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Abstract
Network monitoring and measurement have always been crit-
ical components of network management. Recent develop-
ments in sketch-based monitoring techniques and the deploy-
ment opportunities arising from the increasing programmabil-
ity of network elements (e.g., programmable switches, Smart-
NICs, and software switches) have made the possibility of ac-
curate, detailed, network-wide telemetry tantalizingly within
reach. However, the wide heterogeneity of the programmable
hardware and dynamic changes in both resources available
and resources needed for monitoring over time make existing
approaches to network-wide monitoring impractical.

We present HeteroSketch, a framework that consists of
two main components: (1) a profiling tool that automatically
quantifies the capabilities of arbitrary hardware by predicting
their performance for sketching algorithms, and (2) an opti-
mization framework that decides placement of measurement
tasks and resource allocation for devices to meet monitoring
goals while considering heterogeneous device capabilities.
HeteroSketch enables optimized deployments for large net-
works (> 40,000 nodes) using a novel clustering approach
and enables prompt responses to network topology, traffic,
query, and resource dynamics. Our evaluation shows that
HeteroSketch reduces resource overheads by 20�60% com-
pared to prior art, while maintaining monitoring performance,
coverage, and accuracy.

1 Introduction

The ability to monitor network traffic in-situ and at-large-
scale is a critical enabler for many networked management
applications, including traffic engineering, load balancing,
attack and anomaly detection, provisioning, and congestion
control/fairness [1–7]. However, network-wide monitoring
has proven to be challenging due to limitations on what mea-
surements can be made and where these measurements can
be taken. Recent developments in sketch-based monitoring
and network programmability have made significant progress

in eliminating these limitations and have made it possible to
consider practical network-wide monitoring designs.

Sketch-based monitoring designs [8–13] demonstrate that
sketches offer provable accuracy guarantees on a wide spec-
trum of metrics of interest using a small amount of memory
and that independent sketch instances monitoring different
parts of the network can be merged to obtain network-wide
aggregated results. As a result, sketch-based monitoring has
emerged as a promising alternative to traditional sampling-
based monitoring tools (e.g., NetFlow [14] and sFlow [15]).
The growing popularity of programmable network elements,
such as programmable switches [16, 17], SmartNICs [18,
19], and software-switches [20, 21], have made it possible to
deploy these sketch-based designs throughout a network – en-
abling highly-effective network-wide monitoring capabilities.

Despite significant recent progress [10–13, 22], we argue
that deploying sketch-based monitoring in a network-wide
setting remains impractical. The reason behind this is that
existing network-wide solutions [11, 22, 23] assume an ab-
stract network model without properly considering the het-
erogeneity and dynamics in the network. First, with growing
types of programmable devices whose hardware architectures
are dramatically different (e.g., ASIC, CPU, FPGA), it re-
mains unclear how to deploy sketches among heterogeneous
computation and memory hierarchies for optimized resource
efficiency. Second, since monitoring capabilities share the
same infrastructure with other network services [24–26] and
monitoring requirements vary over time, the available and
required resources for monitoring can change dynamically.
We require an agile solution that can incorporate device het-
erogeneity and quickly adjust to network dynamics for best
possible monitoring performance.

In this paper, we present HeteroSketch, a network-wide
flow monitoring framework that coordinates sketch-based
measurement to determine task placement and resource al-
location for a network of heterogeneous devices. HeteroS-
ketch has two main components: (1) a device character-
ization tool that automates quantified reasoning about the
performance and resource usage of sketches on arbitrary de-
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vice architectures and (2) an optimization framework that
computes the placement of measurement tasks while consider-
ing available heterogeneous device resources and monitoring
goals including forwarding performance, resource efficiency,
monitoring accuracy, and flow coverage.

When designing our device characterization tool, we need
to deal with a broad spectrum of programmable architectures
such as CPU [20, 21], FPGA [19, 27], ASIC [16], and multi-
core system-on-chip (SoC) [18]. Given the difficulty in
accurately predicting the performance of arbitrary code under
diverse workloads and hardware architectures [28, 29], we
scope our efforts to sketches to create a practical solution.
Our design is inspired by the observation that many sketches
perform similar computations. We analyze the key opera-
tions of sketches and find that the performance of a sketch
depends heavily on primitive operations – hash computations,
counter updates, and random memory lookups. With that in
mind, we then characterize these operations on current (and
possibly new) hardware using automated micro-benchmarks,
and leverage these measurements to express the performance
and resource usage of a sketch. As evaluated in §7.1, our pro-
filer accurately predicts sketch performance on programmable
hardware with less than 6% mean relative error.

With precise performance profiles as input, HeteroSketch
must address the tightly coupled monitoring goals, traffic de-
mands, forwarding performance, sketch configurations, and
resource usage, and the tradeoffs between them. Task place-
ment and resource allocation requires a carefully crafted opti-
mizer to incorporate the cost/benefit of different deployment
options. We formulate a Mixed-Integer Program (MIP) to
optimize resource efficiency while preserving forwarding per-
formance, monitoring accuracy, and flow coverage.

Given the complexity introduced due to heterogeneous
devices (non-convexity) and network scale, even a state-of-
the-art solver [30] takes hours to solve the MIP, leading to
stale solutions in face of network dynamics. We develop a
clustering technique based on observed structures in network
topologies and traffic patterns to partition the optimization
into independent sub-problems. This allows HeteroSketch to
scale to today’s data center networks having tens of thousands
of devices and respond to dynamics within a few seconds to a
few minutes while maintaining near optimal allocations.

We implement HeteroSketch by porting state-of-the-art
sketch implementations [8, 9, 11, 13] into representative pro-
grammable devices (Barefoot Tofino [16], Netronome Agilio
SmartNIC [18], Xilinx FPGA NIC [27], and Open vSwitch
(OVS) [20]) and encode the optimization in the Gurobi [30]
solver. Our evaluation with more than 40,000 nodes demon-
strates that our heterogeneity-aware optimization can achieve
20�60% better resource efficiency (e.g., 50k CPU cores in-
stead of 70k CPU cores) compared to prior solutions with the
same performance, accuracy, and coverage while responding
to network dynamics in a few seconds to a few minutes.
Contributions. We make the following contributions:

• We present HeteroSketch, the first system to our knowl-
edge that performs coordinated sketch-based network-wide
monitoring over a network of heterogeneous devices and
caters to network dynamics. (§3)

• We develop a profiler that allows users to predict the per-
formance of sketches on heterogeneous devices. (§4)

• We formulate a mixed-integer program to optimize sketch
placement and resource allocation over heterogeneous de-
vices and propose techniques to quickly optimize when
topology, queries, traffic, or resources change. (§5, §6)

• We show that HeteroSketch is able to place tasks and allo-
cate resources over network topologies, achieving greater
scale and optimality than existing systems. (§7)

2 Background and Motivation

In this section, we describe how heterogeneous programmable
data planes bring new opportunities and challenges to deploy
network-wide monitoring under varying demands. We then
discuss existing network-wide monitoring efforts.
Programmable Data Plane. Progress in programmable net-
work devices is moving the network data plane towards a
highly programmable infrastructure. This programmable in-
frastructure opens up the opportunity to develop measurement
algorithms for a variety of fine-grained, flexible measurement
tasks. For example, significant progress has been made in
developing sketching algorithms [11, 12, 31] on the RMT
architecture [32], where packets are processed over a series
of reconfigurable match-action tables with user-defined ac-
tions in a pipeline. Similarly, multi-engine SmartNICs [18]
consisting of a pool of general purpose processing elements
(i.e., micro-engines) are a cost-effective option to allow hosts
to offload monitoring capabilities or other parallel compu-
tation from CPU. These programmable devices enable the
development of highly flexible and performant future-proof
network-wide monitoring for various network demands.
New Requirements in Network-wide Monitoring. For a
long time, network monitoring research has been focused
on pursuing accuracy over other goals, such as forwarding
performance with less computing and memory resources, and
scalability by supporting larger-scale networks. While these
requirements continue to be important, we believe that there
are two significant roadblocks that make it difficult or imprac-
tical to use existing sketch-based designs at scale in future
programmable data planes:
• Heterogeneity in the network: Network data planes are

becoming increasingly heterogeneous with devices such
as x86-based software switches [20], ASIC-based pro-
grammable switches [16], multicore system-on-chip (SoC)
SmartNICs [18], and FPGA NICs [19, 27]. These devices
are designed with diverse architectures and present very
different resource bottlenecks to the programs that execute
on them. The challenge lies in how to precisely character-
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Figure 1: Example of network-wide UnivMon not optimally
placing the sketches.

ize the performance of monitoring programs on current and
possibly new devices and use these insights to optimize
resource usage.

