
SecDeep: Secure and Performant On-device Deep Learning

Inference Framework for Mobile and IoT Devices

Renju Liu
University of California, Los Angeles

Luis Garcia
University of Southern California
Information Sciences Institute

Zaoxing Liu
Boston University

Botong Ou
University of California, Los Angeles

Mani Srivastava
University of California, Los Angeles

Abstract

There is an increasing emphasis on securing deep learning (DL)
inference pipelines for mobile and IoT applications with privacy-
sensitive data. Prior works have shown that privacy-sensitive data
can be secured throughout deep learning inferences on cloud-
offloaded models through trusted execution environments such
as Intel SGX. However, prior solutions do not address the fun-
damental challenges of securing the resource-intensive inference
tasks on low-power, low-memory devices (e.g., mobile and IoT
devices), while achieving high performance. To tackle these chal-
lenges, we propose SecDeep, a low-power DL inference framework
demonstrating that both security and performance of deep learning
inference on edge devices are well within our reach. Leveraging
TEEs with limited resources, SecDeep guarantees full confiden-
tiality for input and intermediate data, as well as the integrity of
the deep learning model and framework. By enabling and secur-
ing neural accelerators, SecDeep is the first of its kind to provide
trusted and performant DL model inferencing on IoT and mobile
devices. We implement and validate SecDeep by interfacing the
ARM NN DL framework with ARM TrustZone. Our evaluation
shows that we can securely run inference tasks with 16× to 172×
faster performance than no acceleration approaches by leveraging
edge-available accelerators.

CCS Concepts: • Security and privacy → Software security

engineering; Mobile platform security; Trusted computing.
ACM Reference Format:

Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani Srivastava.
2021. SecDeep: Secure and Performant On-device Deep Learning Infer-
ence Framework for Mobile and IoT Devices. In International Conference
on Internet-of-Things Design and Implementation (IoTDI ’21), May 18–21,
2021, Charlottesvle, VA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3450268.3453524

1 Introduction

Deep learning (DL) has enabled applications that require complex
reasoning about the raw sensor data stemming from the proliferous
Internet of Things (IoT). Today, with the goal to enhance application
latency and user privacy, deep learning tasks are moving towards

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8354-7/21/05. . . $15.00
https://doi.org/10.1145/3450268.3453524

mobile and IoT devices [27, 28, 31, 43, 44]. However, the increase in
performance swells the burden of security and privacy on resource-
constrained devices.

To date, several efforts have been made towards designing hard-
ware primitives to achieve better latency and data privacy on mo-
bile and IoT devices. To improve data security and privacy, recent
advances in trusted execution environments (TEEs) (e.g., ARM
TrustZone [5]), as a secure area in the processor, have provided
an opportunity to revisit the security mechanisms protecting on-
device computation and private user information. For optimized
processing latency, one can leverage on-device accelerators (e.g.,
ARM Mali GPU) to provide significantly better inference perfor-
mance than on-device processors (e.g., ARM Cortex CPU). Our
benchmark in §2.2 shows that the accelerators can improve the
inference latency by more than two orders of magnitude.

Realizing the promises of better latency and data privacy using
the above techniques is easier said than done. The low-power/low-
memory IoT setting creates unique challenges that existing solu-
tions do not address: (1) When securing the computation on mobile
and IoT devices with TEEs, we should minimize the trusted comput-
ing base (TCB) to reduce the attack surface [37]. (2) When perform-
ing inference computation, we should enable on-device accelerators
for better performance as mobile CPUs are not as performant even
with the model compression techniques [17, 19]. Unfortunately,
existing efforts have failed to achieve one or more of these dimen-
sions. Specifically, in mobile and IoT devices, we should not adopt
the design from the cloud setting with x86 CPUs [15, 32, 39] to
run hundreds of thousands of lines of code entirely in their TEEs
(e.g., Intel SGX with 128MB secure memory). Furthermore, DL in-
ference tasks using on-device accelerators have yet to be interfaced
with TEEs to optimize security and performance simultaneously.
Although some prior efforts [41, 45] design a secure path to use
GPU on desktops or cloud servers, their designs fundamentally fail
to provide a solution for embedded GPUs on mobile or IoT devices
due to the the GPUs’ architectural design difference. For example,
desktop or cloud GPUs have their own memories, but embedded
GPUs share the memories with CPU.

In this paper, we address these fundamental limitations by pre-
senting SecDeep. SecDeep aims to achieve secure and performant
DL inference on mobile and IoT devices by combining the best of
both worlds—securing the GPU-accelerated inference with ARM
TrustZone. Specifically, SecDeep protects data confidentiality dur-
ing the entire on-device DL inference process, from the digitization
of the raw sensor data until obtaining the inference results from ac-
celerators. With ARM TrustZone, we extend the guarantees to the
integrity of the inference model and the underlying computation

https://doi.org/10.1145/3450268.3453524
https://doi.org/10.1145/3450268.3453524
https://doi.org/10.1145/3450268.3453524

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani Srivastava

in the accelerator. SecDeep demonstrates that we can adequately
secure GPU-accelerated DL inference frameworks on edge devices1.

In designing SecDeep, there are several technical challenges to
address. (1) First, we must minimize the TCB size and the secure
memory usage of (potentially) large DL inference models while
not significantly degrading the performance or utility. This first
challenge implies that we need to identify a portion of the DL
model inference frameworks that can reside outside of the TEE
while being able to leverage available accelerators. (2) Second, if we
are to run a portion of the DL model inference framework outside
of the TEE, we must ensure the integrity of the associated code. (3)
Finally, we must further ensure the confidentiality of any data that
needs to be passed this code residing outside of the TEE. We tackle
these challenges as follows:
• DL model computation split: to reduce the TCB size of the DL
inference model, we split the model computation base into a con-
fidential computing base and a nonconfidential computing base.
The confidential computing base is comprised of any code that
interacts with the plaintext input data, e.g., matrix multiplication
in a convolutional layer of a deep learning model. The noncon-
fidential computing base is comprised of any code that does
not need to interact with the plaintext tensor data, e.g., GPU
configuration code.

• Runtime integrity checker inside TEE: to verify any parts of the
model and related code running in the untrusted environment,
we utilize code signing. At compilation time, our enhanced com-
piler will sign the nonconfidential computing base with crypto-
graphic hashing. When the model is loaded, the integrity checker
sanitizes any access request to the nonconfidential computing
base to preserve integrity.

• Secure runtime data management: although the nonconfidential
code and data are exposed to the untrusted OS, the data are
adequately encrypted when they go outside of the TEE. SecDeep
adopts similar techniques from [7, 46] in which the kernel page
table is treated as a user-space process page table to protect the
code’s integrity. SecDeep uses Format-Preserving Encryption
(FPE) to hide the values of the data.
We implement SecDeep prototype using an IoT development

board (HiKey 960) equippedwith ARMTrustZone TEE and interface
it with an embedded Mali G71 GPU through the ARM NN SDK. We
minimize the TCB of the ARMNN framework from 232K sLoC to 1K
sLoC. Our evaluation shows that SecDeep achieves 16× to 172× bet-
ter inference latency than non-accelerator-based solutions for a rep-
resentative set of on-device deep learning models (SqueezeNet [21],
MobileNet V1 [20],MobileNet V2 [35], GoogleNet [36], YoloTiny [34],
ResNet50 [18], and Inception [22]). Compared to unsecure GPU-
based acceleration, SecDeep introduces 3× to 5× latency overhead
as the cost for security.

Contributions and roadmap. We make the following contribu-
tions in this paper.
• We present SecDeep, the first system to our knowledge that
provides secure and private deep learning model inference for
mobile and IoT devices. (§3)

1In this paper, we use edge devices and mobile/IoT devices interchangeably.

• We develop a technique to minimize the TCB of ARM TrustZone
via proper DL computation split and ensure the integrity of the
code and the associated split through secure bootup. (§4)

• We show how SecDeep can maintain the performance of DL
inference on the edge by securely interfacing on-device acceler-
ators with TEEs. (§5)

• We implement SecDeep for ARM-enabled mobile/IoT devices
by interfacing the ARM TrustZone TEE with the ARM NN deep
learning computation framework. We minimize the TCB of the
ARM NN from 232K sLoC to ~1K sLoC. (§6)

• We evaluate SecDeep on a representative set of deep learning
inference models and demonstrate that deep learning on the
edge can be secure and performant. (§7)

2 Background and Motivation

We begin by discussing the components of deep learning inference
frameworks on mobile and IoT devices. We then describe the state-
of-the-art hardware primitives to secure the computation on these
devices and the limitations of a strawman solution that directly use
these primitives to secure DL inference tasks.

