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Abstract
Network operators need to run diverse measurement tasks
on programmable switches to support management decisions
(e.g., traffic engineering or anomaly detection). While prior
work has shown the viability of running a single sketch in-
stance, they largely ignore the problem of running an ensem-
ble of sketch instances for a collection of measurement tasks.
As such, existing efforts fall short of efficiently supporting a
general ensemble of sketch instances. In this work, we present
the design and implementation of Sketchovsky, a novel cross-
sketch optimization and composition framework. We identify
five new cross-sketch optimization building blocks to reduce
critical switch hardware resources. We design efficient heuris-
tics to select and apply these building blocks for arbitrary
ensembles. To simplify developer effort, Sketchovsky auto-
matically generates the composed code to be input to the hard-
ware compiler. Our evaluation shows that Sketchovsky makes
ensembles with up to 18 sketch instances become feasible
and can reduce up to 45% of the critical hardware resources.

1 Introduction
Network operators need to concurrently run diverse measure-
ment tasks for network management tasks such as traffic en-
gineering, anomaly detection, load balancing, and resource
provisioning [6, 10, 24, 35, 46]. A flow-level measurement
task computes a desired statistic (e.g., heavy flow size or the
distinct number of flows) based on the definition of a flowkey
(e.g., srcIP or 5-tuple), a flow size (e.g., packet counts or
bytes), and a measurement epoch (e.g., 1 minute).

Given resource constraints, sketching algorithms or
sketches appear as a promising avenue to support measure-
ment tasks on data collected from programmable switches
(e.g., [4, 5, 7, 17, 21, 32, 40, 45, 49]). To support one mea-
surement task, a sketch instance on a programmable switch
is instantiated based on a sketching algorithm with configu-
ration on parameters (e.g., flowkey or resource allocation).
In practice, supporting the collection of measurement and
management tasks will require simultaneously running an
ensemble of sketch instances on the programmable switches.
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Figure 1: Sketchovsky Overview.

However, existing sketch-based telemetry efforts largely
focus on running a single sketch instance on programmable
switches and they cannot effectively support an ensemble of
sketch instances. Naively extending a single sketch instance
to support an ensemble of measurement tasks will require
at least a linear increase in hardware resources (e.g., coun-
ters, hash units, pipeline stages), which is intractable as more
measurement tasks are needed. While there have been some
recent efforts on improving per-sketch efficiency (e.g., [4]),
supporting P4 code composition [22, 23, 30, 42, 51], elasti-
cally trading of resource vs. accuracy (e.g., [3, 36]), and on
improving the generality of sketches (e.g., [9, 15, 32, 49]), we
find that these fundamentally fall short of efficiently support-
ing a general ensemble of sketch instances without sacrificing
accuracy.

Given the limitations of current methods for running sketch
ensembles, we present Sketchovsky (Sketch + Tchaikovsky),
a composition framework that takes the input of sketch codes
for the ensemble and outputs an optimized sketch code by
leveraging cross-sketch optimizations (Fig. 1). Sketchovsky
is complementary to the earlier work on implementing single-
sketch algorithm more efficiently, developing more general-
purpose sketches, and research that explicitly trades off ac-
curacy reduction for resource reduction (§2). Indeed, using
Sketchovsky can amplify their benefits by running expressive
sketches (e.g., [32]) or extending per-sketch optimizations
(e.g., [4]).

The design of Sketchovsky makes three key contributions:
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1  packetStream
2  .map(p => (p.sIP, p.pktlen))
3  .reduce(keys=(sIP, ), f=sum)
4  .filter((sIP, count) => count > Th)

Query 1: Heavy hitters detection of srcIP written in Sonata [25].

1   packetStream
2  .map(p => (p.sIP, p.dIP, p.sPort, p.dPort, p.Proto))
3  .distinct()

Query 2: Distinct number of 5-tuple flows written in Sonata [25].