• Network dynamics: Network monitoring serves as a data
collector and analyzer for other co-located network services
(e.g., traffic engineering, load balancing, and anomaly de-
tection). As all these services share the same infrastruc-
ture and their monitoring needs change, any network-wide
monitoring system should quickly adjust to the following
“network dynamics”: (1) topology change, (2) monitoring
query change, (3) traffic demand change, and (4) avail-
able resource change, in order to provide best monitoring
performance and not interrupt other concurrent services.

Current Network-wide Monitoring and Limitations. In
small networks, we can consider using techniques that record
all packets or flows passing through the network for full ac-
curacy (e.g., T-RAT [33], vCRIB [34], and OmniMon [35]).
However, in practice, with the desire for real-time and ac-
curate monitoring over large traffic volumes and dynamics,
operators usually cannot afford to record all packets or flows
on their network devices due to high resource usage and pro-
cessing latency. Recently developed zoom-in techniques (e.g.,
Sonata [36] and ProgME [37], and others [38, 39]) provide no
theoretical accuracy guarantee for dynamic traffic workloads.
Systems such as NetFlow/sFlow [14, 15] and cSAMP [23]
reduce overhead by recording only a fraction of packets via
packet or flow sampling to compute measurement results. As
shown in prior efforts [40, 41], these sampling approaches
have low measurement accuracy in various tasks and work-
loads.

Sketching algorithms (sketches) address the drawbacks of
sampling. At a high level, sketches [8, 9, 42] are probabilistic
data structures that store a small summary of the input traffic.
They allow a proven trade-off between the accuracy of sup-
ported queries and the space of the summary. Sketching tech-
niques have efficiently supported various monitoring tasks
including: heavy hitter detection [8, 9, 11, 12, 31, 43], traffic
change detection [11, 44], anomaly detection [11, 22, 45],

Scheme Resource
Over-
head

Heterogeneity &
Dynamics

Memory-
Accuracy
Tradeoff

cSAMP [23] High 7 Poor
vCRIB [34] High Limited Poor
OmniMon [35] High Limited Poor
UnivMon [11] Medium 7 Good
HeteroSketch Low 3 Good

Table 1: Summary of qualitative comparisons of existing
schemes and our approach (HeteroSketch).

entropy estimation [11, 46, 47], counting distinct flows [11,
12]. Most sketches mentioned above can be linearly merged
to obtain aggregated results with the same additive error guar-
antees [48]. For example, Sketch 1 measuring flow set A
can be merged with Sketch 2 measuring flow set B (e.g., by
addition of the two counter tables) to obtain statistics about a
combined flow set A[B, as long as Sketches 1 and 2 share
the same hash and memory configurations.

Unfortunately, existing sketch-based monitoring solutions
don’t consider heterogeneity and dynamics, which affects
their resource efficiency and/or accuracy (Table 1). For in-
stance, Figure 1 shows a simple scenario where network-
wide UnivMon [11] does no optimally place Count-Min
Sketches [8], resulting in using 5 cores instead of 4. In this
setting, we have three devices (CPU A, CPU B, and pro-
grammable switch C). We want 1 Count-Min sketch (CM1)
to monitor traffic between devices A and C, and we want
2 Count-Min sketches (CM2 and CM3) to monitor traffic
between devices B and C. We also assume that the pro-
grammable switch can only fit one sketch in its share of
switch resources for monitoring tasks. CPU A requires 2
cores for forwarding 20Mpps while CPU B requires 1 core
for 10Mpps. The key decision is which sketch should go on
the programmable switch. Better Strategy: If we place CM1
on the switch, both CM2, CM3 run on CPU B consuming 1
core for sketching (combined 20M sketch operations per sec-
ond). Network-wide UnivMon: If we place CM2 (or CM3) on
the switch, then CM1 must be placed on CPU A consuming
1 core for sketching and CM3 (or CM2) must be placed on
CPU B again consuming 1 core for sketching, for a total of
2 sketching cores. Note, placing only one of CM2 or CM3
on CPU B consumes 1 sketching core as cycles are wasted
busy-polling for packets for performance reasons. UnivMon
produces this placement as it tries to balance memory load
across devices.

3 System Overview

We describe the high-level design of HeteroSketch and high-
light the key challenges that the design must address.

3.1 Problem Scope
HeteroSketch provides a “One Big Switch” abstraction to
the user, wherein the user can specify monitoring require-
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Figure 2: HeteroSketch Overview.

ments over all or a subset of traffic flowing between network
endpoints or origin-destination (OD) pairs. Monitoring re-
quirements include the type of the sketch, flow filter, and
accuracy requirement (Figure 2). HeteroSketch takes these
monitoring requirements and assigns particular sketch-based
tasks among the components of a heterogeneous network of
diverse devices using state-of-the-art sketching algorithms
such as Count-Min [8], Count Sketch [9], and UnivMon [11].

This abstraction can be used to manage network monitor-
ing in various settings. For example, HeteroSketch could
be applied by Internet Service Providers (ISPs) to manage
monitoring services internally or for their clients. In this pa-
per, we envision cloud providers being early adopters of our
network-wide monitoring system. In a multi-tenant cloud en-
vironment, a cloud provider would be able to offer monitoring-
as-a-service to the tenants. Tasks corresponding to queries
from different tenants would be placed within the network
as opposed to just on the end-hosts that the tenant is using,
i.e., NIC and switch resources can be indirectly accessed by
tenants for monitoring purposes. The operator would make
control decisions using a centralized view to address different
measurement objectives. For instance, the operator could (1)
manage monitoring requirements submitted by multiple inde-
pendent tenants while incorporating any potential contention
between monitoring tasks placed on the same device; and/or
(2) deploy their own monitoring tasks (e.g., detecting compro-
mised tenant VMs [49]). In any of the scenarios, our system
makes it possible to load balance monitoring tasks between
servers, NICs, and switches, and to prioritize resources such
as CPU cores for other critical services and cloud applications.

3.2 HeteroSketch Workflow
As depicted in Figure 2, HeteroSketch has two main compo-
nents: a performance profiler and an optimization framework.
Performance Profiler ( 1 in Figure 2): For any new device,

HeteroSketch needs to conduct offline performance charac-
terization to add a new abstract profile into its device profile
library. The device profile library allows HeteroSketch to pre-
dict the performance-resource trade-offs of different sketch
configurations. We describe this Profiler in detail in Section 4.
Optimization Framework: Once HeteroSketch obtains user
input as 2 (monitoring requirements), the HeteroSketch Op-
timizer 3 outputs the configuration and mapping of sketches
to devices (i.e., sketch manifests for each device) and the
resources allocated to each device (i.e., device configura-
tion). Based on the Optimizer output, HeteroSketch deploys
sketches into the network and gathers network-wide statistics
as other monitoring systems. If there are dynamic changes in
user input, network topology, traffic demands, and available
resources, HeteroSketch will perform a quick re-optimization
4 . We describe this Optimizer in detail in Section 5.

Supported Queries: HeteroSketch currently supports sketch-
based flow-level telemetry queries over flow sets defined over
OD-pairs; e.g., heavy hitters, flow changes, entropy, distinct
flows, among others, over flows across one or more OD pairs.
For instance for network-wide heavy-hitters, a user can spec-
ify multiple OD-pairs to be monitored for the same query.
HeteroSketch will then instantiate and collect (linearly merge)
data from multiple instances of sketches (e.g., Count-Min and
UnivMon) while ensuring that all OD-pairs are monitored and
resource overhead is minimized. That said, telemetry queries
that are not defined over flows, such as path-level queries
in In-band Network Telemetry (INT) [50], or packet-level
queries, which are not supported by sketches, are outside the
scope of this paper.

3.3 Challenges and Key Insights
We describe the three main challenges that our design faces.
C1: [Heterogeneity] Predicting sketch performance for
different resource allocations. Optimizing resource utiliza-
tion requires characterization of exact costs and benefits of
different deployment configurations. This is challenging be-
cause many characteristics of the program and the device
architecture impact the processing time per packet.1 For in-
stance, devices may execute certain operations using ASICs
and others using general purpose cores. The time for an in-
struction might depend on the allocated resources, e.g., mem-
ory access time depends on the working set. The program
might have a complex, unpredictable control flow with many
data dependencies. Past systems [28, 29] rely on low-level
architecture specific counters and cache analysis to provide
performance estimates. Such approaches do not provide the
accuracy needed and would be difficult to generalize to other
hardware.

Insight: We observe that (1) the primitive operations of
sketches (e.g., hashing, memory updates) largely determine

1We represent performance in terms of time per packet or inverse through-
put and use these terms interchangeably.
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packet processing time, and (2) based on data flow analysis,
most sketches have limited data dependencies and limited
control flow. This means that there are enough independent
operations to be performed (either for the same packet or
across packets), that performance is broadly determined by
the number of operations rather than their inter-dependencies.
Therefore, we design a benchmark suite consisting micro-
benchmarks of primitive sketch operations for a small set
of sketch manifests. The Profiler composes these bench-
marks to generate algebraic characterization of the resource-
performance trade-off for arbitrary sketch manifests.

