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Observations: Network performance issues can 
happen anytime, anywhere in the network
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Network performance issues are pervasive

Users experience:
Lags in gaming

Interruptions in video streamingInternet Service Provider



Where to monitor network performance?
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Network
End-hosts End-users

• End-hosts: Need to modify the OS’ network stack.
• In the network: No end-host access



What performance statistics we care about?
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Packet latency (TCP)
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What performance statistics we care about?
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Packet loss
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What performance statistics we care about?
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Out-of-order packets
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What performance statistics we care about?
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Retransmitted packets
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Network diagnosis needs various performance statistics 

Faulty network links

“Flows with high packet loss”

Slow TCP rates

“Flows with high latency”

Incorrect Quality of Service

“Flows with high out-of-order packets” “Lost, retransmitted packets”

8

Performance statistics are useful in network diagnosis

Congested network



Performance monitoring: A streaming problem
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Network packets

g-heavy hitters: Identify flows fi  that have large g(fi) values
g(!): Packet loss, round-trip latency, etc.

g(fi)
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Packet latency, loss, out-of-order, etc.

Sender Per-flow storage: Marple [SIGCOMM’16],

Dapper [SOSR’17]
Receiver

Existing solutions require per-flow information
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flown

Flow1: timestamps, counters
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Flow2: timestamps, counters

Flow3: timestamps, counters
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Keeping per-flow information is not scalable

• Track latency: ~ 240MB memory 

Data center network with >30 Million flows [MACCDC’2012] 

• Track packet loss: >> 240MB memory 

Hardware switch:  10s of MB memory

• Track out-of-order packets: ~ 240MB memory 



What we want: Lean algorithms
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• Memory usage: Sublinear in the input size and the number of flows.
• Practicality: A few memory accesses to process each packet.

w/ several MBs of SRAM space
hundreds of millions flows



So: Are lean algorithms achievable?
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There exists a lean algorithm for a performance metric 
g(!) if and only if:

• g is a flow-additive function

• g is flow-sublinear

Check out our paper for more details!



Requirement 1: Flow-additive functions  
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g(!): Total Packet Latency, Total Packet 
Loss, Total Retransmitted Packets.

Flows Flows

g(!): Max Packet Latency, Min Packet 
Loss Rate.

Flow-additive Non Flow-additive



Requirement 2: Flow sublinear  
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For a network flow fi , 

• if g( fi ) can be estimated using space sublinear in M( fi ), 
where M( fi ) is the size of flow fi ,

Then g is flow-sublinear

Take-away: if g is not flow-sublinear, there is little hope g can 
be estimated across all flows.



Lean algorithm example I: Round-trip latency
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• RTT = total round trip latency for every packet in the traffic
• Objective: Detect flows whose total round trip time exceeds 𝜀 ! RTT
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Lean algorithm example I: Round-trip latency
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• RTT = total round trip latency for every packet in the traffic
• Objective: Detect flows whose total round trip time exceeds 𝜀 ! RTT
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Lean algorithm example II: Packet loss
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• Objective: Detect flows with high packet loss
• Assumption: Random packet loss
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Lean algorithm example II: Packet loss
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• If there is no packet loss
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Flow-additive example II: Packet loss
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• If there is random packet loss
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Implementation on programmable switches
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TCP Packet Format: ETH IP TCP Payload
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Implementation on programmable switches
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TCP Packet Format: ETH IP TCP Payload

P
ar

se
r

D
e

p
ar

se
r

Header/Metadata in Shared Memory

Match:
Is_ACK== 1

Action: 
Decrement 

counters

Match:
Is_ACK== 0

Action: 
Increment 
counters

Match:
Is_Heavy_hitter==1

Action: 
Report to 

CPU



● 3,700,000 flows in a public Internet trace.
● Start with 5 rows of 2000 32-bit counters (40KB).
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Lean algorithms on detecting high latency flows
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● 3,700,000 flows in a public Internet trace.
● Start with 5 rows of 2000 32-bit counters (40KB).
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Lean algorithms on detecting lossy flows

Approximately detect top 100 lossy flows
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● Network performance statistics are important for network diagnosis.

● Existing solutions require per-flow information to detect problematic flows.

● Lean algorithms can be designed for a set of performance statistics

● Future directions:
● Other performance statistics: high and low TCP sending/receiving windows.
● Explore real-world characteristics: Are packet loss random? 

Are retransmitted packets and packet losses correlated? 
● Build diagnosis tools using lean algorithms.
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Conclusions

Thank you!