2.1 DL Inference Framework on Mobile and IoT Devices

Due to the high demand for edge computing needs resulting from
data privacy, network latency, and network bandwidth concerns,
the most popular deep learning frameworks provide support to run
deep learning model inferences at the edge directly from the raw
input sensor data. For example, Caffe2, PyTorch, and TensorFlow
Lite provide developers with an efficient way to perform deep learn-
ing inference at the edge before sending them to the cloud. More
generic platforms, such as ARM NN, have emerged from hardware
vendors, allowing the aforementioned deep learning frameworks to
target common platforms with the same underlying computation
base. ARM NN currently supports both Caffe and Tensorflow for
a more generic optimized performance on ARM devices. These
frameworks expose a common design: a framework composed of a
neural network parser along with computation libraries that are
optimized for specific operating systems such as Android [2] or
iOS [3].

Neural network parser. Most on-device deep learning frame-
works consist of a neural network parser [6]. Given a model that
is generated using a supported framework such as Caffe or Ten-
sorflow, the parser compiles the model into a graph representation
that interfaces with the underlying computation libraries. This
graph is constructed in a way that can be optimized for the backend
execution.

Computation optimization.On-device deep learning frameworks
also typically have backend execution frameworks to optimally ex-
ecute the associated neural network graph representations depend-
ing on the available computation resources. For example, in ARM
NN, if multiple backends are available simultaneously, the graph
will be established such that multi-computing can be achieved ef-
ficiently. The resource optimizer validates the correctness of the
input model and optimizes the resources needed for the model. It
can remove redundant operations, reshape the data if necessary,
reorder the graph constructed by the parser, and determine which
acceleration methods to use.

SecDeep: Secure and Performant On-device Deep Learning Inference Framework for Mobile and IoT Devices IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

0

200

400

600

800

1000

SqueezeNet MobileNet
V1

MobileNet
V2

GoogleNet Yolo Tiny ResNet 50 Inception BN

M
em

or
y

Us
ag

e
(M

B)

GPU Acceleration No Acceleration

Figure 1. Maximum memory consumption of different Caffe mod-
els on an ARM device using ARM NN.

1
10

100
1000

10000
100000

1000000

SqueezeNet MobileNet
V1

MobileNet
V2

GoogleNet Yolo Tiny ResNet 50 Inception BNIn
fe

re
nc

e
La

te
nc

y
(m

s) GPU Acceleration No Acceleration

Figure 2. The average inference latency (log scale) of different
Caffe Models on an ARM device using ARM NN.

Given these computation frameworks for deep learning inference
on the edge, we now discuss how to secure the computation on
these devices.

2.2 Secure Computation with TEEs

Although software-based cryptographic mechanisms allow for the
protection and sanitization of this digitized data on edge devices,
the data can still be leaked either prior to being encrypted or at
the time of computation when the data are decrypted. To protect
the computation, most mainstream CPU manufacturers provide
hardware-assisted TEEs. For example, Intel provides secure guard
extensions (Intel SGX) to establish per-application TEE, and AMD
also provides secure execution environments (Secure Encrypted
Virtualization) to protect the application’s data confidentiality. How-
ever, the most popular trusted execution environment that provides
access protection to peripherals on mobile/IoT devices is ARM
TrustZone.
Trusted execution environments. Trusted execution environ-
ments (TEEs) are hardware protection mechanisms that isolate the
memory into secure memory and unsecure memory. The secure
memory can only be accessed by privileged code running inside
the TEE while any code can implicitly access the unsecure mem-
ory. In ARM TrustZone, the secure memory code resides in secure
memory—referred to as the Secure World (SW), whose high privi-
lege is designated by setting a special ARM instruction SMC. The
unsecure code resides in unsecure memory—referred to as the Nor-
mal World (NW). The context switch between SW and NW is done
through a Secure Monitor (SM).

Although one may trivially assume that computation for a large
model such as a deep learning model could be placed within the
secure world of a TEE, we discuss several reasons why this is a
strawman solution.

2.3 Strawman Solution on Secure Inference

A straightforward approach to provide data confidentiality and code
integrity for DL inference tasks is to put the entire deep learning
framework inside the trusted execution environment. While this
sounds a feasible solution, there are two fundamental design flaws
associated with it:

Table 1. Lines of code for different deep learning frameworks on
mobile/IoT as well as a breakdown for the ARM NN deep learning
inference framework. The table highlights the small percentage of
code dedicated to the privacy-sensitive tensor computation.

Framework Name sLoC
TensorFlow Lite [38] 404K

Caffe2 [11] 368K
PyTorch [33] 191K

Deeplearning4j [13] 690K
ARM NN2 [6] 232K

(a) Lines of code for different
deep learning frameworks on
edge.

ARM NN No Accel. sLoC Pct.
Tensor Preparation 109.9K 90.2%
Tensor Computation 11.95K 9.8%

ARM NN GPU Accel. sLoC Pct.
Tensor Preparation 232K 99.95%
Tensor Computation 114 0.05%

(b) Lines of code breakdown for ARM
NN deep learning inference framework.

• Excessive secure memory usage on accelerator-enabled

DL inference: Mobile and IoT devices are typically memory
constrained on the order of up to a few Gigabytes. Secure mem-
ory is generally limited to tens of Megabytes per application
as the initial allocation is deducted from the normal operating
system’s unsecure memory allocation. For example, in ARM
TrustZone, the memory configuration is done at boot time, so
the more secure memory, the less unsecure memory for an al-
ready resource-constrained device. In this paper, we follow the
lead of prior works [1] and allocate only tens of Megabytes of
secure memory to provide the same level of protection—limiting
the feasibility of running large deep learning inference models
within secure memory. For instance, Figure 1 shows the maxi-
mummemory consumption of running different Caffe models on
an ARM device using ARM NN. Without any GPU acceleration,
the smallest model (SqueezeNet) consumes 28 MB of memory.
With accelerators enabled, the memory consumption for a model
inference could shoot up to 821MB. Note that, without accel-
erators, the performance of on-device deep learning inference
will be degraded by several orders of magnitude—as depicted in
Figure 2.

• Large trusted computing base that increases attack sur-

face: Table 1a shows that deep learning frameworks could bring
hundreds of thousand lines of code. If the whole framework is
placed inside TEE, the total trusted computing base (TCB) size
will be tremendously large and introduce unnecessary attack
surfaces. Upon analysis of the ARM NN deep learning inference
framework as shown in Table 1b, we found that, without ac-
celeration, typically 90.2% of the framework code is for tensor
computation preparation or for performance optimization, and
only about 9.8% is dedicated to mathematical tensor computa-
tion that changes the values of the input tensor data and yields
the values of the output tensors. With acceleration enabled, the
computation and preparation code makes up about 99% of the
code. Furthermore, the output of the computation preparation
and the performance optimization code only depends on the size
of the input rather than the values of the input. Thus, our design
aims to leverage the hardware-assisted execution environment
to reduce the TCB size while still sanitizing the access to ac-
celerators with high security level by only putting the tensor
value computation code inside the TEE while leaving the ten-
sor preparation code, the resource configuration code, and the
optimization code outside of TEE.

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani Srivastava

Smart
Camera

Hub/Gateway SmartphoneVR Device

…
TEE

Neural Accelerators

Edge DNN Models (e.g., SqueezeNet)

Trusted Execution
Environment

Hardware Support

Learning-capable Edge Devices

Figure 3. The system model of SecDeep. We aim to secure DL
model inferencing on IoT edge devices that are enabled with a TEE
and possibly on-device accelerators.

3 Overview

In this section, we describe the scope and workflow of SecDeep
before discussing the main technical challenges and insights.

3.1 Problem Scope

SystemModel. SecDeep is a general secure framework residing on
mobile and IoT devices (e.g., IoT gateway) to protect deep learning
inference tasks, as shown in Figure 3. We assume the devices are
enabled with hardware support for TEEs as well as on-device neural
accelerators. We further assume that the DL model provider puts
no effort on ensuring the confidentiality of the DL model and its
underlying computation framework, e.g., the model may be a pub-
licly available DL model such as SqueezeNet with an open-source
computation framework such as ARM NN. To verify the integrity
of the DL models in SecDeep, we expect the provider to supply
the hashes of the authentic models using cryptographic hash func-
tions (e.g., SHA-3). During inference tasks, SecDeep is designed to
achieve (1) user data integrity and confidentiality, (2) the integrity
of deployed DLmodels, and (3) the integrity of supporting codebase,
e.g., TensorFlow Lite, ARM NN.