C2: [Formulation & Scalability] The optimization formu-
lation of sketch placement over heterogeneous hardware re-
sults in a large and complex NP-Hard optimization problem.
Despite using a state-of-the-art commercialized solver (e.g.,
Gurobi), it still needs order of hours to finish even for rela-
tively small networks (⇡1000 nodes). Specifically, the com-
plex non-convex device profiles and scale of the network slow
down the optimization.

Insight: We use the solver’s advanced features (bi-linear
constraints) to incorporate the non-convex device profiles. For
scalability, we partition the optimization problem into disjoint
sub-problems which are solved concurrently. We define these
sub-problems by partitioning the network into clusters. We
find that traditional clustering techniques such as spectral
clustering [51] either result in infeasible sub-problems or
solutions which are far from optimal (see §6). Our key insight
is to define clustering affinity between nodes based on OD-
pairs (traffic and monitoring requirements) rather than just
network structure.

C3: [Dynamics] Sketch manifests and device configurations
can become stale due to network dynamics including changes
in monitoring requirements, available resources, logical topol-
ogy, and traffic demands. A robust solution should adapt its
deployment at the rate of these changes.

Insight: While the insights in C2 help scale the Optimizer
to handle large topologies and bring down solving time from
order of hours to a few minutes (§7.2), we supplement the
clustering approach with a Fast Path that allows quicker re-
sponses (in a few seconds) to network dynamics. It leverages
our observation that it is sufficient to recompute the place-
ment/configuration for only a subset of devices which are
directly affected by the network dynamics (§6.2).

4 Performance Profiler

We leverage the common structure of sketches to make the
performance prediction problem tractable. As an example,
we describe the structure of a canonical Count-Min sketch [8]
that can be used for maintaining a summary of per-flow sizes.

The sketch maintains a counter table of rows and columns.
On observing a <key,value> pair, a hash function is computed
over the key for each row of the sketch. These hash values are

used to index into the rows and the content of the correspond-
ing cells is incremented by value. The updates to different
rows are completely independent of each other, which is simi-
lar for a large set of sketches [8, 9, 11, 13, 42, 52]. With this
structure, hash computation and memory update operations
consume the majority of the time.
Our Approach. While the common structure of sketches
allows us to manage the complexity introduced from the pro-
gram’s side, we still need to manage the complexity due to
diverse devices. Specifically, for each device type, we have a
three-phase approach to determine the sketch performance:

• Phase 1: Measure the time for primitive operations.
• Phase 2: Compose the time for different operations.
• Phase 3: Consider impact of device configurations.

Before diving into the details of the three phases, we pro-
vide a brief overview of the Profiler’s operation and its setup.

Setup: The Profiler uses a three-device testbed consisting
of the device being studied (or device under test, DUT), a
sender, and a receiver. The three devices connected in a linear
topology with the DUT configured to forward traffic from the
sender to the receiver. Such a setup can be created without a
lab environment or re-wiring, by changing forwarding con-
figuration in a local or cloud deployment. A more detailed
description of this testbed is provided in §7.1.

Overview: The Profiler treats the devices as “black-boxes” and
makes few assumptions about the architecture. We assume
that the DUT has a library to implement sketch manifests and
that it exposes an API to allocate resources. The Profiler uses
this API to study the DUT’s forwarding rate for a limited set of
sketch manifest and device configuration combinations. The
Profiler does not need any code instrumentation, hardware
counters, or precise time-stamping, it simply studies the end-
to-end forwarding rate.

For each device, the Profiler models time per packet as
an algebraic function of sketch parameters, device parame-
ters and device configuration. The sketch parameters include
counts for primitive sketch operations, which are obtained
from the sketch manifest (e.g., sketch type, the numbers of
rows and columns [8, 9], and the number of levels (sketch
instances) [11]). We obtain device parameters from micro-
benchmarks for the primitive operations. Device configu-
ration specifies the resources, including memory, processor
cores, micro-engines, switch stages/ALUs, lookup tables, flip-
flops, and/or DSPs. We believe this approach generalizes to
support architectures beyond the hardware at hand (Table 2).

4.1 Detailed Design of the Profiler
Phase 1: Primitive Operations. In this phase, we evaluate
the time for the following primitive operations per sketch
update: hash computations (compute capabilities), memory
accesses (impact of memory hierarchy), coin tosses (random

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    723



Type Hardware
CPU (Open
vSwitch)

Intel® Xeon® Silver 4110 CPU @
2.10GHz (32KB L1, 256KB L2, 8MB
L3 cache) with Mellanox ConnectX 4
NIC [53][20]

SoC SmartNIC Netronome Agilio® CX 1x40GbE
FPGA NIC Xilinx® Alveo™ U280 Data Center ac-

celerator card
Prog. Switch Barefoot Tofino

Table 2: Devices tested with Profiler.
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Figure 3: Phase 1 — Hashing micro-benchmark. (a) single core
running OVS and sketching module. (b) 54 micro-engines. (c)
single hash instance. Y axes show time per packet (ns).

number generation), and packet forwarding. For simplicity,
we count the update to each row of a sketch as a separate
sketch update, e.g., two Count-Min sketches with 4 rows each
would make up 8 sketch updates per packet.

The Profiler studies the variation of time per packet as the
configuration of a Count-Min sketch is varied. For hashing
micro-benchmark (Figure 3), we vary the number of sketch
updates for a small fixed amount of memory (to ensure mem-
ory does not become bottleneck). For the memory micro-
benchmark (Figure 4a), we vary the sketch memory for a fixed
number of sketch updates. We handle coin tosses similar to
hashes but with sketches such as [13, 52] which rely on ran-
dom number generation. Note, for all the micro-benchmarks,
we generate flow keys that are uniformly distributed. This re-
sults in uniform memory access pattern for Count-Min sketch
and allows us to estimate the worst case performance.
Phase 2: Composition. Given time for primitive operations
from Phase 1, Phase 2 determines how different micro-
benchmarks should be composed to obtain the total time per
packet. The goal is to capture unique properties of how a
device architecture combines the primitive operations by test-
ing for three key properties: (1) Memory and compute con-
currency, (2) Forwarding and sketching concurrency, and
(3) Sketch access frequency. For each property, the Pro-
filer defines a set of expected behaviors (composition func-
tions). These correspond to different device architecture or
sketch implementation choices. We currently rely on man-
ually inspecting the micro-benchmarks to identify the de-
vice/implementation behavior. This process can be automated
in a straightforward fashion. We detail the properties and
behaviors below.

Memory and compute concurrency: Compute and mem-
ory operations in a system may be coupled or decoupled
depending on the hardware: (1) in a coupled system, hashing
and memory operations might contend for the same hard-
ware units, (2) in the decoupled case, the memory and hash
operations have zero contention, i.e.,

nsketch = ncompute +nmemory B coupled
nsketch = max(ncompute,nmemory)B decoupled

ncompute = k1 +uh ·h
nmemory = k2 +um ·T (m)

where nsketch is the time for sketch updates, uh is the number
of hash computations per packet and um is the number of ac-
cesses to the sketch memory per packet. h is the time per hash
computation, k1 and k2 are constants, and T (m) is the time
per memory access given m amount of total memory has been
allocated for sketching. For the coupled case, the memory ac-
cess benchmark would subsume the time for hashing and vice
versa. In this case, T (.) is used to represent additional time
per memory access incurred due to potential cache misses.
This is extracted by adjusting for the time per hash.

For CPU, we use the coupled model as hash computation
has memory instructions which prohibit full overlap with
sketch memory accesses. For the FPGA and SoC SmartNIC,
we use the decoupled model, as their compute (hashing) units
and memory units are completely disjoint.

For sketches which have multiple levels or control paths
(e.g., UnivMon [11]), the number of primitive operations can
be different for different packets based on their flow key as
well as the sketch memory access pattern can be non-uniform
even for uniformly distributed flow keys. In this case we inter-
pret uh, um as the expected number of operations per packet
and use T (Effective uniformly accessed memory) instead of
T (Total memory). For brevity we discuss the details of com-
puting “effective uniformly accessed memory” in Appendix B.
We find that UnivMon behaves as if at most 4 of its levels
are accessed uniformly irrespective of the amount of sketch
memory and across devices.

Forwarding and sketching concurrency: Packet for-
warding and sketching can be done in parallel or in the same
thread(s). If done in parallel, the time per packet would be the
maximum of the inverse throughput of forwarding and sketch-
ing; otherwise, the sketching benchmarks would subsume the
time for forwarding, i.e.,

N = max(n f wd ,nsketch)B concurrent
N = nsketch B sequential forwarding and sketching

where N is the time per packet and n f wd corresponds to the
forwarding inverse throughput. For both SoC SmartNIC and
CPU, sketching is done on the critical path (sequential). On
the FPGA NIC sketching is off the critical path (concurrent).

