,x :hi (y)=hi (x)

fyдi (x)дi (y)


= E


∑

y,x :hi (y)=hi (x)
fy

2
 ≤ 1/w

∑
y∈U

fy
2
. (3)

Next, let us analyze the variance of B − p−1 Üfx,i :

Var[B − p−1 Üfx,i]

= Var
p−1 ·

∑
y :hi (y)=hi (x)

Üfy,iдi (x)дi (y) − p
−1 Üfx,i


= Var

p−1 ·
∑

y,x :hi (y)=hi (x)

Üfy,iдi (x)дi (y)


= E

p−2 ·
∑

y,x :hi (y)=hi (x)

Üfy,i
2
 ≤ p−2/w · E


∑
y∈U

Üfy,i
2
 . (4)

Similarly to Lemma 3, we have that E
[∑

y∈U Üfy,i
2]
≤ 2p

∑
y∈U Üfy

2,
which allows reduce (4) to

Var[B − p−1 Üfx,i] ≤ 2p−1/w ·
∑
y∈U

Üfy
2
. (5)

Recall that during the processing of ÜS , every packet is sampled with
probability p and thus Üfx,i ∼ Bin(Üfx ,p). Putting everything together
we get:

Var
[
Ci,hi (x)дi (x) − fx

]
= Var[A + B − fx]

= Var[(A − fx) + (B − Üfx)]

= Var[(A − fx) + (B − p
−1 Üfx,i) + (p

−1 Üfx,i − Üfx)]

= Var[(A − fx)] + Var[(B − p−1 Üfx,i)] + Var[(p−1 Üfx,i − Üfx)]

≤ 1/w
∑
y∈U

fy
2
+ 2p−1/w ·

∑
y∈U

Üfy
2
+ Üfxp

−1

≤
L22 ·

(
1 + 2p−1

)
w

+ Üfxp
−1 ≤

L22 ·
(
3p−1 + p−1w/L2

)
w

. (6)

Here, the last inequality follows as Üfx ≤ fx ≤ L2. We now use
Lemma 6 to get that with a very high probability, L2 > w . Intu-
itively, this follows from our convergence criteria (Algorithm 1,
Line 14). This means that conditioned on L2 > w (which happens
with probability 1 − δ), we have that

Var
[
Ci,hi (x)дi (x) − fx

]
≤

L22 ·
(
3p−1 + p−1w/L2

)
w

≤
L22 · 4p

−1

w
≤ 3L22ϵ

2/8. (7)

We now use Chebyshev’s inequality to conclude that the estimator
of the i’th row, f̂x (i), satisfies

Pr
[
| f̂x (i) − fx | ≥ ϵL2

]
= Pr

[
|Ci,hi (x)дi (x) − fx | ≥ ϵL2

]
≤

Var
[
Ci,hi (x)дi (x) − fx

]
(ϵL2)2

≤ 3/8. (8)

That is, the probability that each row estimates the frequency of x
with an error no larger than L2ϵ is at least 5/8. Finally, the standard
use of Chernoff’s inequality shows that d = O(logδ−1) (indepen-
dent) rows are required for their median to amplify the probability to
1 − δ . Taking the union bound over the events of sampling too early
and having an error in the row’s median, we have an error probability
no larger than 2δ . This concludes the proof of Theorem 5.

B COMPARISON TO UNIFORM SAMPLING
Our sketch updates each row, for every packet, with probability p.
An alternative approach, uniform sampling, would be updating all
rows with probability 1/p. We note that the two approaches make the
same number of hash computations in expectation. Here, we claim
that our approach is superior to that of uniform sampling.