Optimization building blocks (§4): We observe that sketch-
ing algorithms have three common workflow steps: hash com-
putations, counter updates, and heavy flowkey storage. We
identify and formalize five novel cross-sketch optimization
building blocks to reuse key hardware resources across sketch
instances in each step. For hash computations, we show how
and when (1) hash results can be reused across sketch in-
stances or (2) can be reconstructed by cheap XOR operations.
In the counter updates step, we discuss how (3) counter ar-
rays can be reused or (4) can be co-located to reduce memory
accesses. In heavy flowkey storage, we discuss (5) a novel
mechanism to reuse the heavy flowkey storage by using the
union of all flowkeys for sketch instances in the ensemble.
Each optimization guarantees no accuracy loss.
Strategy finder (§5): Given an arbitrary sketch ensemble,
there are many possible ways to use and combine the above
building blocks. Naively solving this problem is intractable
due to the challenges in modeling resource usage, identifying
conflicts for combining optimizations, and the combinatorially
large search space (e.g., it takes more than a day to solve).
We identify practical relaxations to the problem and a greedy
heuristic to make the problem tractable to solve. We show that
our approach can quickly identify (e.g., in less than 1 second)
an effective strategy that yields significant benefits.
Auto-code composition (§6): To simplify developer and op-
erator effort, we design a simple-yet-effective switch-code
generation process that realizes the selected strategy obtained
above. We provide code templates of sketching algorithms
to create sketch codes for an ensemble of sketch instances
(Fig. 1) to enable this automatic code composition.1

We demonstrate the utility and benefits of Sketchovsky over
a wide range of settings and a library of sketching algorithms
that measure various statistics of interest [11, 14, 17, 19, 20,
21, 27, 28, 29, 32, 44]. Given this basic library, we built an
ensemble generator that can create diverse ensembles using a
wide range of parameters. We then used the generator to gen-
erate tens of thousands of ensembles that we used to measure
the resource reduction benefits of Sketchovsky. We measure
accuracy results by running four representative ensembles on
the Tofino switch processing various inter-ISP packet traces
[2]. Compared to the baseline of SketchLib, Sketchovsky re-
duces the use of hash units by 7∼40%, SALUs by 9∼45%,

1Sketchovsky is publicly available at https://github.com/Sketchovsky.
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Figure 2: Sketching algorithms have three common workflow steps;
hash computations, counter updates, and heavy flowkey storage.

and SRAM by 0∼7% for the ensembles that have the same
flowkey for all sketch instances. Even for the ensembles with
randomly picked sketching algorithms and parameters, re-
source reduction is 3∼21% for the hash units, 4∼26% for
SALUs, and 0∼0.4% for SRAM. For the accuracy experiment,
we report no accuracy loss for any sketch instances.

2 Background and Related Work
We begin with background on sketches and their hardware
footprints. Then we motivate the need for running an ensem-
ble in practice. We end by explaining why state-of-the-art
solutions fall short of effectively supporting an ensemble.

2.1 Sketches and Programmable Switches
Sketches or sketching algorithms on programmable switches
are promising to support diverse measurement tasks due to re-
source efficiency and high accuracy. Sketching algorithms are
randomized approximation algorithms designed to measure
different statistics with a theoretical guarantee of high accu-
racy and sub-linear memory space in relation to the number of
flows. Thus, sketching algorithms fit well for programmable
switches with tight resource constraints. There are sketching
algorithms to support diverse statistics for measurement tasks.
For example, count-min sketch (CM) [17] can identify heavy
hitters, and it can be configured with flowkey definition of
srcIP to run Query. 1. HyperLogLog (HLL) [21] can estimate
the distinct number of flows, and it can answer Query. 2 with
flowkey definition of 5-tuple. There are other sketching algo-
rithms, such as K-ary sketch (KARY) [27] for heavy change
detection or UnivMon (UM) [32] for multiple statistics.

Sketching algorithms follow three common steps. We ex-
plain these steps with a canonical sketching algorithm count-
min sketch [17] (Fig. 2). First, sketching algorithms perform
hash computations. As each packet arrives, the count-min
sketch extracts a flowkey (e.g., 5-tuple) from the packet header.
On this key, the count-min sketch computes independent hash
functions ci. Second, using these hash results, sketching algo-
rithms perform counter updates. They typically maintain 2D
counter arrays, R independent counter arrays with the size of
W , thus R ×W counters in total. The hash result of ci selects
a specific column for counter update per row. The count-min
sketch is a single-level sketching algorithm meaning that it
maintains 2D counter arrays. There is a notion of a multi-level
sketching algorithm, which uses multiple levels of 2D counter
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arrays. Third, sketching algorithms need to maintain heavy
flowkey storage. Sketching algorithms use threshold values to
compare against flow size estimates to detect and store heavy
flowkeys. While these steps run on the data plane, the control
plane periodically reads and resets counter arrays and heavy
flowkey storage to compute desired metrics [37].