We envision IoT device vendors and IoT cloud operators being
early adopters of such a framework, given the supporting evidence
that inference tasks are being pushed closer to the edge. As such,
we consider two system scenarios to deploy SecDeep. (1) In the first
scenario, an IoT cloud backend needs the inference information
from a mobile or IoT device on the edge. The backend sends the
request to the edge devices, and the edge device only returns the
final inference output from SecDeep instead of the raw, potentially
large sensor information to preserve user privacy and reduce net-
work latency. (2) The second system scenario is a mobile or IoT
edge device that needs to perform end-to-end local inferencing
without needing to access or share any information with the IoT
cloud backend. With this system model, we now consider the threat
model for SecDeep.
Threat Model: SecDeep considers a strong adversary that aims to
compromise the operating systems in order to intrude, forge, and
modify the inference tasks, as well as to steal user data from the non-
protected processes. Thus, we cannot trust any part of the software
stack—including the OS—that resides outside of a TEE. As other
concurrent efforts that offload computations to the TEEs [7, 26, 46],
we assume the trustworthiness of a TEE since our scope is on how to
efficiently leverage TEEs to secure accelerator-enabled DL inference
computation. Thus, the mitigation and prevention of side-channel
2including GPU acceleration backends in ARM Compute Library

Untrusted Execution Environment

Trusted Execution Environment

Applications User Space

GPU Driver Accelerator Drivers Sensor Drivers…

Kernel Space

SecDeep Secure Runtime

3

2

Deep Learning Nonconfidential Computing Base

Deep Learning Confidential Computing Base

Integrity Checker

Data Manager

SecDeep Data Stack

In
te

rn
al

 A
PI

s

SecDeep User Library

Co
m

pu
tin

g
Ba

se
 A

PI
s

Encrypted TEE Data

1

Figure 4. The architecture overview of SecDeep. The green and
yellow shaded areas are the components of SecDeep framework
and the dark grey shaded areas are the TEE. SecDeep’s workflow
has three steps: 1 transforming the deep learning inference com-
putation base; 2 secure, confidential, and performant execution;
and 3 securing the inference results.

attacks, denial-of-service attacks, and cyber-physical attacks are
outside the scope of this paper. Given the system and threat models
of SecDeep, we then summarize the goals of its design.
Goals: SecDeep aims to protect data confidentiality during infer-
ence, starting from the digitization of the raw sensor data until
obtaining the inference results. This protection implies that the
confidentiality of any intermediate, generated metadata will also
be protected. Further, SecDeep aims to ensure the integrity of the
inference code and the associated model. Finally, SecDeep aims to
utilize a minimal trusted computing base size with reasonable infer-
ence latency and energy consumption while incurring no inference
accuracy loss. We illustrate how these design goals are achieved by
walking through the SecDeep workflow.

3.2 SecDeepWorkflow

Figure 4 shows the architecture of SecDeep. At a high-level, SecDeep
can be broken down into three steps: 1 transforming the deep
learning inference computation base for trusted execution, 2 se-
cure, confidential, and performant execution of the deep learning
inference model, and 3 securing the inference result.
1. DL model computation transformation for trusted execu-

tion: To identify which components of the DL inference code and
data should reside within the TEE, we first split the deep learning
libraries into two parts: a confidential computing base that executes
in a TEE, and a nonconfidential computing base that executes in the
untrusted execution environment. Generally, any code that only
requires access to tensor metadata, e.g., tensor shapes, rather than
the plaintext tensor data, will be designated to the nonconfidential
computing base. Otherwise, the code will be designated as con-
fidential. The confidential and nonconfidential computation base
are annotated at a functional level with preprocessor directives
to enforce this computation split at compile-time (as is done in
Figure 5a). Given a split computation base, the SecDeep system
is initialized through a secure boot that ensures the integrity of

SecDeep: Secure and Performant On-device Deep Learning Inference Framework for Mobile and IoT Devices IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

the entire SecDeep code base [4] as well the confidentiality of the
designated code. With a secure boot in place, we can now describe
how SecDeep handles the aforementioned split computation base
at runtime.

2. Secure execution:After SecDeep properly loads the framework
code, SecDeep starts to load user data and perform inference tasks
in the following steps.
• First, the user data (e.g., sensor data) are securely loaded into the
TEE via protected drivers. Thus, the confidentiality and integrity
of the data are guaranteed.

• Second, once the data are inside the TEE, SecDeep’s data man-
ager decides if any nonconfidential code or data needs to be
exported to the nonconfidential computing base due to memory
footprint limitation. When some data are set to be exported,
SecDeep encrypts them inside the TEE to ensure confidentiality.

• Third, to perform the inference, the nonconfidential computing
base uses encrypted data with the model parameters for the
current neural network layer to configure the tensor information
and send it back to the confidential computing base. Inside the
TEE, SecDeep then decrypts the data and begins executing the
current layer collaboratively using a protected accelerator (e.g.,
an embedded GPU). After the results have been computed for
the current layer, SecDeep will repeat the same procedure until
the inference process is complete.

3. Secure output:Because the inference process up until the output
is secure and confidential, securing the output is trivial, e.g., the
results can be signed or encrypted before being sent back to the
requester. Therefore, we focus on the challenges and design of the
first two components of the SecDeep framework.

3.3 Challenges and Key Insights

Given this workflow, we highlight the key design challenges and
our associated approach for each.

Challenge 1:Managing the TCB size for the TEE. Performance
with limited secure memory is constrained. SecDeep needs to use
limited secure memory to provide protections for the input data
along with any data generated throughout the inference process
while providing a performant deep learning inference framework.
SecDeep utilizes Format-Preserving Encryption (FPE) along with
an on-demand table to fulfill this requirement, as described in Sec-
tion 5.2. Although the on-demand table requires more memory, our
experiments show that it significantly reduces the necessity for
encryption and decryption of often-used values and, thus, signifi-
cantly reduces overhead.

Challenge 2: Ensuring code integrity outside of the TEE.Any
code cannot be modified by the compromised OS after it is loaded
into memory outside of the TEE. SecDeep treats the kernel page
table as a user-space process page table. This allows SecDeep to
forward every modification from the kernel page table after the
system boots up to the TEE to ensure the integrity of the inference
code running outside of the TEE as described in Section 5.1.

Challenge 3: Ensuring data confidentiality outside of theTEE.

Because some of the code, i.e., the nonconfidential computing base,
will reside outside of the TEE, there is an inherent risk when com-
puting with confidential data. Because this code only requires in-
formation about the properties of the confidential data, e.g., data

1. /* Sample Confidential Computing Base Code */

2. float[] CPUActivation[CONFIDENTIAL] (inputTensor,

3. tensorInfo,

4. activationFunc,

5. float weight, float bias)

6. {

7. int tensorSize = tensorInfo.getTensorSize();

8. float[tensorSize] results;

9. for (int i = 0 ; i < tensorSize ; i++) {

10. float tensor_value = inputTensor.getData(i);

11. switch(activationFunc) {

12. case Linear:

13. results[i] = weight * tensor_value + bias;

14. break;

15. case SoftReLu:

16. results[i] = log(1.0f + exp(tensor_value));

17. break;

18. // Other Activation Function Computations

19. ...

20. }

21. }

22. return results;

23. }

(a) Confidential computing base code.

1. /* Sample Nonconfidential Computing Base Code */
2. void configureGPUActivationLayer(inputTensor, *layerInfo)
3. {
4. // Build config options. e.g. DataType
5. int dimension = inputTensor.data().dimension();
6. DataType type = inputTensor.type();
7. ...
8.
9. String configured_option = build_options(dimension, type, ...);
10. String layer_id = "activation_layer_1";
11. String gpu_kernel = "activation_layer";
12. // Set the GPU configuration
13. layerInfo.setGPUConfigure(configured_options, layer_id, gpu_kernel);
14. }

(b) Nonconfidential computing base code.

Figure 5. Example snippets of confidential and nonconfidential
deep learning inference computation code. Confidential code re-
quires access to the plaintext tensor data, while nonconfidential
code only requires information about the tensor metadata, e.g., the
dimensions.

size, the TEE generates a placeholder value for the confidential ten-
sor data. In particular, SecDeep uses format-preserving encryption
(FPE) to generate encrypted data with the same size and length as
the plaintext tensor data.

4 Transforming Inference Computation for

Secure Execution

We now describe the design of the first major component of the
SecDeepworkflow.We describe how the deep learning computation
base is split into confidential and nonconfidential codes. We then
explain how SecDeep ensures the integrity of the code and the
associated split at bootup.

4.1 Splitting Deep Learning Computing Base

As discussed in Section 2, placing the entire DL inference computa-
tion framework within a TEE is infeasible and only increases the
attack surface of the TEE. Thus, given a DL inference computation
framework, we need to identify a minimal set of code that needs to
be protected inside TEE. In this case, we aim to protect only code
that is designated as confidential. This code will be annotated at de-
velopment time so that it can be separated from the nonconfidential
code at compile-time and loaded into the TEE.

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani Srivastava

Deep learning confidential computing base. To minimize the
code running inside TEE, we design the confidential computing
base to be composed of the deep learning inference computation
that requires access to the unencrypted, plaintext values of the
tensor data. For example, Figure 5a shows a snippet of code for
different activation functions for a neural network. The functions
require access to the tensor values (Line 10) to calculate the activa-
tion output for the next layer of the neural network. The variable
inputTensor cannot be replaced by any placeholder value without
losing the fidelity of the original computation. However, as per
Section 2, we find that this confidential base typically makes up a
very small percentage of the overall computation base. Line 2 also
shows an example of how a developer may annotate a function as
confidential with a preprocessor directive ([[CONFIDENTIAL]]3).