Sketch access frequency: Not all sketches may be updated
for every packet. For instance, the user may want certain
sketches to only monitor a subset of packets forwarded by a
device (users specify this by providing a flow filter for each
sketch). This is incorporated by summing uh, um weighted by
the probability that a sketch is updated for a particular packet.
This probability is calculated based on the flow filter and
traffic matrix to obtain the fraction of packets which satisfy
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the flow filter. If this cannot be computed due to granularity
of traffic matrix, we keep one additional counter per sketch
that counts the number of packets that update the sketch.

Phase 3: Device Configuration. The Profiler must also build
a model for how sketching and forwarding performance scales
with device configuration (e.g. CPU cores, micro-engines).
Since performance scaling may differ across bottlenecks, we
study three sketch manifests: (1) Small sketches, which trig-
ger compute bottlenecks; (2) Single large sketch, which trig-
ger memory bottlenecks; and (3) No sketch, to study forward-
ing bottlenecks. Figure 4b shows these measurements for
software switch, SoC smartNIC and FPGA NIC.

Based on these measurements, the Profiler estimates f , the
fraction of parallelizable execution time by fitting Amdahl’s
law, and updates each of n f wd , ncompute and nmemory to include
the effect of parallelism. For instance ncompute (from Phase 1)
becomes:

ncompute = (k1 +uh ·h)[(1� fc)+
fc

c
]

where fc is fraction of parallelizable execution time when
compute is bottleneck. We find that f ⇡ 1 for the software
switch when any of forwarding, compute or memory is the
bottleneck. For the SoC NIC, we find that f is ⇡ 1 when
forwarding or hashing is the bottleneck. However, when
memory is the bottleneck, increasing micro-engines does not
change packet rate, implying that f is 0 (Figure 4b). This
is consistent with the fact that there is a single cache and
DRAM (where sketch memory is allocated) – shared by all
micro-engines – which becomes a bottleneck, as opposed to
cores on a CPU which have their own caches, which allows
for parallelism even when memory is the bottleneck. For the
FPGA NIC, f is ⇡ 1 when hashing is bottleneck otherwise
it is 0. We measure the compute resources of FPGA in the
units of a hash unit instance, each consuming 5 digital signal
processors, 214 lookup tables, and 486 flip-flops.

Summary. The final relations encoding time per packet N
in terms of number of operations uh, um, sketch memory m
and device parameters (h, T (.), f ’s, constants) and device
configuration are referred to as device profiles. This algebraic
characterization of performance-resource trade-offs is used
by the Optimizer for deciding sketch placement and resource
allocation. In our current formulation, we don’t explicitly
model the impact of contention from non-monitoring tasks.
We assume that compute resources are pinned to sketches and
memory resources are explicitly allocated using technologies
akin to Intel Cache Allocation Technology [54]. We also
don’t study the overhead of such isolation mechanisms.

Programmable switch [16] is a special case here as its
resources are allocated by the compiler with guaranteed con-
stant time per packet. Thus, the Profiler only needs to model
the resources for different sketching manifests based on the
resource usage output of the compiler.
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Figure 4: (a) Phase 1 — CPU with single core running OVS
and sketching module (top), SoC NIC with 54 micro-engines
(middle), FPGA with 10 hash instances (bottom). The numbers
in the legend correspond to the number of sketch updates per
packet.
(b) Phase 3 — Inverse throughput as CPU cores (top), SoC NIC
micro-engines (middle) and FPGA hash unit instances (bottom)
are varied. For FPGA NIC, single large sketch (not shown due
to scale) is a flat line (memory bottleneck).

5 Optimizer

The goal of the Optimizer is to decide which sketch should
be placed on which device and which resources each device
should use while meeting the device constraints, monitoring
requirements, traffic demands, and optimizing towards user-
specified goals. We formulate the placement and resource
allocation problem as a Mixed-Integer Bi-linear program (MI-
BLP), which is defined below with constants and variables
described in Tables 3 and 4 respectively. While we investigate
resource usage as an objective for concreteness, our formula-
tion can be easily tweaked to handle other objective functions
(Equation 7 in Appendix C).

Input: The input has the following three key features: (1)
set of devices D in the network, along with their profiles
generated using the Profiler (§4) and resource availability; (2)
set of needed sketches S , along with their configuration; (3)
set of Origin Destination (OD) pairs P .

In particular, each OD-pair is uniquely specified by: (1)
device-level path in the network, (2) rate of traffic demand on
that path, (3) set of sketches that should monitor traffic that
is part of this OD-pair. With the OD-pair abstraction, we can
handle the following cases:
• If there are multiple paths between an OD-pair, logically
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O1: resources Minimize Â
d2D

(resd +memd), s.t. (1)

C1: coverage Â
d2pp

b(d,s) � 1 8p 2 P ,8s 2 ps

C2: accuracy mem(d,s) � smem ·b(d,s) 8s 2 S ,8d 2 D
C3: capacity Â

s2S
b(d,s) · srows  drows, and

memd = Â
s2S

mem(d,s)  dmem 8d 2 D

C4: profiles 8d 2 D :
timed = dtime(resd ,Pd ,

{(mem(d,s),b(d,s))|s 2 S})

C5: traffic timed  1
dtraffic

8d 2 D, where

dtraffic = Â
p2Pd

pt , Pd = {p|d 2 pp, p 2 P}

Symbol Interpretation
D,S ,P Set of devices, sketches, and OD-pairs
ps Set of sketches for OD-pair p
pp Device level path for OD-pair p
pt Rate of traffic relevant for OD-pair p
smem,srows Memory required for desired accuracy & number

of rows for sketch s
dmem Maximum memory on device d
drows Maximum rows that can fit on device d
dtime (Function) representing the device profile (§4) for

d (Time per packet in seconds)
Pd OD-pairs which pass through d
dtra f f ic Total traffic rate in packet per second (pps) witness

by device d

Table 3: Constants.
Domain Symbol Interpretation
R�0 mem(d,s) Memory of sketch s on device d.
{0,1} b(d,s) Is sketch s placed on device d
Z�0 resd Resources allocated to device d, (e.g.,

processing cores, stages, functional
units etc.)

Table 4: Variables.

distinct OD-pairs can be instantiated for each separate path.
• If part of the traffic in an OD-pair needs to be monitored by

sketch A and other part using sketch B, then two logically
distinct OD-pairs can be instantiated with the same path
but specifying different sketches along with the appropriate
rate of traffic which is relevant to each sketch.

• If the same query or sketch needs information about traffic
on multiple OD-pairs, each OD-pair can refer to the same
sketch identifier.

• Multiple sketches can monitor traffic in a single OD-pair.
This would be used in the cases when we need to maintain
a statistic for different dimensions of the same traffic (e.g.,
dimension 1: distribution of DstIPs for each source and
dimension 2: distribution of SrcIPs for each destination).
This input is compiled from the high-level measurement re-

quirements specified by the user. The traffic demands (packet

rates) are estimated using the traffic matrix and the paths
are obtained using the routing information and flow filters
specified for each sketch by the user.
Outputs and constraints: The Optimizer decides which
sketch should be placed on which device. This is indicated
through variables b(d,s). While doing so, the Optimizer en-
sures that for each OD-pair, each sketch of that OD-pair is
placed on at least one of the devices lying on the OD-pair’s
path (C1: flow coverage in Equation 1). The memory for
each sketch is directly determined by the accuracy required
for that sketch (C2: monitoring accuracy). Each device is
constrained by memory capacity and some devices may have
constraints on row capacity (e.g., due to limited stages in
programmable switch) (C3: device capacity). C4 (device
profiles) encodes the relationship between time per packet,
the sketch parameters, device parameters and the device con-
figuration as described in Section 4. The processing overhead
on each device should be such that the overhead does not stall
the traffic flowing through the device (C5: forwarding perfor-
mance). Note that C4 is natively expressed through Gurobi’s
API using piece-wise linear [55] and bi-linear constraints [56].
We elaborate on this in Appendix C.
Measurement Accuracy: Different feasible solutions may
deploy sketches at different locations in a network (e.g., Fig-
ure 1) and even create multiple instances of the same sketch.
We note that our sketch placements make no impact on the
monitoring accuracy. This is because, these multiple instances
are linearly merged (§2) at the central controller. The merge
is possible as instances of the same sketch share the same
hash functions, memory configuration. The merge does not
lead to over/under counting as we ensure that each packet
updates exactly one instance of all the required sketches. This
is ensured as: (1) constraint C1 guarantees that there is at
least one instance of the required sketches on the path of each
OD-pair, and (2) we generate sketch manifests so that exactly
one of these instances is chosen (arbitrarily) to be updated for
each OD-pair.