While the ideas of Sketchovsky can be applied to other pro-
grammable switch architectures (as stated in §9), we showcase
the effectiveness and benefits of Sketchovsky using Intel’s
Tofino switch [1]. Tofino is a commercially available pro-
grammable switch built on the RMT architecture [13] and the
P4 language [12]. Its pipeline stage architecture is equipped
with equal resources per stage, and running sketching algo-
rithms on programmable switches requires the use of four key
hardware resources. Hash units execute hash functions and
there are a certain number of hash units per pipeline stage.
The hash results of hash units can be used to select a specific
column for counter updates or other purposes (§A.1). Each
pipeline stage has a fixed amount of SRAM that can be used
to maintain the state. SRAM is used by counter arrays and
heavy flowkey storage. Stateful ALU (SALU) is the essen-
tial hardware resource that allows one read and one write
operation to a register array in SRAM. A counter array for a
sketch instance is mapped to a register array. Thus, a sketch
instance using R counter arrays requires R SALUs. Storing
heavy flowkey also requires SALUs. More pipeline stages are
needed for more usage of the above three hardware resources.
In addition, the notion of dependencies among workflow steps
(e.g., counter updates must be executed earlier than heavy
flowkey storage) can contribute to even more pipeline stage
usage due to the imbalanced resource allocation.

2.2 Need for Ensemble of Sketch Instances

Network operators need to concurrently run diverse flow-
level measurement tasks on programmable switches be-
cause the more information operators can get about the net-
work, the more they can make the right management deci-
sions [15, 25, 34, 38, 47, 48, 49, 52]. As concrete examples
of measurement tasks, we show two network queries writ-
ten by Sonata [25], a state-of-the-art query language on pro-
grammable switches. Query. 1 can detect heavy hitters based
on the sum of packet length in bytes aggregated on flowkey of
srcIP. Query. 2 measures the distinct number of 5-tuple flows.
Network operators want to concurrently run these measure-
ment tasks as many as possible.

Each such measurement task would entail creating a sketch
instance based on a base sketching algorithm (SA) with four
configurable parameters (Table 1): (1) Flowkey is any com-
bination of packet header fields (e.g., srcIP or 5-tuple); (2)
Flowsize defines whether the sketch instance keeps track of
packet counts or packet bytes; (3) Epoch is the measurement
time interval; and (4) Resource Parameters configure the
memory size (e.g., W and R of 2D counter arrays). The net-

SI Base
SA

Configurable Parameters
Flowkey Flowsize Epoch Res. Param.

s1 CM (srcIP) counts 10s (3, 1024)
s2 CM (dstIP) bytes 10s (5, 2048)
s3 KARY (srcIP, dstIP) counts 10s (4, 4096)
s4 HLL (srcIP, srcPort) - 5min (1, 2048)
s5 UM (5-tuple) counts 5min (3, 2048, 16)

Table 1: An example of an ensemble of sketch instances. For re-
source parameters, (R, W ) for single-level and (R, W , level) for multi-
level sketching algorithms.

Solution General Resource Accuracy

P4 Composition [22, 23, 30, 42, 51] � X �
Per-sketch optimizations [4] � X �
Expressive sketches [9, 15, 32, 49] X � �
Dynamic resource allocation [3, 36, 50] � � X
Sketchovsky (Our system) � � �

Table 2: Existing efforts cannot support a general ensemble of mea-
surement tasks with low resource footprint and high accuracy.

work operator should choose resource parameters carefully
due to a trade-off between resource use and accuracy.

For instance, given Query. 1 above, we can use a count-min
sketch instance on the srcIP as flowkey and for Query. 2 we
may use HyperLogLog on the 5-tuple. More generally, given
the collection of measurement tasks with different config-
urable parameters (flowkey, flowsize, epoch) and statistics, we
will need to concurrently run an ensemble of sketch instances
in practice. For our work, we assume that the ensemble of
sketch instances is given as input; the problem of finding
the best ensemble of sketch instances given a collection of
measurement tasks is outside the scope of this paper (§9).

2.3 Prior Work and Limitations
We discuss some existing efforts in sketch-based telemetry
on programmable switches and why they are insufficient to
tackle the ensemble of sketch instances problem (Table 2).