Deep learningnonconfidential computing base.Any code that
does not require access to the plaintext, unencrypted tensor data
is designated as nonconfidential and will reside outside of the TEE
in the untrusted software stack. For example, Figure 5b shows a
snippet of code that observes the input tensor shape and configures
the GPU accordingly. The only interaction with the confidential
variable inputTensor involves extracting the variable dimensions
and data type on Lines 5 and 6. The GPU configuration call does not
require access to the tensor values. Therefore, this code can easily
be refactored such that the tensor data is replaced with a place-
holder variable that has arbitrary values with the same shape, size,
and data type. This maintains the fidelity of the original function
and would not compromise the integrity of the overall computation.

Despite this code being designated as nonconfidential, its in-
tegrity is still imperative to the overall computation base. We de-
scribe how we maintain its integrity in Section 5.1. Before doing
so, an underlying assumption is that SecDeep’s base confidential-
ity enforcement mechanism, along with the peripherals, has been
secured upon booting the system. We describe how a secure path
can be established from sensor peripherals to accelerators in the
following subsection.

4.2 Securing the Path from Sensor Peripherals to

Accelerators

SecDeep needs to create a secure path such that the raw sensor
data along with any generated, intermediate metadata are protected
when interfacing with accelerators. To achieve such protections,
SecDeep utilizes the properties of TEE to disable access to the pro-
tected sensors and accelerators from the untrusted OS. SecDeep
configures the memory-mapped IO addresses of the sensors and
accelerators into the secure memory of TEE such that, upon booting
up, those TEE-protected memory-mapped IO addresses can only be
accessed by the privileged code inside TEE, but not the untrusted
OS. For example, in ARM TrustZone, if the memory-mapped IO ad-
dresses for the sensors are configured as secure memory addresses
before the system boots, any access to those addresses from the
untrusted will be trapped to a higher level execution (i.e., Boot
Loader Stage 3 (BL3)) through exceptions, and the secure world in
the ARM TrustZone is able to decide whether such access requests
should be granted or not.

3This syntax is similar to the syntax used by a previous work that annotated code that
can parrot-transformed (approximated) by a neural network [14].

5 Secure and Performant Inference Execution

with Accelerators

In this section, we describe how the SecDeep secure runtime pro-
vides runtime protection for the entire deep learning inference
framework. SecDeep collaboratively works with the data stack
to serve as secure storage outside of TEE when any datum is ex-
changed between the TEE and the untrusted execution environment.
The SecDeep secure runtime is comprised of twomajor components:
a runtime integrity checker and a data manager. To enable both
components, we later detail the secure API exposed by SecDeep
that facilitates the confidential data exchange between trusted and
untrusted computing bases. The corresponding data sanitization of
the secure runtime enables SecDeep to securely leverage available
accelerators without leaking private data.

5.1 Runtime Integrity Checker

To confirm the integrity of the code running in the deep learning
nonconfidential computing base as well as the deep learning model,
we design a checker located inside of the TEE for verification. The
key intuition of the integrity checker’s design is the verification of
the hash value of both the model and the code in a trusted mode.
The integrity checker works together with an enhanced compiler
that signs the nonconfidential computing base code at compilation
time to make sure the integrity is preserved when loading the code
and the model. After the code and the model have been loaded, the
integrity checker sanitizes any access request to the memory of
the nonconfidential computing base to make sure the untrusted
OS cannot modify the code in the nonconfidential computing base
after the secure boot. This sanitization is enforced by trapping the
modification of the kernel page table into a higher-level model such
as BL3 in ARM. We next describe the design details of the integrity
checking mechanisms for both the nonconfidential computing base
code and the associated DL model.
Nonconfidential computing base code integrity. To detect the
code integrity before any code is loaded into the memory of the
nonconfidential computing base, we first modify the associated
compiler to hash the nonconfidential computing base code run-
ning outside of the TEE. To hash the code at compilation time, the
compiler identifies what code belongs to the nonconfidential deep
learning computing base by excluding any code that has been anno-
tated as confidential (e.g., Figure 5a). The extracted nonconfidential
computing base is then hashed accordingly at compile time. At
runtime, SecDeep’s integrity checking service temporarily stores
the hash value into the secure memory using any key exchange
algorithm (e.g., as Diffie–Hellman algorithm). The integrity checker
then allocates memory regions for the nonconfidential computing
base. After the code has been loaded, the integrity checker com-
putes the hash of the loaded code and compares it with the hash
value supplied at compilation time to verify the code’s integrity.

To ensure that the integrity of the loaded code is protected from
the modifications by the untrusted OS during execution time, we
hide the code pages from the OS kernel—as depicted in Figure 6.
We first configure all kernel page tables to be read-only during
the aforementioned secure boot. At runtime, if the OS needs to
modify a kernel page table, e.g., modifying the page table base
registers (PTBR) in ARM, such a request will be trapped into the
TEE. Within the TEE, SecDeep’s integrity checker will ensure that
the page table modification will not result in mapping a kernel page

SecDeep: Secure and Performant On-device Deep Learning Inference Framework for Mobile and IoT Devices IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

table into a nonconfidential computing base memory regions via a
table walking attack [10, 23].

In this scenario, another potential attack is to swap the page table
with a compromised one such that the nonconfidential computing
base code will be accessed through the new kernel page table. To
protect against such attacks, SecDeep disables the base registers
that modify the kernel page table by removing the page swapping
instructions and trapping the write instructions into TEE. SecDeep
then checks the access to ensure that the new page table will be
mapped into sensitive memory regions when a new kernel module
has been loaded. Although similar approaches have been used in
prior works [7, 46], these approaches need additional mechanisms
to perform data confidentiality verification at the same time. Be-
cause SecDeep has pre-processed the data confidentiality issue, we
simplify their approach to obtain better performance with the same
level of security.

Finally, SecDeep needs to make sure the exception handler out-
side of the TEE is not able to make modifications to the kernel page
table when an exception has been trapped by a higher privileged
code. Similar to its code integrity protection techniques, SecDeep
modifies the exception handler such that any exceptions will be
trapped and forwarded to the TEE. The TEE will examine the code
to ensure that the code does not contain any modifications in the
memory regions from either the nonconfidential computing base
or the secure buffer. If the exception does not violate the code’s in-
tegrity check, the exception will be returned back to the untrusted
TEE. The saved registers will be restored for further execution.
However, if an exception contains any modifications to the sensi-
tive regions, the exceptions will never be returned and the user will
be notified of the malicious behavior.

Deep learning inference model integrity. Although the deep
learning inference model will reside in the same untrusted memory
as the nonconfidential computing base, the design of the integrity
checking mechanism will require a slightly different approach. As
per our system model, we assume that the provided model will
be stored in the storage media or may be downloaded from the
internet. In either case, we assume that we will also be provided a
hash of the authentic model using cryptographic hash functions.
Thus, SecDeep’s integrity checker focuses only on detecting the
model’s integrity and not the protection of the model before it is
loaded in memory. However, if one wants to protect the model from
being modified in a future implementation, secure communication
can be established with the cloud through a TEE [12].

Further, since our system model does not require the DL model
to be confidential—as well as the aforementioned constraints of
secure memory, SecDeep loads the model in the nonconfidential
computing base outside of the TEE. Instead of verifying the integrity
of the DL model against its hashed value within the TEE, SecDeep
utilizes a mechanism provided by the TEE to set up a read-only
(nonconfidential) buffer for the non-TEE code—while the TEE code
has read and write privileges to the buffer. To ensure a secure
buffer design, we take a similar approach as the nonconfidential
computing base and hide the memory region from the untrusted
OS kernel. In particular, we change the mapping from the kernel
page table to the buffer region.

Given the secure buffer design, SecDeep’s integrity checking
service computes the hash of the model and passes the signature to
the nonconfidential computing base through the read-only buffer.

Untrusted Execution Environment

Read-Only Kernel Page Table

Page Table
Register

Modification

Trusted Execution Environment
SecDeep Integrity Checking Service

Tr
ap

Deep Learning
Nonconfidential

Computing Base Code

Secure Buffer

Memory

…

…

Figure 6.When the untrusted OS tries to modify the kernel page
table, the request will be trapped to the TEE to make sure the
mapping does not map to sensitive memory regions. The shaded
areas are the sensitive memory regions.

When the model is loaded, the nonconfidential computing base
checks whether it has been verified by the integrity checker.