6 Scalability and Dynamics

Solving the MI-BLP in Gurobi can take more than a few hours
even for modestly sized data center topologies with thousands
of devices. For quick responses to network dynamics and
scaling to more devices, we use a three step approach:
• Step 1: Partition the network topology into disjoint clusters
• Step 2: Run Optimizer to assign sketches to the clusters2

• Step 3: For each cluster, run Optimizer to place sketches
onto devices within the cluster.

Since the placement decision for each cluster is done inde-
pendently, Optimizer instances can be spawned in parallel,

2For this step, the traffic demands and device profiles (C4-5 in equation
1) are not used, as the Profiler does not model the performance of clusters.
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Figure 5: Different ways to cluster a graph.

which makes this approach scalable. Note that, Step 2 itself
can consume significant time if the number of clusters is large.
We address this by recursively applying Step 1 and 2 to build
a hierarchy of clusters. We determine the threshold to ap-
ply the recursive step by modeling the cluster size-compute
time relationship (Figure 14 in Appendix A) and choosing the
largest cluster size with an acceptable run-time. We also add
a fast path for quick response to cater to network dynamics
that directly affect only a small subset of devices.

6.1 Clustering Approach
Partitioning the network devices into clusters will inevitably
hide some details about the topology and create a trade-off
between optimality and solving time. This is because when
the Optimizer is run to place sketches onto the cluster (Step
2), it may choose a sub-optimal (or even infeasible) cluster as
it does not know what is inside the cluster. Ideally, we want
to cluster the topology in a way that significantly accelerates
the solving process while incurring minimal optimality loss.

Clustering Examples. We observe that naïvely clustering
the topology graph based on the hierarchy of the topology or
applying graph clustering algorithms (e.g., spectral clustering
[51]) can lead to sub-optimal or even infeasible sub-problems.
Figure 5 illustrates this in an example topology of 7 devices.
In this example, the edges show the paths of the OD-pairs and
the colors (or line-styles) of the edges correspond to different
OD-pairs. We need to deploy 2 sketches, each of which
monitors one of the OD-pairs shown in blue (solid) and red
(dotted).

Simple clustering: By directly applying spectral cluster-
ing on network topology, we obtain the result in Figure 5(b).
Based on this clustering, assume that in Step 2, the Optimizer
decided to place one sketch on cluster (3,4) and the other
sketch on cluster (5,6). Further assume that the sketch placed
on cluster (3,4) monitored the red OD-pair. When the Opti-
mizer again runs Step 3 for devices within cluster (3,4), since
only device 3 sees packets on the red path, the sketch for the
red OD-pair can only be placed on device 3. If device 3 is
currently not available to place the sketch or device 6 is in
fact a better allocation, the simple clustering will lead to an
infeasible or sub-optimal solution.

Better clustering: If we cluster as Figure 5(c), the sketch for
the red (dotted) OD-pair could be assigned to cluster (3,6) and
the Optimizer running within that cluster retains its freedom
to place the sketch on device 3 or 6.

Our Design. We learned from the above example that we
should keep nodes that communicate with each other in the
same cluster, where communicate means that there is an OD-
pair that has a path connecting the nodes. This should be done
irrespective of the number of network-level hops (physical or
logical links) between them. This provides the Optimizer in
Step 3 additional placement choices for sketches within the
cluster sub-problem.

We can incorporate communication affinity by applying
spectral clustering on the communication graph (Gc), where
vertices are network devices, with edges between all pairs of
devices which communicate with each other. While this ap-
proach works for general network environments, we find that
spectral clustering itself is time consuming for large networks
[57]. Thus, we imitate spectral clustering using a domain-
specific heuristic and are investigating faster alternatives and
implementations of spectral clustering.

Our heuristic is based on the observation that many cluster-
ing solutions preserve enough flexibility for sketch placement
yielding good performance (Figure 12 in Appendix A). This
observation was made when exploring the space of possible
clustering solutions and their impact on MIP objective using
simulated annealing [58]. Our heuristic works in a multi-
tenant setting where tenants share the network but not the
end-hosts. For building clusters, we instantiate a cluster for
end-hosts of each tenant. Then, to ensure clusters are evenly
sized, we arbitrarily merge (or split) the clusters if they are
too small (or big). Finally, the switches and NICs are assigned
to the cluster of the end host with which they have highest
affinity. In Appendix A, we discuss how to choose cluster
sizes and provide examples of clustering output for different
clustering techniques.

6.2 Fast Path
The Fast Path further improves response time for network
dynamics including: (1) Topology change in the path (e.g.,
VM migration); (2) Monitoring query (sketch) change from
the user/operator; (3) Traffic change in the OD-pair (e.g.,
traffic demand variations); (4) Available resource change due
to the dynamics of other non-monitoring services running on
the shared devices. (1)–(3) reflect as changes in OD-pairs (P )
and (4) reflects as changes in devices (D).

The key observation we have from §6.1 is that sub-
problems should preserve enough placement choices for
sketches. Based on that, we find that, on network change
events, recomputing placement only for the set of devices A
directly affected by the changes is sufficient. We compute
this set through the following process: (a) For each changed
device d 2 D , we add d to A and, for each sketch s currently
placed on d, we add the OD-pair(s) monitored by s to the
set of changed OD-pairs. (b) For each changed OD-pair (due
to previous step or otherwise), we add all devices specified
in the path of the OD-pair to A . The Optimizer is then run
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only for the devices in set A and the sketches specified in the
changed OD-pairs, including the sketches already mapped to
devices in A .

7 Evaluation and Implementation

We implement HeteroSketch and evaluate its effectiveness.
Our major findings are as follows:
• HeteroSketch’s Profiler accurately characterizes the perfor-

mance of devices across a variety of sketch manifests and
device configurations (§7.1)

• HeteroSketch’s Optimizer is able to (1) reduce resource
footprints and obtain feasible solutions when prior ap-
proaches fail, and (2) scale to large topologies (> 40,000
devices) while preserving good quality solutions. (§7.2)

• HeteroSketch’s Fast Path allows prompt responses to net-
work dynamics including changes in topology, traffic,
query, and available resources. (§7.3)

Implementation. For the software switch, the sketching
modules are implemented as a part of the OVS data plane.
For the SmartNIC, we use the internal and external memory
regions for storing sketch state as these are accessible from
all the micro-engines unlike local and island-specific memory
regions. The Optimizer is run on an Intel® Xeon® CPU
E5-2680 v2 processor @ 2.80GHz with 128 GB RAM.

7.1 Performance Profiler
Setup. This evaluation uses the same three device setup in-
troduced in §4 which was used to create the device profiles
(Table 2). We use dpdk-pktgen [59] to generate traffic and
configure dpdk-testpmd [60] to measure receive rate. The
sender generates min-sized (64 Byte) packets to measure the
maximum packets per second that can be processed. We use
source IPs as the flow keys for the sketches, which are taken
from a uniform random distribution. This is done in order to
use the Optimizer to allocate resources for worst-case (uni-
form) traffic scenarios. We discuss in Appendix B, how other
traffic distributions could be accommodated.
Workloads. For generating sketch manifests, we consider a
range of configurations for three different types of sketches:
Count-Min, Count Sketch and UnivMon. For each sketch, we
vary the number of rows from 1 to 12 and, for memory, we
vary the counters per row from 1 to 222 (⇡ 4 million) in steps
of powers of 2. For UnivMon, we vary levels from 22 to 25

in steps of powers of 2. For generating device configurations,
we vary the SoC NIC micro-engines from 20 to 54, for the
software switch, vary cores from 1 to 4, and for the FPGA
NIC, vary maximum allowed hash instances from 1 to 12.
Large number of rows emulate multiple sketches per device.
Results. Table 5 summarizes the results of the experiments
and Figure 6 shows results for a subset of the experiments.

Sketch CPU SoC NIC FPGA
Count-Min Sketch 3.08, 9.63 3.68, 12.99 1.9, 4.1
Count Sketch 5.61, 8.51 1.26, 4.51 2.2, 4.14
UnivMon 2.80, 6.38 2.38, 3.75 2.28, 5.88

Table 5: Profiler Evaluation — Each sketch–device combi-
nation reports the (mean, 90th percentile) of percent error⇣
| actual�model

actual |⇤100
⌘

for the time per packet metric.
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Figure 6: Performance Profiler — CPU model evaluation for
Count-Min Sketch.

Figures for additional experiments can be found in Ap-
pendix B. These figures compare the time per packet es-
timated by the Profiler's model and the ground truth. Over
all the combinations of sketch manifests and device config-
urations, the Profiler's model is within 5.61% of the ground
truth on average and within 13% in the tail cases. We don’t
show results for programmable switch as it guarantees line
rate if the program fits (which is captured by the capacity
constraints in the Optimizer). We observe that most profiling
errors occur in larger sketch configurations, when off-chip
memory is used. Based on our estimates, such errors would
disturb the resource allocation for less than 5% devices when
profiles are off by 10%. We discuss the impact of profiling
errors on the Optimizer in more detail in Appendix B.