Composing P4 programs. Many P4 code composition
works have been recently published for resource optimiza-
tions [22, 23, 30, 42, 51]. However, none of them can optimize
the sketch ensemble because they did not consider stateful
processing, which is at the core functionality of sketching al-
gorithms (e.g., counter update step). P4visor [51], Lyra [22],
and Cetus [30] focus on optimizations for match-action tables,
but they did not consider optimizations for stateful process-
ing, including MicroP4 [42]. Thus, they cannot be used to
optimize an ensemble of sketch instances.

Chipmunk [23] seems to be a promising candidate for pro-
viding cross-sketch optimizations at first glance because it
compiles a program written by Domino language into opti-
mized P4 code with stateful processing optimizations. How-
ever, Chipmunk can not compile a full single sketch imple-
mentation due to its limited scope. It only supports the update
part of the stateful value but does not include the addressing
part (e.g., computing hash functions to address the column
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Figure 3: Existing efforts cannot efficiently run the ensemble.

index of counter arrays), which is critical for sketch imple-
mentations.
Per-sketch optimizations [4] can be used to implement the
sketch ensemble. However, this approach cannot achieve low
resource footprints due to linearly increasing resource con-
sumption as we run multiple sketch instances.

More expressive sketches. To make improvements, recent
advances in sketching theory empower a single sketch in-
stance to support multiple measurement tasks [9, 15, 32, 49].
However, their coverage of the measurement tasks is still
far from general (e.g., none of them can support the entropy
estimation tasks for two different flowkey definitions).

Dynamic resource allocation. Earlier work has reduced re-
source use for the ensemble of sketch instances [3, 36, 50].
SCREAM [36] dynamically reduces resource parameters of
sketch instances to meet specified minimum accuracy when
there are variations in traffic. P4All [3] can be used to re-
duce the resource parameters of some sketch instances in the
ensemble by identifying lower-prioritized sketch instances.
FlyMon [50] enables dynamic parameter configuration at run-
time (e.g., flowkeys and resource parameters). It essentially
offers a time-sharing capability to run a sketch ensemble
by switching out active sketch instances. However, all these
techniques reduce resource use at the expense of accuracy.
In contrast, our work proposes optimizations that reduce re-
sources while maintaining accuracy for all sketch instances
in the ensemble.

Quantitative results for existing efforts. We quantitatively
show why existing efforts are insufficient. Fig. 3 shows the
resource footprint and accuracy results for two approaches,
per-sketch optimization (SketchLib) and dynamic resource
allocation (P4All). To create the ensembles, we only use the
count-min sketch with (R,W) = (5,8K), flowkey of 4-tuple,
different measurement epochs, and different flowsize defini-
tions. We use CAIDA traces [2]. For the P4All experiment,
we fix the width of counter arrays and reduce the number of
rows if necessary to fit the maximum number of SALUs on
the Tofino switch. We treat all sketch instances equally in the
objective function.

The results in Fig. 3 show that SketchLib cannot support
more than four sketch instances. While P4All can support
more than four sketch instances by reducing hardware re-

sources, this also reduces the accuracy. In summary, we find
that existing techniques cannot achieve both low resource
footprint and high accuracy.

3 Sketchovsky Overview
Given that prior work is insufficient, we explore a comple-
mentary approach to identify and exploit cross-sketch opti-
mizations to run an ensemble of sketch instances S = {si}N

i=1.
To this end, we present Sketchovsky (Fig. 1), a novel cross-
sketch optimization and composition framework. Sketchovsky
identifies five cross-sketch optimization building blocks so
that resource consumption increases sub-linearly in the num-
ber of sketch instances with guarantees of no accuracy loss.
Sketchovsky uses efficient heuristics to find an effective strat-
egy to combine these building blocks for a given ensemble
and implements a module to automatically generates an opti-
mized switch code.