5.2 Data Management

The final component of SecDeep’s secure runtime is the data man-
ager, which primarilymanages the confidential data communication
between the deep learning nonconfidential computing base and
the secure memory inside the TEE. In particular, SecDeep’s data
manager is responsible for providing the associated data sanitiza-
tion by replacing the raw data with encrypted data that has the
same dimensions—as shown in the sample snippet in Figure 5b.
Further, if the secure memory is running low, the data manager is
also responsible for encrypting any data that needs to be stored
outside of the TEE in the untrusted data stack. Hence, the data
manager design has two requirements. First, the original data’s
confidentiality cannot be leaked. This means that the attackers
cannot reverse engineer any secrets from the supplied encrypted
data. The second requirement is that the dimensions of the original
data must be the same as the supplied data. To satisfy these needs,
SecDeep uses a format-preserving encryption (FPE) [9] function
to sanitize the data. FPE encrypts the plaintext value of each basic
element of the tensor data while ensuring the dimensions of the
data are retained. For example, if the tensor data represents an array
of integers, the FPE encrypts every integer of the array to create
an array of encrypted integers. This array has the same length and
data size as the plaintext tensor data array.

However, if we simply encrypt and decrypt the data using FPE
whenever there is a context exchange between the trusted and
untrusted execution environments, this implies that the total com-
putation for every confidential value will be doubled, i.e., the data
will need to be encrypted when exiting the TEE and decrypted
upon entry. A prior study [26] confirmed that there is indeed a
large overhead incurred from such frequent swapping. Hence, to
provide efficient swapping, SecDeep utilizes a table inside the TEE
to maintain the mapping of encrypted data to the raw data. This
method will ensure the “decryption” time to be constant, i.e., it
will have a complexity of O(1) by simply referring to the table if
the encrypted datum has been created. If an encrypted datum is
designated to enter to the TEE from the untrusted execution envi-
ronment, SecDeep’s data manager first refers to the table to retrieve
the original plaintext datum. If the datum cannot be found in the
table, the data manager performs a decryption method to obtain the
original raw datum. This table-mapping approach is summarized in

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani Srivastava

TEE
Data Manager

Format-Preserving
Encryption

Key1_T2

Enc_T1

Key2_P1

Key3_P1

Enc_T2

On-demand Table

Plaintext Value

Plaintext Tensor Value

Encrypted Value

Prefix of Enc_T1 Table

Untrusted Execution
Environment

Nonconfidential
Computing Base

2

1

3 4 56

Figure 7. The sanitization procedures of the confidential raw data
before leaving the TEE. The shaded areas are trusted. The plain
datum is first encrypted using FPE (1 - 2), then the encrypted
datum is stored as the key in the on-demand table with the plaintext
datum as the value (3 - 5). The sanitized datum is then delivered
to the nonconfidential computing base (6).

Figure 7: when any confidential data needs to exit the TEE, it is first
encrypted using FPE (1 - 2), and then stored in the table using
the encrypted data as the key and the plaintext data as the value
(3 - 5). Equivalent plaintext values will have the same encrypted
values.

On-demand table maintenance. As discussed, the table will in-
evitably require extra usage of secure memory. There are a couple
of optimizations SecDeep adopts to reduce the extra secure memory
consumption. First, SecDeep’s data manager is to only maintain
an entry as long as it is needed. An entry is created when the raw
datum needs to leave the TEE. When the raw datum is encrypted
and exfiltrated, a count of the datum entry increase by one (starting
from zero). When the datum is returned into the TEE to be en-
crypted, the counter is decreased by one. If the count becomes zero,
the entry is removed from the table. Second, if the secure memory
is full, SecDeep’s data manager unit uses a cache evicting algorithm
(e.g., least frequently used) to release more memory and move the
encrypted data outside of the TEE. When one layer’s computation
is finished, all of the intermediate data will be destroyed unless
they are needed for the next layer, which will be indicated by the
nonconfidential computing base’s results.

The traditional implementation of the table data structure usually
reserves enough space at initiation time and increases the size by
copying the existing table into a larger memory chunk. Due to the
constraints of the secure memory, we design an on-demand table
mechanism to save the mapping of the decrypted data. Inspired by
traditional kernel OS design, we design SecDeep’s on-demand table
to be segmented into small chunks by having a multi-level table
(3 - 5). The table entry will only be created when data needs to be
stored but does not need to reserve a large space at the initiation
time like the traditional table, which is able to ultimately save
secure memory usage, and this design also does not require a large
consecutive memory if the key-pairs are large.

5.3 Confidential Data Exchange through Secure API

As depicted in Section 3.2, SecDeep’s secure API enables confi-
dential data exchange between various components of SecDeep,
including those residing both inside and outside of the TEE. Table 2
summarizes the five secure API functions exposed by SecDeep.
The API is split into two categories: 1) computing base API that

1. /* Nonconfidential Computing Base */
2. void prepartion(model)
3. {
4. loaded_model = c_model_init(model);
5. for (auto layer: loaded_model)
6. {
7. tensor_info = c_tensor_request(layer);
8. // Computation such as configurations
9. ...
10. c_output_result(layer);
11. }
12. }

(a) The nonconfidential computing base sample code that configures
the input tensor for each layer.

1. /* Confidential Computing Base */
2. void model_verification(model)
3. {
4. loaded_model = i_model_load(model);
5. hash_verify(loaded_model);
6. }
7.
8. void data_store(data)
9. {
10. encrypted_data = encrypt(data);
11. i_data_store(encrypted_data);
12. }

(b) The confidential computing base sample code to verify the model
integrity, and store the necessary data outside of TEE.

Figure 8. Sample code of how confidential computing base and
nonconfidential computing base interact with other components
using secure API.

enables the communication between the confidential and nonconfi-
dential computing bases, and 2) the internal API that enables the
communication between SecDeep’s data stack and secure runtime.
Computing base API. The computing base API calls are used to
send tensor information between the confidential computing base
and the nonconfidential computing base. For instance, Figure 8a
provides a sample code snippet for a secure API request from the
nonconfidential computing base to the confidential computing base.
Once the nonconfidential computing base has configured the input
tensor and the resource requests to use a GPU, the code in the non-
confidential computing base will call c_output_result(layer)
(Line 10) to pass the results to the confidential computing base via
SecDeep’s secure runtime data manager using a secure buffer.
Internal APIs. The internal API is used to exchange the data stored
on the data stack in the untrusted execution environment with the
data in SecDeep’s secure runtime. For example, Figure 8b shows
a sample code snippet of the integrity checker verifying and sign-
ing the deep learning model. The secure function i_model_load
(model) is called to load the model from the data stack (Line 4).
The API is designed to use secure monitor code (SMC) to establish a
secure buffer such that a malicious OS cannot modify the contents
as described in Section 5.1 by properly hiding the memory region
from the kernel page table.

6 Implementation

In this section, we discuss how we prototype the design of SecDeep.

SecDeep: Secure and Performant On-device Deep Learning Inference Framework for Mobile and IoT Devices IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

Table 2. Summary of secure API in SecDeep.

Category Name Description

Computing Base API
c_tensor_request(layer) Request encrypted tensor data from the deep learning confidential computing.
c_output_result(layer) Send results of the specific layer from the nonconfidential to confidential computing base.
c_model_init(model) Requests SecDeep secure runtime to load the model.

Internal API i_data_store(data) Store encrypted data from the deep learning confidential computing base.
i _model_load(model) Send the model to SecDeep secure runtime for integrity verification.

Table 3. Lines of code implemented for SecDeep.

Model Name Repo sLoC

User Library ARM NN 694
ComputeLibrary 126

Integrity Checker
ATF 897
OP-TEE 69
Linux 457
LLVM Compiler 70

Data Manager OP-TEE 1635
Total 3948

6.1 System Setup

We prototype SecDeep using ARM NN with a Caffe deep learning
model on a HiKey960 Android development board. The Hikey960
board was enabled with an embedded GPU–a Mali G71 MP8 graph-
ics processor, and ARM TrustZone support. For the TEE, we use
ARM Trusted Firmware (ATF) with Open Portable Trusted Execu-
tion Environment (OP-TEE) within ARM TrustZone. Because the
driver of Mali GPU is not fully open-source, we have to simulate
the secure access in our implementation. Although we prototype
SecDeep on an ARM A-series dev board, SecDeep is portable to
lower-end ARM processors such as Cortex-M23 and Cortex-M33
processors with ARM TrustZone.

We implement the user library inside ARMNN and the associated
ARMCompute Library to provide the secure API.We implement the
integrity checker within the OP-TEE and modify the Linux kernel.
We also modify the LLVM compiler to perform the confidential
code extraction and provide the signatures for the codebase. We
implement the data manager inside OP-TEE. Table 3 summarizes
the 3.9K lines of code for the implementation.

To evaluate our framework, we built a deep learning inference
application using ARM NN to perform image classification using
different Caffe models supplied for the Hikey960 reference board.
We now detail how each component of the SecDeep is implemented.

6.2 Deep Learning Computing Base Split Annotation

We leverage ARM NN and ARM Compute Library with the support
of Caffe inference framework to build the confidential computing
base and nonconfidential computing base. Upon analysis, we found
that most of the ARM NN code is for resource preparation such as
building the computation nodes of a special graph or the model
parser that loads the model into memory. The ARM NN documen-
tation revealed that the tensor data can only be accessed through
the function Map() inside the structure ITensorHandle. Thus, we
were able to script the identification of all the code that uses these
functions and analyze whether they are using the sensitive tensor
data. We found that the only functions of the ARM NN code that
needed the aforementioned confidential designation were the func-
tions associated with the tensor input layers that process all the
input data and other tensor metadata such as padding.

