
Memory-Efficient Performance Monitoring on
Programmable Switches with Lean Algorithms

Alan (Zaoxing) Liu

Joint work with Samson Zhou, Ori Rottenstreich, Vladimir Braverman, Jennifer Rexford

Observations: Network performance issues can
happen anytime, anywhere in the network

2

Network performance issues are pervasive

Users experience:
Lags in gaming

Interruptions in video streamingInternet Service Provider

Where to monitor network performance?

3

Network
End-hosts End-users

• End-hosts: Need to modify the OS’ network stack.
• In the network: No end-host access

What performance statistics we care about?

4

Packet latency (TCP)

1 2

Receiver

3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Sender

Packets sent

Acknowledgements sent

Latency:
|time() – time()|

1 2 3 4 5 6 7 8 9

Packets received

What performance statistics we care about?

5

Packet loss

1

Sender

2

Receiver

3 4 5 6 7 8 9 1 3 4 6 8 9

Lost packets: 3

What performance statistics we care about?

6

Out-of-order packets

1

Sender

2

Receiver

3 4 5 6 7 8 9 1 3 2 5 4 6 7 8 9

Out-of-order packets: 4

What performance statistics we care about?

7

Retransmitted packets

1

Sender

2

Receiver

3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 2 3 3 4 5 6 7 8 9

Retransmitted packets: 2

Network diagnosis needs various performance statistics

Faulty network links

“Flows with high packet loss”

Slow TCP rates

“Flows with high latency”

Incorrect Quality of Service

“Flows with high out-of-order packets” “Lost, retransmitted packets”

8

Performance statistics are useful in network diagnosis

Congested network

Performance monitoring: A streaming problem

9

f1

f2

f3

fn

Network packets

g-heavy hitters: Identify flows fi that have large g(fi) values
g(!): Packet loss, round-trip latency, etc.

g(fi)

10

Packet latency, loss, out-of-order, etc.

Sender Per-flow storage: Marple [SIGCOMM’16],

Dapper [SOSR’17]
Receiver

Existing solutions require per-flow information

flow1

flow2

flow3

flown

Flow1: timestamps, counters

flow1

flow2

flow3

flown

Flow2: timestamps, counters

Flow3: timestamps, counters

11

Keeping per-flow information is not scalable

• Track latency: ~ 240MB memory

Data center network with >30 Million flows [MACCDC’2012]

• Track packet loss: >> 240MB memory

Hardware switch: 10s of MB memory

• Track out-of-order packets: ~ 240MB memory

What we want: Lean algorithms

12

• Memory usage: Sublinear in the input size and the number of flows.
• Practicality: A few memory accesses to process each packet.

w/ several MBs of SRAM space
hundreds of millions flows

So: Are lean algorithms achievable?

13

There exists a lean algorithm for a performance metric
g(!) if and only if:

• g is a flow-additive function

• g is flow-sublinear

Check out our paper for more details!

Requirement 1: Flow-additive functions

14

f1
f2
f3
f4

fN

g(fi)

g(∪fi)

=∑g(fi)

f1
f2
f3
f4

fN

g(fi)

g(∪fi)

≠∑g(fi)

g(!): Total Packet Latency, Total Packet
Loss, Total Retransmitted Packets.

Flows Flows

g(!): Max Packet Latency, Min Packet
Loss Rate.

Flow-additive Non Flow-additive

Requirement 2: Flow sublinear

15

For a network flow fi ,

• if g(fi) can be estimated using space sublinear in M(fi),
where M(fi) is the size of flow fi ,

Then g is flow-sublinear

Take-away: if g is not flow-sublinear, there is little hope g can
be estimated across all flows.

Lean algorithm example I: Round-trip latency

16

• RTT = total round trip latency for every packet in the traffic
• Objective: Detect flows whose total round trip time exceeds 𝜀 ! RTT

5

6

3 4 6 10

9 8 4

7 9 10 3

5 7 9 11

+t1

+t1

Packet
Sent d arrays

of
counters

Detected
flows

H1(f)

H2(f)
.
.
.

Hd (f)

Flow key f

7+t1

3+t1

11

r counters per array

Lean algorithm example I: Round-trip latency

17

• RTT = total round trip latency for every packet in the traffic
• Objective: Detect flows whose total round trip time exceeds 𝜀 ! RTT

5

6

3 4 6 10

9 8 4

7 9 10 3

5 7 9 11

-t2

-t2

ACK
Received d arrays

of
counters

Detected
flows

H1(f)

H2(f)
.
.
.

Hd (f)

Flow key f

7-t2

3-t2

11

r counters per array

Lean algorithm example II: Packet loss

18

• Objective: Detect flows with high packet loss
• Assumption: Random packet loss

5

6

3 4 6 10

9 8 4

7 9 10 3

5 7 9 11

+1

+1

1

Packet Detected
flows

H1(f)

H2(f)
.
.
.

Hd (f)

Flow key f

7+1

3+1

11

Lean algorithm example II: Packet loss

19

• If there is no packet loss

1 2 3 4 5 6 7 8 9

5

6

3 4 6 10

9 8 4

7 9 10 3

5 7 9 11

-1

-1

2

Packet Detected
flows

H1(f)

H2(f)
.
.
.

Hd (f)

Flow key f

7-1

3-1

11

Counters: 0
1 2 3 4 5 6 7 8 9

1

-1

Flow-additive example II: Packet loss

20

• If there is random packet loss

1 2 4 6 8 9

5

6

3 4 6 10

9 8 4

7 9 10 3

5 7 9 11

+1

+1

1

Packet Detected
flows

H1(f)

H2(f)
.
.
.

Hd (f)

Flow key f

7+1

3+1

11

Counters: 0

Random walk

1 2 4 6 8 9

1

-1
-2
-3

Implementation on programmable switches

21

TCP Packet Format: ETH IP TCP Payload

P
ar

se
r

D
e

p
ar

se
r

Header/Metadata in Shared Memory

Match-Action
Table

Match-Action
Table

Match-Action
Table

Implementation on programmable switches

22

TCP Packet Format: ETH IP TCP Payload

P
ar

se
r

D
e

p
ar

se
r

Header/Metadata in Shared Memory

Match:
Is_ACK== 1

Action:
Decrement

counters

Match:
Is_ACK== 0

Action:
Increment
counters

Match:
Is_Heavy_hitter==1

Action:
Report to

CPU

● 3,700,000 flows in a public Internet trace.
● Start with 5 rows of 2000 32-bit counters (40KB).

23

Lean algorithms on detecting high latency flows

40 80 160 320 640
0ePory 8sage (.B)

0.6

0.8

1.0
Ac

cu
ra

cy

Recall
3recision

Approximately detect top 100 high latency flows

● 3,700,000 flows in a public Internet trace.
● Start with 5 rows of 2000 32-bit counters (40KB).

24

Lean algorithms on detecting lossy flows

Approximately detect top 100 lossy flows

40 80 160 320 640
0emRUy 8sage (.B)

0.6

0.8

1.0

R
ec

al
l R

at
e

0 2 4 6 8 10
Average Packet LRss (%)

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

● Network performance statistics are important for network diagnosis.

● Existing solutions require per-flow information to detect problematic flows.

● Lean algorithms can be designed for a set of performance statistics

● Future directions:
● Other performance statistics: high and low TCP sending/receiving windows.
● Explore real-world characteristics: Are packet loss random?

Are retransmitted packets and packet losses correlated?
● Build diagnosis tools using lean algorithms.

25

Conclusions

Thank you!