7.2 Optimizer
We evaluate the solutions generated by the Optimizer on two
key metrics: (1) resource-efficiency benefits and (2) the opti-
mization run time. We use the device profiles to estimate the
resource usage and performance for the sketch placements
generated by different optimization schemes. We use the fol-
lowing methodology to generate input scenarios:
Topologies. We conduct two studies: (a) Topology – variation
with topology structure. We use selection of topologies from
the Internet Topology Zoo [61], JellyFish [62] and a three-
level Fat-Tree data center topology (Clos) [63, 64] (Figure 7a).
(b) Scale – variation with topology size. We use a Clos
topology with varied degrees (number of pods) from 16 to
48 (Table 6, Figure 7b). We extend the Points-of-Presence
(POP) topologies [61] to include servers and NICs based on
principles from [65].

For both studies, we focus on a multi-tenant setting, where
different tenants submit monitoring tasks to a central system
(e.g., the cloud or Internet service provider). This allows us
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Figure 7: Optimizer Evaluation — Compute resources are shown in terms of amount saved relative to Greedy+Cluster (negative
compute resources implies more resource consumption than Greedy+Cluster). Total resources and memory resources are normalized
w.r.t Greedy+Cluster. Both sub-figures share the same legend. Additional details in Appendix C (Figures 20 & 21).

Fat-tree
Degree

Sketch
load (Y )

Servers /
NICs

Switches Total
devices

16 1 1,024 320 2,368
20 3 2,000 500 4,500
24 3 3,456 720 7,632
32 4 8,192 1,280 17,664
48 4 27,648 2,880 58,176

Table 6: Topologies and Workloads.

to stress test the schemes under a diverse set of monitoring
requirements. We assign X servers to each tenant where X
is taken from the uniform distribution U(6,12). We set the
capacity of each server link to 25 Mpps (64B packets). This is
equivalent to the throughput of vanilla OVS with 4 cores. We
randomly assign half of the servers with the SoC SmartNIC
and other half with the FPGA NIC.
Monitoring requirements. The total number of queries
(sketches) is set equal to Y times the number of servers in
the network. These monitoring tasks are evenly partitioned
among the tenants. We vary the sketching load (Y ) between
1 (low) and 4 (high). Low load is used to study the system
when each device in the network runs much below the total
monitoring capacity they can handle. High load is used to
study the system under stress. Table 6 shows the load used for
different topologies. The monitoring tasks are equally divided
between Count-Min, Count Sketch and UnivMon sketches.
OD-pairs. Each tenant specifies M OD-pairs from the set
of servers assigned to them, where M ⇠ U(64,96) and each
OD-pair is monitored by K randomly chosen sketches of the
tenant where K ⇠ U(1,3). Since we don’t have access to
the monitoring demands from different operators, we select

OD-pairs, routes (paths) and traffic demands iteratively to
ensure: (1) traffic is evenly distributed between OD-pairs, and
(2) link utilization is at least 90% to stress the system.

Compared Schemes. As shown in Figure 7b, we compare
HeteroSketch (6) against five other schemes (1)–(5):

(1) Baseline: Capacity-aware placement with static re-
source allocation, i.e., placing sketches to minimize the sketch
memory with compute resource assigned apriori to cores=5,
micro-engines=54 (equal to resources exposed to Optimizer).
This is closest to UnivMon [11].

(2) Baseline+Alloc: The placement of sketches is done in
the same manner as in Baseline. Instead of static resource as-
signment, just enough resources are allocated to meet the traf-
fic and sketching demands based on the device profiles. This
is used to investigate benefits obtained solely from profiling-
aware resource allocation.

(3) Greedy: This is a strawman extension to the baseline
which prioritizes placing sketches on programmable switches
over CPUs and SmartNICs because of their line-rate guar-
antees. Resource allocation is done using device profiles
similar to Baseline+Alloc. Prioritizing sketch deployment on
switches is a reasonable heuristic when sketch load (Y ) is low
(first data point of Figure 7b, gap between resource usage for
Baseline+Alloc and Greedy).

(4) Greedy+Cluster: To compare the optimality of our
scheme to prior work for larger topologies, we extend the
Greedy strategy to use our clustering optimization.

(5) HeteroSketch w/o clustering (Optimal): Joint placement
and resource allocation using the formulation in Equation 1

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    729



Sketch CPU SoC NIC FPGA Switch
Count-Min 4112 2001 2111 1563
Count 4172 2066 2106 232
UnivMon 4169 2120 2049 143

Table 7: Sources of benefits (Sketch-Device Affinity) — Total
number of sketches on each device. (Clos pods = 16, Y = 4.)

without the clustering approach.
(6) HeteroSketch: Joint placement and resource allocation

with the clustering optimization.
Results. In Figure 7, we can see that HeteroSketch is able
to lower resource utilization significantly (close to optimal)
and saves between half to one CPU core per server on aver-
age compared to Greedy+Cluster (20�30% improvement).
Compared to Baseline, HeteroSketch saves around 2.5 cores
per server and about 15� 20 micro-engines per SoC NIC
(40�60% improvement). It accomplishes this without incur-
ring significant time to compute the placement of measure-
ment tasks even as topologies scale to more than 40k devices.
We compute total resources (HeteroSketch MIP objective) as
a weighted sum of all devices resources including CPU cores,
micro-engines, FPGA hash unit instances and memory, and
normalize it by the total resources used by Greedy+Cluster.
This is shown as normalized resources in Figure 7.
Sources of Benefits. We explore the benefits obtained from
different features of HeteroSketch.

Bottleneck awareness: The device profiles are successful
in incorporating capabilities of different device architectures,
this allows HeteroSketch to allocate just enough resources
to meet the sketching and forwarding demands. The gap in
normalized resources between Baseline and Baseline+Alloc
in Figures 7a and 7b demonstrates benefits attained solely
from profiling aware resource allocation. For instance, on the
SoC SmartNIC, when memory is the bottleneck, more micro-
engines do not improve forwarding performance (Figure 4b).

Efficient use of resources: We see from Figure 8a that Het-
eroSketch allocates 20% fewer CPU cores (8k vs 10k cores)
but uses the cores it allocates more effectively (each core is
>80% utilized). Specifically, on the software switch, the cores
are configured to poll NICs for packets (for performance rea-
sons), as a result, CPU cycles are wasted busy polling when
there are no packets in the NIC buffers. With the help of
device profiles, the Optimizer is able to consolidate load to-
wards cores which would otherwise waste cycles. Similar
trends are observed for other resources including SoC mem-
ory bandwidth (Figure 8b), and SoC micro-engines (Figure
8c).

Ability to trade-off resources: For the scale study (Fig-
ure 7b), we set lower weightage to SoC SmartNIC memory
relative to the topology study (Figure 7a). We observe in
Figure 7b that HeteroSketch is able to incorporate this by
saving more number of cores per server at the cost of SoC
SmartNIC memory usage.

Sketch-Device affinity: We show the number of sketches
instantiated of each type on each device in Table 7. Recall that

0 5000 10000
CPU CoUHs

0.0

0.5

1.0

CP
U 
Ut
il

GUHHGy+ClustHU
+HtHUoSkHtch

(a) CPU Utilization.

0.2 0.4 0.6
1IC 0em BW uWil

0.0

0.5

1.0

CD
F

(b) SoC SmartNIC Memory
Bandwidth Utilization.

0 25000 50000 75000
1etUonome 

0icUo-enJines (0()

0.95

1.00

0
( 
Ut
ili
za
tio
n

GUeeGy+ClusteU
-oint+ClusteU

(c) SoC SmartNIC Micro-
engine Utilization.

Figure 8: Sources of Benefits (Efficient use of resources) —
(Clos pods = 20).

the monitoring requirement specified equal number (⇡ 1360)
of queries for each sketch type. Multiple instances of each
sketch are created to meet the coverage requirements. We
make three key observations here: (1) HeteroSketch tries
to place heavier sketches (e.g. UnivMon) on better vantage
points so as to reduce the total required instances. (2) The
switch statically allocates resources to each sketch while other
devices can share resources across sketches. Due to this Het-
eroSketch places less number of sketches on the switch, es-
pecially for Count Sketch and UnivMon due to more number
of operations. (3) HeteroSketch instantiates relatively more
number of UnivMon sketches on CPU and SoC SmartNIC as
they have relatively larger and faster memories.

Clustering Algorithm. Figure 7b and 7a also suggest that
our clustering technique does not significantly degrade re-
source efficiency. Clustering imposes a trade-off between
optimality and solving time which we explore in more de-
tail in Appendix A. We see in Figure 7a, that HeteroSketch
finds better solutions than the Optimal scheme when config-
ured with a time limit, achieving a better trade-off between
optimality and solving time than the MIP solver.