Intuitively, our sketch uses the fact that for each row i, with prob-
ability 3/4 we have L2,i = O(

√
pL2). This reduction in the second

norm allows one to increase the row width by a factor of p (com-
pared to Count Sketch) to make up for the extra error introduced by
the sampling. We now show that uniform sampling requires asymp-
totically more space as the second norm of the sampled substream
is expected to be Ω

(
L2

√
p logδ−1

)
with probability Ω(δ−1). Since

Count Sketch is known to have an error of Ω
(
L2/
√
w

)
for streams

with a second norm of L2, we get that for an error of ϵL2 one would
need to use more counters per row, or wait longer for the algorithm
to converge. That is, a uniform sampling with the same update rate
would require a multiplicative Ω

(
logδ−1

)
more space.

To begin, we first discuss a lower bound on the error of Count
Sketch. In Count Sketch, one uses a matrix of w columns and
d = O(logδ−1) to get Pr

[
| f̂x − fx | ≥ L2/

√
w

]
≤ δ . For an ϵL2

guarantee, one then sets w = O(ϵ−2). We now show that this is
asymptotically tight. Namely, we show that there exists a distribu-
tion for which Pr

[
| f̂x − fx | ≥ ϵL2

]
= Ω(δ).

To prove our result, we use the following theorem.

THEOREM 7. ([35, 59]) Let X be a binomial variable such that
Var[X] ≥ 40000. Then for all t ∈ [0,Var[X]/100], we have

Pr[X ≥ E[X] + t] = Ω
(
e−t

2/3Var[X]
)

We are now ready to show a lower bound on the error of Count
Sketch.

LEMMA 8. Let n ≥ m + 1. Consider Count Sketch allocated with
d = O(logδ−11) rows and w ≤ m/c ′ columns, for a sufficiently large
constant2 c ′. There exists c = Θ(1), a stream S ∈ [n][m], and an
element x ∈ [n] such that Pr

[
| f̂x − fx | ≥ c · L2/

√
w

]
≥ δ1.

PROOF. We denote by c ′′ the constant in the Ω(·) of Theorem 7,
and by z = O(1) the constant such that d = z lnδ−11 . Let c ′ =

max
{
320000,−8 ln

(
1 − e−1/2z/c ′′

)}
and c =

√
3
4z be two con-

stants. We will show that with probability of at least e−z , each
row has an error of at least c · L2/

√
w . This would later allow us to

2In practice, w ≪ m, as otherwise we have enough memory for exact counting and
would not need sketches, and this trivially holds.

SIGCOMM ’19, August 19–23, 2019, Beijing, China Z. Liu et al.

conclude that the estimation, which is the median row, has an error
of c · L2/

√
w with probability of at least δ .

Consider the stream in which all elements of [m] arrive once each
(and thus, L2 =

√
m), and consider a query for x ≜ m + 1 (i.e.,

fx = 0). Fix a row i, and let
Q ≜ {j ∈ [m] | hi (j) = hi (x)} be the elements that affect x’s counter
on the i’th row. Intuitively, we show that the number of items that
change x’s counter (Ci,h(x)) is |Q | = Ω (L2/w) and then give a
lower bound on the resulting value of the counter (given that some
of the flows in Q increase it while others decrease). Observe that
|Q | ∼ Bin(m, 1/w). According to Chernoff’s bound:

Pr [|Q | ≤ m/2w] ≤ e−m/8w ≤ e−c
′/8 ≤ 1 − e−1/2z/c ′′. (9)

Next, we denote by X ≜ {j ∈ Q | дi (j) = +1} the number of ele-
ments from Q that increased the value of x’s counter. Observe that
X ∼ Bin(|Q |, 1/2) is binomially distributed and that x’s counter sat-
isfies ci,hi (x) = 2X − |Q |. Conditioned on the event |Q | > m/2w
(which happens with constant probability as (9) shows), we have that
Var[X] = |Q |/4 ≥ m/8w = c ′/8 ≥ 40000. According to Theorem 7,
we now have that

Pr [X ≥ E[X] + t | |Q | > m/2w] ≥ c ′′e−t
2/3Var[X] (10)

some c ′′ > 0 and any t ∈ [0,Var[X]/100]. We will now show that in

each row i, Pr
[
ci,hi (x) ≥ c · L2/

√
w

]
≥ e−1/z , for c =

√
3
4z .