6.3 Secure Runtime

We build the secure runtime inside ARM TrustZone using both
OP-TEE OS and ARM Trusted Firmware (ATF). The OP-TEE OS is
responsible for processing the model integrity checking. The ATF
traps all of the kernel page table modifications and computes the
code hashing. The ATF is also responsible for checking whether
the kernel modification will map to a memory region that holds
nonconfidential computing base code and data and the secure buffer.

Integrity checker.We implement the runtime integrity checker
for both the deep learning model and the code inside the nonconfi-
dential computing base. We implement an MD5 hash mechanism
inside OP-TEE to compute whether the model has been tampered
with while loading it onto the inference framework.

For the nonconfidential computing base code integrity checker,
we first modify the Linux kernel page table entry functions such as
clear_pte_bit() and set_pte() so that, every time these functions are
called, they will be trapped to Boot Loader Stage 3 (BL3) through
SMC.When the BL3 handler functions in ATF receive such requests,
the BL3 handler functions determine which request they need to
handle. If the OS tries to load code into the nonconfidential com-
puting base, the BL3 handler functions use SHA1 to compute the
hash of the code and compare it with the compiler-supplied hash. If
the kernel page table modification request should not load the code
into nonconfidential computing base, the BL3 handler functions
walk through all of the page tables to ensure that the modification
does not map to the nonconfidential computing base nor the secure
buffer.

Offline signature generation for nonconfidential computing

base code through the LLVM compiler. To generate the signa-
ture for the nonconfidential computing-based code, we extract any
code that was not designated as confidential using the aforemen-
tioned annotations. We modified the LLVM compiler such that
during the code emission stage, when the LLVM compiler detects
the confidential designation, it computes the hashing for the code
block for that function. We use a SHA-1 hashing algorithm to do
the hashing computing and verification for the instructions within
the designated code blocks. We then sign the hash values and store
the signature into the data segment of the program. The program
is later loaded into secure memory for verification.

6.3.1 Data Manager. We implement the runtime data manager
inside OP-TEE. We use Advanced Encryption Standard (AES) with
Counter (CTR) mode as the format-preserving encryption (FEP)
method because AES-CTR provides the same length of the output as
the input. We also implement a two-level table for our on-demand
hash table, where the key is the encrypted data and the value is
the plaintext data. We maintain the table using the least frequently
used (LFU) mechanism. We also evaluate different maximum table
size values allowed before adding a new entry in the next section.

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani Srivastava

Table 4. Benchmark models used for evaluation.

Model Name Model Size

Light
SqueezeNet 5 MB
MobileNet V1 17.1 MB
MobileNet V2 14.4 MB

Med. GoogleNet 28.3 MB
Yolo Tiny 65.6 MB

Heavy ResNet-50 102.5 MB
Inception BN 137.8 MB

1

10

100

1000

10000

100000

1000000

SqueezeNet MobileNet V1 MobileNet V2 GoogleNet Yolo Tiny ResNet 50 Inception BN

In
fe

re
nc

e
La

te
nc

y
(m

s)

SecDeep w. GPU Accel. GPU Acceleration SecDeep w. CPU Accel. CPU Acceleration No Acceleration

240

51

287
87

14K

590

89

738
434

21K

1K

140

1.1K
338

1.7K

388
292

532
349

50K
104K 134K 122K

601

136

985
544

1.4K
541

2K
1K 840

403

1.3K
874

Figure 9. The overall latency introduced by SecDeep and the com-
parison with CPU acceleration and GPU acceleration.

7 Evaluation

In this section, we will discuss how we evaluate SecDeep with
various parameters to show that (1) SecDeep achieves secure DL
model inferencing with superb latency (e.g., 172× better than CPU)
via secure GPU acceleration, and (2) incurs only a minimal TCB
size and computation/energy overhead.
Benchmark Models. Our implementation of SecDeep supports
Caffe models. Thus, we chose to evaluate popular Caffe models with
varying size as listed in Table 4.We first chose 3 popular, lightweight
(less than 20 MB) models: SqueezeNet [21], MobileNet V1 [20], and
MobileNet V2 [35]. We then evaluated 2 medium weight (less than
100 MB) models: GoogleNet [36] and Yolo Tiny [34]. Finally, we
used 2 heavy weight (greater than 100 MB) models: ResNet50 [18]
and Inception BN [22]. These are a representative set of on-device
models with varying capabilities.
Trusted Computing Base Size. Based on our implementation,
the current TCB size is 1015 sLoC, where 901 sLoC comes from
OP-TEE and 114 sLoC comes from ARM NN. Compared to the total
computing base size 232K4 of ARM NN, SecDeep has provided a
tiny TCB size. All of the GPU kernel code resides outside of the
TEE because the kernel code is only configured by the CPU.

7.1 Inference Latency

We run inferencing experiments for all of our benchmark models
at least 10 times to measure the average latency using 16MB of
secure memory. This is a sufficient amount of memory to support
the minimal TCB within the TEE (OP-TEE’s kernel is typically a
few MB) as well as an on-demand table with 1M entries.
Overall latency.We run the inference experiments for each model
using SecDeep with GPU acceleration, unsecure GPU acceleration,
SecDeep with CPU acceleration, unsecure CPU acceleration, and
no acceleration. We compute the average inference latency for
each model and summarize the results in Figure 9. Our experiment
shows that, although SecDeep with GPU acceleration is slower
4This only counts the GPU acceleration code.

0
50

100
150
200
250
300
350

SqueezeNet MobileNet V1 MobileNet V2 GoogleNet Yolo Tiny ResNet 50 Inception

Ac
ce

le
ra

tio
n

Ra
tio

SecDeep w. GPU Accel. Unsecure GPU Accel. SecDeep w. CPU Accel. Unsecure CPU Accel. (Neon)

761

Figure 10. The acceleration ratio of each acceleration method and
SecDeep in respect of execution the model without acceleration

0

10

20

30

40

co
nv
1

rel
u_
co
nv
1

po
ol1 fire

2
fire
3

po
ol3 fire

4
fire
5

po
ol5 fire

6
fire
7

fire
8

fire
9

co
nv
10

rel
u_
co
nv
10

po
ol1
0

pro
b

In
fe

re
nc

e
La

te
nc

y
(m

s) GPU Execution time SecDeep Overhead
36.8

21.5

13.3

35.6
38.3

7.2

18.2 19.8

0.3
8.3 9.1

11.5 11.8

5.3 7.0
3.8 0.3

Figure 11. The SecDeep overhead breakdown for each layer of
SqueezeNet.

than unsecure GPU acceleration, it is still comparable to unsecure
CPU acceleration and SecDeep with CPU acceleration—it is even
faster than unsecure CPU acceleration for the Inception BN model.
Most importantly, SecDeep is significantly faster than the case
where no acceleration is enabled. This result also shows that the
inference latency is not fully proportional to the size of the model.
For example, MobileNet V2 is only about one-fifth of Yolo Tiny’s
model size, but MobileNet V2’s inference latency is slower than Yolo
Tiny. This is because MobileNet V2 generates more intermediate
results and the table hit ratio is lower, resulting in more decryption
computations.

In terms of acceleration ratio, Figure 10 shows, for the best case
(ResNet-50), SecDeep is able to accelerate up to 172 times more than
the case with no acceleration. Even in the worst case (MobileNet
V2), SecDeep is able to accelerate 16 times faster than when no
acceleration is enabled. Our results have shown that using SecDeep
can achieve both acceptable latency and enable secure protection.

Overhead breakdown. We further break down the overhead of
SecDeep introduced for different layers of a deep learning model.
As shown in Figure 11, we accounted for the overhead in each of
SqueezeNet’s layers. The results show that the overhead of SecDeep
mainly comes from the TrustZone execution, i.e., the world context
switch time and the encryption. Furthermore, the first few layers
have higher overhead than the last several layers. This discrepancy
is due to the fact that the last few layers generate less intermediate
data and because the cached table hit rate is high. Further, the
overhead of SecDeep is not completely proportional to the size of
the tensor input of each layer. For example, if the input tensor size
of fire4 and the input tensor size of fire3 are both 55×55×128,
but the latency of fire4 is significantly smaller than the latency
of fire3. These results also demonstrate that future optimizations
could focus on how to store the values of the encrypted data in a
table such that the table hit rate can be high enough to benefit the
overall performance.

SecDeep: Secure and Performant On-device Deep Learning Inference Framework for Mobile and IoT Devices IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

0
150
300
450
600
750

128 bits 192 bits 256 bitsIn
fe

re
nc

e
La

te
nc

y
(m

s)

AES Key Length

625.5
703.0 711.5

Figure 12. SecDeep latency of different AES key lengths for Mo-
bileNet V1.