For evaluating the Optimizer, we used the multi-tenant
clustering heuristic developed in §6.1. We investigated use of
other algorithms to cluster the communication graph (§6.1)
including KMedoids, HDBSCAN, modularity maximiza-
tion [57, 66]. Unfortunately, these techniques yield infeasible
sub-problems in Step 3 of §6.1 for the inputs that we used.

Note, while it is true that our assumption about one server
being solely used by one tenant makes the optimization prob-
lem instance easier, despite that, the MIP solver still needs
explicit guidance in the form of clustering for speed up. This
can be seen from difference in solving time with and without
clustering in Figure 7.
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Figure 9: Dynamics — variation with number of changes in suc-
cession (Clos topology with 16 pods).
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Figure 10: Dynamics — variation with topology size for a single
change. Negative objective gap means that Fast Path consumes
less resources than full re-run. This can happen because both
use the clustering heuristic which does not guarantee strictly
optimal solutions. (Conducted on topologies in Table 6.)

7.3 Dynamics - Fast Path

As described in §6, changes in OD-pairs can correspond to
changes in traffic, monitoring requirement, and topology. To
generate such changes, we generate inputs for the Optimizer
as described in §7.2. Then, we randomly keep 10n of the
generated OD-pairs aside to serve as change batches, where
n is the number of batches and each batch has 10 changed
OD-pairs. We also generate resource availability changes in
each batch by randomly sampling 10 devices and randomly
increasing/decreasing their resource availability (e.g., micro-
engines/memory) by 20%. We find that changes in a batch
amount to roughly 50 to 150 devices being directly affected
(|A | in §6.2) across the topologies in Table 6. In general,
|A | can depend on the size of the topology and monitoring
requirements. For the Clos topology, since path lengths are
equal irrespective of number of pods, we see little dependence
of pod count on |A |.

Despite being run only for the subset of affected devices,
successive runs of the Optimizer don’t diverge from the global
solution generated by re-running the Optimizer over the entire
topology using clustering (Figure 9). Further, the response
time to cater to dynamics is reasonably low with the Fast
Path even as we scale the topology size (Figure 10). The
Fast Path uses the clustering optimization when the set of
affected devices is larger than the optimal clustering size and
can amount to a full run of the Optimizer in the worst case.
Fast Path, together with the clustering heuristic enables a
response time of a few seconds (the set of affected devices is
small) to a few minutes (when run over entire network). Note,
within the scope of this work, we don’t study how the new
placement can be configured consistently and quickly. These
are active areas of research [35, 67].

8 Other Related Work

Other related work not covered in §2 can be classified into
four categories:
Sketch resource allocation. SCREAM [68] allocates mem-
ory for a sketch based on temporal and spatial changes in
traffic moments for a fixed sketch placement. Open Sketch
[10] optimally selects sketch algorithm and configuration for
a given query. Both are complementary to our work.
Sketch implementations for different hardware. Our work
relies on state-of-the-art implementations of sketches for dif-
ferent hardware. Fortunately, recent efforts [12, 13, 22] have
focused on addressing the bottlenecks of sketching algorithms
in software switches and have demonstrated efficient imple-
mentations in programmable switches or NICs [11, 12, 31].
Other work in network monitoring. HeteroSketch’s goal is
to support network-wide flow monitoring. Numerous comple-
mentary efforts focus on either fine-grained and adaptive flow
monitoring (e.g., [36, 38, 69]), diagnosis (e.g., [70–72]), or
network performance-related objectives (e.g., [73, 74]).
Efforts in speeding up network-wide optimizations. Con-
current with our work, Abuzaid et al. in [75] explore the
use of clustering to speed up network flow problems. While
our work tries to maintain feasiblity of sub-problems through
carefully deciding which devices to cluster together, they im-
pose additional constraints while conducting flow allocations
over clusters to ensure that the subsequent sub-problems are
feasible. We leave exploration of such a technique in the
context of sketch placement for future work.

9 Conclusions

We observe that existing efforts on sketch-based network-
wide monitoring remain impractical as they fail to cope with
the key requirements of heterogeneity and dynamics in the
network. We propose HeteroSketch as a coordinated solution
to achieve optimized task placement and resource allocation
over heterogeneous networks. HeteroSketch precisely char-
acterizes the performance of sketches on diverse devices and
is integrated with a clustering technique to handle networks
scale and dynamics. Our evaluation demonstrates that Het-
eroSketch scales to toplogies with tens of thousands devices
with near optimal resource efficiency. We posit that our sys-
tem can more generally be applied to allocate resources for
other networked applications in heterogeneous networks, and
we plan to explore this for future work.
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(b) Spectral Clustering on Communi-
cation Graph

�

�

�

�

�
�

� �

�

�

�

�
�

�

�

�

�

� �

�
�

�
�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

(c) Clustering using multi-tenant
heuristic

Figure 11: Output of clustering

A Clustering Details

Clustering Heuristic. We performed simulated annealing to
explore the space of clustering solutions. Figure 12 shows the
annealing in action. We find that there are many clustering
solutions that result in optimization solutions which are close
to optimal.
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Figure 12: Simulated Annealing — Spectral-topo refers to
spectral clustering over network topology. Similarly, Spectral-
comm is over the communication graph. Multi-tenant refers to
our domain specific heuristic. Optimal refers to no clustering.

Clustering Output. Figure 11 illustrates examples of the
clustering output for different clustering techniques. The
topology shown is a simple tree topology with only servers
and switches (without NICs) for ease of visualization. The
nodes marked ’0’ are switches and the other nodes are servers.
The non-zero numbers on the servers signify that servers with
the same number are communicating with each other. The
colors signify that devices having the same color are in the
same cluster.
Optimality vs. Solving Time Trade-off. Figure 7b and 7a
also suggest that our clustering technique does not signifi-
cantly degrade resource efficiency. This is counter-intuitive
since clusters limit the types of optimization possible. We
explore this in in Figure 13. Cluster size represents a trade-off
between optimality and solving time, i.e. smaller clusters
help reduce solving time at the cost of optimality. We observe

that the even for relatively small clusters (20 devices), the
optimality gap is very low (< 0.4%), allowing us to choose
small clusters to reduce the run-time while preserving close
to optimal solutions. The extreme case of all devices within
the same cluster mimics the case of no clustering. In this case,
all sketches would be assigned to the only available cluster
and then the Optimizer is run to place sketches on the devices
within that single cluster, effectively deciding between all
devices of the topology.

The MIP solver also natively allows trading-off solving
time for optimality through configuration of a time limit. In
Figure 7a, we configured a time limit of 300s. We find that
HeteroSketch is able to produce better quality solutions in
lesser time, achieving a better trade-off between optimality
and solving time.
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Figure 13: Cluster size — optimality gap vs runtime. The op-
timality gap is the gap between the objective of HeteroSketch
relative to the objective value of Optimal. (For experiment with
pods = 24).
Choosing Cluster Size. As we see in Figure 13, the cluster-
ing heuristic provides a trade-off between solution quality
(optimality) and optimization run-time. We want to be able
to select the largest cluster size which allows an acceptable
run-time. To do this, we look at the knee of the graph be-
tween solving time and number of devices (Figure 14). Since,
the solving time depends not only on the network topology
but also on the monitoring load (Y , see §7.2), we need to
recompute this graph whenever the monitoring load changes
significantly. We use the following procedure to quickly re-
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compute the solving time vs number of devices graph: we
divide the network topology into clusters of different sizes.
Then we run the Optimizer for a sample of these clusters
which have different sizes, and we effectively obtain solving
time as a function of number of nodes (cluster size). Figure
14 shows this in action.
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Figure 14: Determining cluster sizes — X-axis represents the
number of nodes in a cluster, and Y-axis denotes maximum time
to solve just one cluster (averaged over 5 clusters of the same
size in the topology)

B Performance Profiler Details

Non-uniform Memory Access Pattern. Sketches such as
UnivMon which have multiple control paths can result in non-
uniform access of the working memory set even if the traffic is
uniform. There are at least the following two ways to handle
such cases: (1) estimating effective memory size that is ac-
cessed uniformly, (2) estimating hit rates to different levels of
memory hierarchy. In what follows provide some background
on the operations of the UnivMon sketch and then describe
these two approaches in more detail. In our implementation,
we use the first approach to incorporate UnivMon.

• Background on UnivMon sketch. UnivMon is an ensem-
ble of Count Sketches and consists of multiple levels.
Each level maintains a Count Sketch. On every packet,
a hash function is computed to decide a level and the
corresponding level is updated.3 The level is decided by
the count of leading non-zero bits of the hash output.
Each bit of the hash output is equally likely to be zero
or one. Due to this, subsequent levels are accessed with
exponentially decreasing probability, i.e.,

P(i) =

(
2�i if i < k
2�(k�1) if i = k

(2)

where P is the probability of accessing level i, and k is
the total number of levels.