Pr
[
ci,hi (x) ≥ c · L2/

√
w

]
= Pr

[
2X − |Q | ≥ c ·

√
m/w

]
= Pr

[
X ≥ (|Q | + c ·

√
m/w)/2

]
= Pr

[
X ≥ E[X] + c ·

√
m/4w

]
≥ Pr

[(
X ≥ E[X] + c ·

√
m/4w

)
∧

(
|Q | > m/2w

)]
= Pr

[(
X ≥ E[X] + c ·

√
m/4w

) ��� (|Q | > m/2w
)]

Pr
[
|Q | > m/2w

]
≥ Pr

[(
X ≥ E[X] + c ·

√
m/4w

) ��� (|Q | > m/2w
)]
· e−1/2z/c′′.

(11)

Setting t ≜ c ·
√
m/4w = O(

√
Var[X]) and using (10), we get that

Pr
[(
X ≥ E[X] + c ·

√
m/4w

) ��� (|Q | > m/2w)]
≥ c ′′e−(c ·

√
m/4w)2/3Var[X] ≥ c ′′e−(c ·

√
m/4w)2/3(m/8w)

= c ′′e−2c
2/3 = c ′′e−1/2z ,

where the last inequality follows from Var[X] = |Q |/4 ≥ m/8w .
Plugging this back into (11) we get

Pr
[
ci,hi (x) ≥ c · L2/

√
w

]
≥ Pr

[(
X ≥ E[X] + c ·

√
m/4w

) ��� (|Q | > m/2w)]
e−1/2z/c ′′

≥ c ′′e−1/2ze−1/2z/c ′′ = e−1/z .

Thus, we established that in each row i with a probability of at least
e−z , x’s counter (and thus, the error) is larger than c ·L2/

√
w . Finally,

since the rows are independent, we get that the probability of Count
Sketch returning a wrong estimate is at least

Pr
[
f̂x − fx ≥ c · L2/

√
w

]
≥

(
e−1/z

)d
=

(
e−1/z

)z ln δ−11
= δ1.

□

To proceed, we need some inequalities that allow us to provide a
lower bound on the reduction in L2 of the sub-sampled stream. To
that end, we use the following results:

THEOREM 9. ([70]) Let X ∼ Bin(n,p); for all k such that np ≤
k ≤ n(1 − p):

Pr [X ≥ k] ≥ 1 − Φ

(
k − np√
np(1 − p)

)
,

where Φ(z) ≜
∫ z
−∞

1√
2π

e−z
2/2 is the cumulative distribution function

of the normal distribution.

THEOREM 10. ([37]) For any z > 0:

1 − Φ(z) >
z

1 + z2
ϕ(z),

where ϕ(z) ≜ 1√
2π

e−z
2/2 is the density function of the normal distri-

bution.

For convenience, we also use the following fact:

FACT 1. For any z ≥ 2:
z

1 + z2
ϕ(z) =

z

1 + z2
1
√
2π

e−z
2/2 ≥ e−z

2

Next, we will provide a lower bound on the reduction in L2 when
sub-sampling a stream with probability p. Once again, we consider
the stream S in which m distinct elements arrived once each (and
thus its L2 is

√
m).

LEMMA 11. Let S be a substream of S such that each packet in S
appears in S independently with probability p ≤ 1/2. Denote by LS2
the L2 of S and by LS2 the L2 of S . Then for δ2 ≤ 1/4:

Pr

[
LS2 ≥

√
mp +

√
mp(1 − p) logδ−12

]
≥ δ2.

PROOF. Denote by J the set of sampled elements; observe that
|J | ∼ Bin(m,p) and that LS2 =

√
|J |. According to Theorem 9, Theo-

rem 10, and Fact 1, we have that:

Pr
[
|J | ≥ mp +

√
mp(1 − p) logδ−12

]
≥ δ2.