Optimization building blocks (§4). We find that key hard-
ware resources used in each workflow step of sketching al-
gorithms can be reused across multiple sketch instances. We
identify five optimization building blocks to reduce resource
footprint while maintaining accuracy. OHash1 and OHash2 opti-
mize the first step of hash computations; OCtr1 and OCtr2 opti-
mize the second step of counter updates, and OKey optimizes
the third step of heavy flowkey storage. Note that optimiza-
tions can be generalized to other hardware (§9). Each O j has
applicable conditions to determine whether O j can be applied
to a subset of sketch instances S ⊂ S . Applicable conditions
are expressed by configurable parameters introduced in (§2.2)
(e.g., all si ∈ S have the same flowkey) and sketch features.
The notion of sketch features captures the differences among
different sketching algorithms in algorithm designs or data
structures (e.g., counter array type, counter update type, or
whether maintaining heavy flowkeys or not).

Strategy finder (§5). Among many valid strategies for apply-
ing five optimization building blocks to different subsets of
sketch instances in the ensemble, it is challenging to quickly
find the most effective strategy due to the intractably large
search space. To solve this problem, we formulate an optimiza-
tion problem by defining the objective function to minimize
hardware resources. Next, we propose an idea of problem
decomposition. We show that one large problem can be de-
composed into small sub-problems, and separate solutions
for sub-problems together produce the overall solution. To
detect the validity of a strategy, the strategy finder takes in-
puts of sketch features (e.g., base sketching algorithm) and
configurable parameters (e.g., flowkey and flowsize) for S as
in Table 1. Optimization building blocks can be applied to a
subset S ⊂ S only if S satisfies the applicable conditions.

Auto-code composition (§6). Manually translating a strategy
into an optimized code is challenging because the strategy
contains information about the complicated interplay among
multiple optimization building blocks and a set of sketch

1276    20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Workflow Step Optimizations Reduction Overhead

Hash HASHREUSE (OHash1) Hash unit -
Computations HASHXOR (OHash2) Hash unit Pipe Stages

Counter SALUREUSE (OCtr1) SALU,SRAM -
Updates SALUMERGE (OCtr2) SALU SRAM

Heavy Flowkey
Storage HFSREUSE (OKey) SALU Pipe Stages

CP Comp

Table 3: Relationships among workflow steps, optimizations and
resource reductions. CP Comp means Control Plane Computation,
and Pipe Stages means Pipeline Stages.

Conditions OHash1 OHash2 OCtr1 OCtr2 OKey

Sketch Features
C1. Same counter array type � �
C2. Same counter update type �
C3. Track heavy flowkey �

Configurable Parameters
C4. Same flowkey definition � * � �
C5. Same flowsize definition �
C6. Same measurement epoch �

Table 4: Applicable conditions for five optimization building blocks.

instances. We build an auto-code composition that automati-
cally translates a given strategy into optimized sketch code.
This relieves the burden of manual work of network operators.
Given the output of the strategy finder and a set of sketch P4
codes for S , we generate a unified and optimized P4 program.

4 Optimization Building Blocks
Given S = {si}N

i=1, we identify five cross-sketch optimiza-
tion building blocks (two for hash, two for counters, and one
for flowkey storage) that can apply to a given set of sketch
instances S = {si}n

i=1 ⊂ S. Table 3 summarizes relationships
among workflow steps, optimizations and resource reductions.
For each optimization, we explain the key idea, the conditions
under which it applies, and its implications for resource use
and accuracy. Table 4 summarizes applicable conditions to
validate whether each optimization can be applied to S ⊂ S .

4.1 Hash Computations
To optimize the workflow step of hash computations (§2.1),
we have two optimizations HASHREUSE (OHash1) and
HASHXOR (OHash2). Hash unit refers to the hardware re-
source on programmable switches to execute hash functions.
Hash result is the outcome hash value of the hash unit.

HASHREUSE (OHash1) Reusing hash results. If a set of
sketch instances use the same definition of flowkey (e.g.,
srcIP), we can reuse hash results to reduce the usage of hash
units. We explain this optimization using an example in Fig. 4.
Assume we have a set of sketch instances S = {si}n

i=1 with
a required set of independent hash results E = {ei}n

i=1 and
flowkey definition F = { fi}n

i=1, which means that a sketch
instance si needs ei number of hash results based on flowkey
fi. Without optimization, ∑i ei hash units are used. However,

is reusing 
hash results

! " #
$! % 3
$" % 2
$# % 1

ℎ!! " ℎ!" " ℎ!# "

ℎ"! " ℎ"" "