• Effective memory size accessed uniformly. As shown
in Figure 15, we study the variation of time per packet

3Note, we use an optimized version of UnivMon described in [76] which
is slightly different from the original UnivMon paper [11]
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Figure 15: Dealing with non-uniform memory access patterns
UnivMon effectively behaves as having at most 4 levels from
the perspective of memory size accessed uniformly. The black
dotted lines show the time per packet for a hypothetical sketch
with 2 ⇤ 6+ 1 = 13 hashes per packet and 6 memory accesses
where the accesses are made uniformly. (The 13 hashes are: 2
hashes per row for a Count Sketch and one hash to decide level.)

for the UnivMon sketch on a CPU as we vary its lev-
els. We observe that UnivMon effectively behaves as
if it had at most four levels, all of which are accessed
uniformly. In the Optimizer, this corresponds to us-
ing T (Effective uniformly accessed memory) instead of
T (Total memory) (T was defined in §4). For other
sketches with complex control paths, a similar strategy
can be used.

• Estimation of hit rates. This is a more theoretical ap-
proach, but has similar results as above method. We
assume that the caching mechanism on the device being
profiled honors temporal locality to decide which items
to keep cached, i.e., we can assume that the probability
that an item is kept in the cache is proportional to its
access frequency. Using this, we estimate the likelihood
that an item is cached. Then using (1) the likelihood
that an item is accessed (access frequency) and (2) the
likelihood that the item is in cache; we estimate the
expected inverse throughput of memory accesses lever-
aging inverse throughputs to different cache levels. In-
verse throughputs to cache levels are estimated using the
ridges in the memory benchmark of the Profiler (Figure
4a). In what follows, we illustrate application of this
process on UnivMon with a toy device.

Let’s assume the UnivMon sketch has k levels and each
level has consumes x bytes. For simplicity, let’s assume
the toy device has two cache levels: L1 and L2, with
sizes x and (k�1)x bytes respectively. Recall that, the
ith level of UnivMon is accessed with probability P(i).
Through the locality principle, we expect that P(i) frac-
tion of level i would be present in L1 cache and 1�P(i)
in L2 cache. Then the probability that an access goes to
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L1 cache is:

PL1 =
k

Â
i=1

P1 ⇤P2 (3)

= P(i)⇤P(i)

=

 
k�1

Â
i=1

2�2i

!
+2�2(k�1)

=
1
4

 
1+

 
k�1

Â
i=2

2�2(i�1)

!
+2�2(k�2)

!

⇡ 1
4

and, PL2 = 1�PL1 ⇡
3
4

where P1 is the probability that level i of the sketch is accessed,
P2 is the probability that the accessed data is in L1 cache given
that some data in level i is accessed, and PL2 is the probability
that L2 is accessed. Then, the expected inverse throughput
of memory accesses would be PL1 ⇤ IT (L1)+PL2 ⇤ IT (L2),
where IT (.) is the inverse throughput to the corresponding
cache level.

For the same toy device, we do a similar analysis
for a sketch with size 4x bytes, where the memory ac-
cesses are made uniformly. Then random x bytes of
the sketch would be in L1 and remaining 3x in L2.
PL1 = probability that an element in L1 cache is accessed =
x/4x. Hence, expected inverse throughput for memory ac-
cesses is 0.25 ⇤ IT (L1)+ 0.75 ⇤ IT (L2). We see that the ac-
cess probabilities (hit rates) and the expected inverse memory
access throughput for this sketch is roughly equal for Univ-
Mon example above, consistent with the empirical approach.

Such expressions for expected memory access time can be
accommodated as constraints in the MIP formulation of the
Optimizer albeit with increased solving time due to additional
non-linear constraints. We leave exploration of this for future
work.
Non-uniform Traffic. In the Optimizer and Profiler, we study
performance and allocate resources for worst case (uniform)
traffic. This is because the traffic distributions may not be
known apriori, or one might want to allocate resources to han-
dle adversarial cases. However, if this is not true, one could
adapt our work to use the known traffic distribution to estimate
hit rates to different cache levels similar to that described for
accommodating sketches with non-uniform memory access
patterns above.
Impact of profiling errors on Optimizer. We observe that
most of the errors in profiling occur when sketches use a large
amount of DRAM (or off-chip memory) on the devices. We
seek to study what difference, such errors can create to the
Optimizer’s output. In the Optimizer’s output, we identify
devices which use a non-zero amount of DRAM, and whose
resource allocation would change if the device profiles are off

by 10%. We show in Figure 16 how many more resources
would be needed for a Clos topology with 16 pods as we
vary the sketch load (Y ) (defined in §7.2). We observe that
consistently less than 5% of devices satisfy the above condi-
tions. Hence, the Optimizer’s allocation would be off only
for these 5% of devices. To illustrate this, let’s assume all 5%
devices are CPUs, each of these devices would need one more
core if the profiles under-predict time per packet. Our savings
suggest 0.5(50%) to 1(100%) cores saved per server. The
errors are significantly smaller compared to the demonstrated
savings. Note, that the profiles still are assumed to be accurate
for the cases when sketches don’t occupy DRAM.

1 2 3 4
6ketch load (Y) (Clos, Sods 16)

1

2

%
 o
f d
eY
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es

Figure 16: Impact of profiling errors The Y-axis shows the per-
centage of devices which use DRAM and whose resource alloca-
tion would change if the profiles are off by 10%.

Supplementary Evaluation. In addition to the Profiler evalu-
ation for Count-Min sketches on CPUs, shown in Figure 6, we
have also have the the detailed results for the other sketches
including Count Sketch and UnivMon on CPU, SmartNIC,
and FPGA shown in Figures 17, 18, and 19.

C Optimizer Details

Device profiles. Here we give an example of what the device
profile (dtime(.)) looks like. The following shows the device
profile for SoC SmartNIC.

dtime = max
✓

k1 +uh ·h
c

,k2 +um ·T (m)

◆
(4)

= max(dtimeh,k2 +um ·T (m))

= max(dtimeh,k2 +um · tmem)

dtimeh · c = k1 +uh ·h (5)
tmem = T (m) (6)

where uh, um, and m (as defined in Section 4) are expressed
as linear functions of sketch placement decision variables
and c is a decision variable corresponding to the number of
micro-engines. T (.) is a non-linear function modelled using
piecewise-linear constraints and the product terms: um · tmem,
dtimeh · c are modelled using bi-linear constraints. These
functions show a decoupled system with sketching done on
the forwarding critical path with fraction of parallelizable
execution f ⇡ 1.
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Tweaking MI-BLP. We show how the MI-BLP formulation
can be adapted to support other objectives/goals. We show in
Equation 7, how a user can minimize performance overhead
as an objective and subject to this minimum, again minimize
resource overhead. This is done using hierarchical objectives
[77].

O1’: perf Minimizemax
d2D

(timed), (7)

O2’: resources Minimize Â
d2D

(resd +memd), s.t.

C1: coverage Â
d2pp

b(d,s) � 1 8p 2 P ,8s 2 ps

C2: accuracy mem(d,s) � smem ·b(d,s) 8s 2 S ,8d 2 D
C3: capacity Â

s2S
b(d,s) · srows  drows, and

memd = Â
s2S

mem(d,s)  dmem 8d 2 D

C4: profiles 8d 2 D :
timed = dtime(resd ,Pd ,

{(mem(d,s),b(d,s))|s 2 S}

C5: traffic timed  1
dtraffic

8d 2 D, where

dtraffic = Â
p2Pd

pt , Pd = {p|d 2 pp, p 2 P}

Supplementary Evaluation.

• We show additional metrics collected for Figures 7a and
7b in Figures 20& 21.

• One of the ways in which HeteroSketch reduces resource
overhead is through efficient use of resources that it al-
locates. We see in Figures 8a, 8a, and 8a, that HeteroS-
ketch overall allocates less number of resources but bet-
ter utilizes each resource that it does allocate including
CPU cores, SoC NIC memory bandwidth, micro-engines
on the SoC smart-NIC.
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Figure 17: Performance Profiler — CPU Model
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Figure 18: Performance Profiler — SmartNIC Model
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Figure 19: Performance Profiler — FPGA Model (Note: Y-axes
are in log-scale)
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Figure 20: Supplementary Optimizer Evaluation — [Topology Study] These figures show the difference in resource usage for exper-
iments in Figure 7a in terms of switch & FPGA memory, and FPGA hash unit instances. Compute resources are shown in terms
of amount saved relative to Greedy+Cluster (negative compute resources implies more resource consumption than Greedy+Cluster).
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Figure 21: Supplementary Optimizer Evaluation — [Scale
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experiments in Figure 7b in switch memory normalized by that
of Greedy+Cluster.
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