0%

20%

40%

60%

80%

100%

1M 3M 5M 7M 9M 11M

En
tr

y
hi

t r
at

e

Number of table entries

Figure 13. The hit rate of table contents in varied table entries for
MobileNet V2.

0
2
4
6
8

10
12
14

SqueezeNet MobileNet V1 MobileNet V2 GoogleNet Yolo T iny ResNet 50 Inception BN

M
od

el
 L

oa
di

ng
 L

at
en

cy
 (s

)

SecDeep w. GPU Accel. Unsecure GPU Accel.

5.4 5.3
3.6 3.5

6.3 6.2

9.3 8.9
7.2 6.6

8.9 8.3

12.512.1

Figure 14. Comparing model loading latencywith and without
SecDeep’s integrity checker on a GPU-enabled device.

Varying the encryption key length for FPE. Our experiments
use AES with CTR mode as the format-preserving encryption
method. Although our key length is 128 bits, we run the infer-
ence experiment with all three different sizes of AES key lengths,
i.e., 128 bits, 192 bits and 256 bits, for MobileNet V1. Our results—
summarized in Figure 12—have shown that even if we use the high-
est AES security standard with a 256-bit key, the overall latency
has only increased 13.7% with the lowest AES security standard
that uses 128-bit keys. Our SecDeep design has validated that the
data confidentiality can be very robust without sacrificing much
computation latency.

7.2 Table size options

Although the table is dynamically created, we observed that some
of the table contents are hardly hit in the future. Hence, they waste
the already-limited secure memory. In this experiment, we test the
hit rate for tables with varying upper limits for the table size as
shown in Figure 13. The results show that the hit rate significantly
reduces after 3 million entries. Hence, for the best performance, 3
million entries should be used to ensure that the memory will not
be significantly wasted while providing good performance.

7.3 Model Loading Latency

Weevaluate themodel loading time using andwithout using SecDeep.
The model loading time refers to loading the model into memory
and converting the model to a graph that ARM NN understands for
further execution. We implement the MD5 hashing mechanism to

1

10

100

1000

10000

SqueezeNet MobileNet V1 MobileNet V2 GoogleNet Yolo Tiny ResNet 50 Inception BN

En
er

gy
 C

on
su

m
pt

io
n

(𝛍
Ah

)

SecDeep w. GPU Accel. Unsecure GPU Accel. SecDeep w. CPU Accel. Unsecure CPU Accel. (Neon) No Accel.

12
3 5

2

855

42

3

66
21

1.8K

75

8

109

13

1K

23
13

56
18

3.2K

48

7

94

24

6.5K

123

28

202
66

8.8K

45
25

112
49

7.8K

Figure 15. Comparing energy consumption when inferencing with
and without SecDeep.

0%

1%

2%

3%

4%

SqueezeNet MobileNet V1 MobileNet V2 GoogleNet Yolo Tiny ResNet 50 Inception BN

Pe
rc

en
ta

ge
 o

f E
ne

rg
y

Co
ns

um
ed

SecDeep w. GPU Accel. Unsecure GPU Accel. SecDeep w. CPU Accel. Unsecure CPU Accel.

7% 10%

Figure 16. The overhead percentage of the energy consumption
with and without SecDeep, CPU acceleration, and GPU accelera-
tion.
check whether the model has been tampered with before loading
it to the nonconfidential computing base. Our results in Figure 14
show that the hash checking has introduced marginal overhead
when loading the model compared to the unsecure GPU accelera-
tion’s model loading time. For the lightweight and mediumweight
models, the model loading overhead of SecDeep is less than 4%,
while the model loading overhead for the heavyweight models is
less than 7.8%.

7.4 Energy Consumption

The last evaluation we characterized is power consumption. Be-
cause these are mobile and IoT devices, energy management is a
critical concern. To measure the power consumption of the infer-
ence process under the aforementioned scenarios, we connect the
Monsoon power monitor to our HiKey960 reference board. Fig-
ure 15 summarizes the results for each benchmark model. Our
experiments show that although GPU is more power-hungry, the
overall latency of GPU acceleration is much smaller. Hence, less
power consumption is achieved when using GPU acceleration. Al-
though SecDeep consumes slightly more energy than unsecure
CPU accelerations in most cases, it still consumes significantly less
energy than without using acceleration as illustrated in Figure 16.
Our experiments demonstrate that SecDeep can achieve acceptable
performance and energy consumption.

8 Discussion and Future Work

In this section, we will discuss the limitations of SecDeep as well
as the future research directions.

8.1 Limitations

Since SecDeep does not trust the operating system, any attacks
that can maliciously obtain privileged access to the OS (e.g., CVE-
2018-8781, CVE-2018-14634,CVE-2019-8635, and CVE-2019-1159)
are diminished in terms of the attacking deep learning execution on
the edge—where both the data confidentiality and accuracy can be
guaranteed from the sensor digitization to the DL results via TEEs.
However, one of the assumptions SecDeep makes is that the TEE
is always secure and trusted. Possible side-channel vulnerabilities

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani Srivastava

for TEEs may hinder the assumptions of SecDeep. can diminish
the protections of SecDeep. Although side-channel attacks are out
of this paper’s scope, extra protection mechanisms [24, 25] or data
validation methods [47] could be implemented to reduce the effects
from side-channel attacks.

8.2 Future Work

Training at the Edge.Although SecDeep focuses on deep learning
inference at the edge, another direction SecDeep is targeting is
secure training on the edge [48]. Given that sensors are increasingly
deployed at the edge, models need to be updated frequently to
improve accuracy.
Pruning the Model. To increase performance, future works can
focus on optimizing deep learning models to adapt to the associated
hardware, e.g., such as deep compression [17]. However, although
the model size is reduced, such pruning does not solve the biggest
constraints of running a secure deep learning inference framework
on the edge—limited secure memory.
Autonomous confidential annotation. Ideally, developerswould
employ annotations for functions as confidential or nonconfidential
from the start. However, as was done in this paper, we envision ex-
isting frameworks would have to be retroactively annotated. Future
work can focus on autonomously or semi-autonomously annotat-
ing the code that requires access to plaintext tensor values as an
analogous semi-autonomous solution used in Ct-Wasm [42]. Us-
ing this approach could significantly help reduce ML application
developers’ efforts to adapt their design with SecDeep.

9 Related Work

In this section, we will discuss the related works of SecDeep.
Secure machine learning. Previous works have explored secur-
ing deep learning frameworks algorithmically when the machine
learningmodels are offloaded to cloud environments. Occlumency [26]
leverages Intel SGX to secure deep learning inferencing in cloud
environments to preserve data privacy without trusting the cloud
service provider. Similarly, Ohrimenko et al. [32] use trusted en-
claves to collect sensitive data from distributed clients and run
oblivious machine learning training processes. Slalom [40] uses
Intel SGX by partially offloading linear layers of DNNs to untrusted
CPUs to obtain high performance without sacrificing the data pri-
vacy. DeepEnclave [15] uses cloud-assisted SGX for inferencing to
overcome the shortage of secure memory on the edge. Privado [39]
uses Intel SGX to load different models into an enclave and defend
the side-channel attack through access patterns. However, unlike
SecDeep, the above works do not provide a secure path to use
the available accelerators such as embedded GPUs for the infer-
ence. [8] uses privacy-preserving algorithms with assistance of
ARM TrustZone to protect the access to the peripherals to achieve
ML inferencing data privacy. However, unlike SecDeep, this work
does not protect the inferencing data integrity. Although some prior
works such as Graviton [41] and Yu et al. [45] design a secure path
to GPU. However, their designs fail on mobile and IoT embedded
GPU because it shares memories with CPU. Moreover, embedded
GPUs are more resource constraint than desktop or cloud GPUs.
TrustZone applications on the edge. ARM TrustZone has been
widely adopted in different designs to achieve the security require-
ment of an app or a system in the research field. Ginseng [46] uses

secure registers to hide sensitive variables. However, it’s NP com-
putation complexity is problematic for our design that has many
sensitive variables. TZ-RKP [7] uses ARM TrustZone to monitor
whether the OS is compromised. However, TZ-RKP is unable to
protect the integrity of the applications running on the OS. Virt-
Sense [29] split applications into sensitive code and insensitive
code. PROTC [30], uses ARM TrustZone to sanitize drone control
commands running inside the TEE. These approaches only trust
the sensitive code and do not provide protections for the insensitive
code. TrustShadow [16] runs an entire secure application inside a
TEE, but is not feasible for the large DL models we are considering.

10 Conclusion

We propose the SecDeepDLmodel computation framework that se-
curely uses available accelerators to provide performant on-device
inference on mobile and IoT devices. SecDeep leverages the benefits
of TEEs to achieve both high performance and a small TCB size
with limited secure memory. We prototype SecDeep on a HiKey 960
development board using ARM TrustZone, and our experiments
show that SecDeep can achieve up to 172× model inference ac-
celeration while using only 16MB of secure memory and while
minimizing the TCB by 92.4%.