Thus, we have that:

Pr

[
LS2 ≥

√
mp +

√
mp(1 − p) logδ−12

]
= Pr

[√
|J | ≥

√
mp +

√
mp(1 − p) logδ−12

]
= Pr

[
|J | ≥ mp +

√
mp(1 − p) logδ−12

]
≥ δ2. □

The above lemma shows that the L2 of the uniformly sub-sampled

stream is larger than

√
mp +

√
mp(1 − p) logδ−12 with probability

≥ δ2. In contrast, in our sketch every row processes a sub-stream
with an L2 of O(F2

√
p) (i.e., O(

√
mp) for this stream) with a constant

probability, independently from the other rows. We now show that

NitroSketch: Robust and General Sketch-based Monitoring SIGCOMM ’19, August 19–23, 2019, Beijing, China

in some cases (when the desired error probability is small), the de-
pendence between the rows in the case of uniform samples requires
asymptotically more space than our sketch, for the same error guar-
antee. Therefore, we claim that our sketch has clear advantages over
uniform sampling.

THEOREM 12. Let S be a substream of S such that each packet
in S appears in S independently with probability p. There exists a
stream S such that Count Sketch with d = Θ(logδ−1) rows applied
on S requires

w = Ω

(
ϵ−2p−1 + ϵ−2p−1.5m−0.5

√
logδ−1

)
counters per row to provide (with probability 1 − δ) an ϵL2 error for
S .

PROOF. We set δ1 = δ2 =
√
δ (and thus logδ−11 , logδ

−1
2 =

Θ
(
logδ−1

)
). According to Lemma 8, we have that there exists

c = Θ(1) such that:

Pr
[
| f̂x − fx | ≥ c · LS2 /

√
w

]
≥ δ1

Next, we use Lemma 11 to obtain

Pr

[
LS2 ≥

√
mp +

√
mp(1 − p) logδ−12

]
≥ δ2.

Since the Count Sketch uses randomization that is independent
from the stream sampling, we have that

Pr

[(
LS2 ≥

√
mp +

√
mp(1 − p) logδ−12

)
∧

(
| f̂x − fx | ≥ c · LS2 /

√
w

)]
≥ δ1δ2 = δ . (12)

Thus, with probability of at least δ , the error of the Count sketch is

Ω
©­«
√
mp +

√
mp(1 − p) logδ−1

w

ª®¬ .
Next, recall that to estimate the frequencies in the original stream
S , one needs to divide the Count Sketch estimate by p. Thus, if we
denote the resulting estimation error by Ex we have that

Pr
Ex = Ω

©­«p−1
√
mp +

√
mp(1 − p) logδ−1

w

ª®¬
 ≥ δ .

To provide an ϵL2 = ϵ
√
m guarantee, uniform sampling Count

Sketch needs to set w such that Pr
[
Ex ≥ ϵ

√
m

]
≤ δ . Demanding

p−1

√
mp +

√
mp(1 − p) logδ−1

w
= ϵ
√
m

the bound follows. □

We therefore conclude that while our sketch requires
O(ϵ−2p−1 logδ−1) counters overall, inserting a uniform sample into

Count Sketch, for the same sampling probability p and error guaran-
tee, requires at least

Ω
(
ϵ−2p−1 logδ−1 + ϵ−2p−1.5m−0.5log1.5 δ−1

)
.

	Abstract
	1 Introduction
	2 Related Work and Motivation
	3 Bottleneck Analysis
	4 NitroSketch Design
	4.1 Strawman Solutions and Lessons
	4.2 Key Ideas
	4.3 End-to-End view of NitroSketch

	5 Analysis
	6 NitroSketch Implementation
	7 Evaluation
	7.1 Throughput
	7.2 CPU Utilization
	7.3 Accuracy and Convergence Time
	7.4 Comparison with Other Solutions

	8 Conclusions and Discussion
	9 Acknowledgements
	References
	A Analysis of AlwaysCorrect NitroSketch
	B Comparison to Uniform Sampling