Acknowledgments

The research reported in this paper was sponsored in part by the
National Science Foundation (NSF) under award #CNS-1705135, by
the CONIX Research Center, one of six centers in JUMP, a Semicon-
ductor Research Corporation (SRC) program sponsored by DARPA,
and by the Army Research Laboratory (ARL) under Cooperative
Agreement W911NF-17-2-0196. The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the ARL, DARPA, NSF, SRC, or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation here on.

References

[1] J. Amacher and V. Schiavoni. On the performance of arm trustzone. In Distributed
Applications and Interoperable Systems, 2019.

[2] Android. Android neural networks api. https://developer.android.com/ndk/
guides/neuralnetworks.

[3] Apple. Machine learning on ios. https://developer.apple.com/machine-learning/.
[4] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap

architecture. In Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat.
No.97CB36097), pages 65–71, 1997.

[5] ARM. https://developer.arm.com/ip-products/security-ip/trustzone.
[6] ARM NN (Neural Network). https://github.com/ARM-software/armnn.
[7] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen.

Hypervision across worlds: Real-time kernel protection from the arm trustzone
secure world. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’14, 2014.

[8] S. P. Bayerl, T. Frassetto, P. Jauernig, K. Riedhammer, A. R. Sadeghi, T. Schneider,
E. Stapf, and C. Weinert. Offline model guard: Secure and private ml on mobile
devices. In 2020 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 460–465, 2020.

[9] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-preserving encryp-
tion. In Selected Areas in Cryptography, 2009.

[10] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx. Telling your se-
crets without page faults: Stealthy page table-based attacks on enclaved execution.
In 26th USENIX Security Symposium (USENIX Security 17), 2017.

[11] Caffe2 on Smartphone. https://caffe2.ai/docs/mobile-integration.html.
[12] W. Dai, H. Jin, D. Zou, S. Xu, W. Zheng, L. Shi, and L. T. Yang. Tee: A virtual drtm

based execution environment for secure cloud-end computing. Future Generation
Computer Systems, 49:47 – 57, 2015.

[13] DL4J. https://deeplearning4j.org/.

https://developer.android.com/ndk/guides/neuralnetworks
https://developer.android.com/ndk/guides/neuralnetworks
https://developer.apple.com/machine-learning/
https://developer.arm.com/ip-products/security-ip/trustzone
https://github.com/ARM-software/armnn
https://caffe2.ai/docs/mobile-integration.html
https://deeplearning4j.org/

SecDeep: Secure and Performant On-device Deep Learning Inference Framework for Mobile and IoT Devices IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

[14] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration
for general-purpose approximate programs. In 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 449–460. IEEE, 2012.

[15] Z. Gu, H. Huang, J. Zhang, D. Su, A. Lamba, D. Pendarakis, and I. Molloy. Securing
input data of deep learning inference systems via partitioned enclave execution.
arXiv preprint arXiv:1807.00969, 2018.

[16] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger. Trustshadow:
Secure execution of unmodified applications with arm trustzone. In Proceedings
of the 15th Annual International Conference on Mobile Systems, Applications, and
Services. Association for Computing Machinery, 2017.

[17] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[19] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 784–800, 2018.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861, 2017.

[21] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size. CoRR, abs/1602.07360, 2016.

[22] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[23] D. Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. B. Kang. Atra: Address translation
redirection attack against hardware-based external monitors. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.

[24] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev, and
N. Abu-Ghazaleh. Safespec: Banishing the spectre of a meltdown with leakage-
free speculation. In 2019 56th ACM/IEEE Design Automation Conference (DAC).

[25] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh. Spectre returns!
speculation attacks using the return stack buffer. In 12th USENIX Workshop on
Offensive Technologies (WOOT 18), Baltimore, MD.

[26] T. Lee, Z. Lin, S. Pushp, C. Li, Y. Liu, Y. Lee, F. Xu, C. Xu, L. Zhang, and J. Song.
Occlumency: Privacy-preserving remote deep-learning inference using sgx. In
The 25th Annual International Conference on Mobile Computing and Networking.

[27] E. Li, Z. Zhou, and X. Chen. Edge intelligence: On-demand deep learning model
co-inference with device-edge synergy. In Proceedings of the 2018 Workshop on
Mobile Edge Communications, pages 31–36, 2018.

[28] H. Li, K. Ota, and M. Dong. Learning iot in edge: Deep learning for the internet
of things with edge computing. IEEE network, 32(1):96–101, 2018.

[29] R. Liu and M. Srivastava. Virtsense: Virtualize sensing through arm trustzone
on internet-of-things. In Proceedings of the 3rd Workshop on System Software for
Trusted Execution.

[30] R. Liu and M. Srivastava. Protc: Protecting drone’s peripherals through arm
trustzone. In Proceedings of the 3rd Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications, DroNet ’17, 2017.

[31] S. S. Ogden and T. Guo. 𝑀𝑂𝐷𝐼 : Mobile deep inference made efficient by edge
computing. In USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18).

[32] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani, and
M. Costa. Oblivious multi-party machine learning on trusted processors. In 25th
USENIX Security Symposium (USENIX Security 16).

[33] PyTorch on Android. https://pytorch.org/mobile/android/.
[34] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. CoRR,

abs/1612.08242, 2016.
[35] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Inverted resid-

uals and linear bottlenecks: Mobile networks for classification, detection and
segmentation. CoRR, abs/1801.04381, 2018.

[36] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

[37] R. Tartler, A. Kurmus, B. Heinloth, V. Rothberg, A. Ruprecht, D. Dorneanu,
R. Kapitza, W. Schröder-Preikschat, and D. Lohmann. Automatic OS kernel
TCB reduction by leveraging compile-time configurability. In Eighth Workshop
on Hot Topics in System Dependability (HotDep 12), Hollywood, CA, 2012. USENIX
Association.

[38] Tensorflow Lite on Android. https://www.tensorflow.org/lite/guide/android.
[39] S. Tople, K. Grover, S. Shinde, R. Bhagwan, and R. Ramjee. Privado: Practical and

secure DNN inference. CoRR, abs/1810.00602, 2018.
[40] F. Tramer and D. Boneh. Slalom: Fast, verifiable and private execution of neural

networks in trusted hardware. In International Conference on Learning Represen-
tations, 2019.

[41] S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted execution environments on
gpus. In 13th USENIX Symposium onOperating Systems Design and Implementation
(OSDI 18), pages 681–696, Carlsbad, CA, Oct. 2018. USENIX Association.

[42] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan. Ct-wasm: Type-driven
secure cryptography for the web ecosystem. Proceedings of the ACM on Program-
ming Languages, 3(POPL):1–29, 2019.

[43] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood,
E. Isaac, Y. Jia, B. Jia, et al. Machine learning at facebook: Understanding inference
at the edge. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 331–344. IEEE, 2019.

[44] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi. Scaling for edge
inference of deep neural networks. Nature Electronics, 1(4):216–222, 2018.

[45] M. Yu, V. D. Gligor, and Z. Zhou. Trusted display on untrusted commodity
platforms. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security.

[46] M. H. Yun and L. Zhong. Ginseng: Keeping secrets in registers when you distrust
the operating system. In 23rd Network and Distributed Security Symposium (NDSS
2019), San Diego, CA, 2019.

[47] Z. Zheng and A. N. Reddy. Towards improving data validity of cyber-physical
systems through path redundancy. In Proceedings of the 3rd ACM Workshop on
Cyber-Physical System Security, CPSS ’17, page 91–102, New York, NY, USA, 2017.
Association for Computing Machinery.

[48] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang. Toward an intelligent
edge: wireless communication meets machine learning. IEEE Communications
Magazine, 58(1):19–25, 2020.

https://pytorch.org/mobile/android/
https://www.tensorflow.org/lite/guide/android

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DL Inference Framework on Mobile and IoT Devices
	2.2 Secure Computation with TEEs
	2.3 Strawman Solution on Secure Inference

	3 Overview
	3.1 Problem Scope
	3.2 SecDeep Workflow
	3.3 Challenges and Key Insights

	4 Transforming Inference Computation for Secure Execution
	4.1 Splitting Deep Learning Computing Base
	4.2 Securing the Path from Sensor Peripherals to Accelerators

	5 Secure and Performant Inference Execution with Accelerators
	5.1 Runtime Integrity Checker
	5.2 Data Management
	5.3 Confidential Data Exchange through Secure API

	6 Implementation
	6.1 System Setup
	6.2 Deep Learning Computing Base Split Annotation
	6.3 Secure Runtime

	7 Evaluation
	7.1 Inference Latency
	7.2 Table size options
	7.3 Model Loading Latency
	7.4 Energy Consumption

	8 Discussion and Future Work
	8.1 Limitations
	8.2 Future Work

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