ℎ#! "
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ℎ!! " ℎ!" " ℎ!# "

max%(e%) = 3 hash units

Figure 4: HASHREUSE (OHash1) reduces hash units by reusing hash
results. A small box with hseed( f lowkey) indicates one hash unit
allocation.
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Figure 5: HASHXOR (OHash2) reduces hash units by using XOR.

we can reuse hash results, and we can reduce the allocation
of hash units to maxi(ei) on the hardware as in Fig. 4.
Applicability: Regardless of any sketching algorithms, we can
apply this optimization as long as S uses the same flowkeys.
We denote this as (C4) in Table 4.
Implication: Allocation of maxi(ei) hash units is sufficient to
preserve the accuracy of S = {si}n

i=1. The accuracy of sketch
instances is closely related to hash independence among hash
results. To implement hash independence in practice, ran-
domly picked hash seeds are used; hseed1(A) and hseed2(A)
are independent if seed1 ≠ seed2. For a single sketch instance,
hash independence among hash results is required. A key
insight here is that hash independence is not required across
sketch instances. Thus we can reuse maxi(ei) hash results
across sketch instances in a way that all hash results within
any single sketch instance si are independent (e.g., in Fig. 4).
HASHXOR (OHash2) Less hashing, same performance
with XOR-based reconstruction. We can reduce hash units
even for a set of sketch instances with different flowkeys
by leveraging XOR operations. We explain this optimiza-
tion using an example in Fig. 5 where S = {s1,s2,s3} and
F = {{A},{B},{A,B}} and E = {1,2,3}. A and B are differ-
ent packet headers, such as A = srcIP and B = dstIP. We can
reduce allocation of hash units by reconstructing independent
hash results for s3 as follows because {A,B} = {A} ∪ {B}.

h31(A,B) = h11(A)⊕h21(B) (1)
h32(A,B) = h11(A)⊕h22(B) (2)

Note that XOR-based reconstructed hash results h31(A,B)
and h32(A,B) are independent because h21(B) and h22(B)
are independent. For arbitrary e1 and e2, we can reconstruct
e1×e2 independent hash results for s3.
Applicability: This optimization HASHXOR (OHash2) can be
applied if S and F meet the following condition.

For S ∈ S, �S� = 3 and f1∪ f2 = f3 (3)
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This optimization can be applied as long as a set of sketch
instances satisfies (3). Thus, we mark (*) at (C4) in Table 4
for OHash2.
Implications: This idea of XOR-based hash reconstruction
is proven pairwise independent and has already been used in
other contexts [26, 43]. Thus, accuracy will not be compro-
mised, and our evaluation result confirms this. As a minor
side effect, more pipeline stages might be needed by adding
XOR operations in the sketch workflow. However, we will
see in the evaluation that the impact of this overhead is small.

4.2 Counter Update
To optimize the second workflow step of counter updates, we
have SALUREUSE (OCtr1) and SALUMERGE (OCtr2).
SALUREUSE (OCtr1) Reusing counter arrays (rows) across
sketch instances. If all sketch instances in S meet certain
applicable conditions, we can reuse counter arrays to reduce
both SALUs and SRAM. We first see how this optimization
works by looking at an example in Fig. 6, and we will describe
applicable conditions later. Suppose S = {s1,s2,s3} satisfies
applicable conditions of OCtr1 and C = {(ri,wi)}n

i=1 represent
that si has ri number of counter arrays with width wi. Then,
instead of updating three different sets of counter arrays for
three sketch instances in the data plane, we can update only
one set of counter arrays. Then, in the control plane, one set of
counter arrays can be used to compute statistics for all three
sketch instances. The way we compute the row and width of
counter arrays for reuse is represented by W:

W = {w∗j }maxi(ri)
j=1 where w∗j =max

i
{wi�ri ≥ j} (4)

W represents width w∗j per j-th counter array for reuse. Note
that W can have different widths across counter arrays, and
it does not affect the functionality of sketching algorithms.
We can see that W has maxi(ri) rows. Thus, we can reduce
SALUs from ∑i ri to maxi(ri). Moreover, SRAM usage is
reduced from∑i riwi to∑ j w∗j and we show∑i riwi−∑ j w∗j ≥
0 in §B.1. While the discussion focused on single-level sketch
instances, the same idea also applies to multi-level sketch
instances.
Implication: If we compare resource parameters (ri,wi) of
any sketch instance si to counter arrays for reusing W, W has
the same or larger width. As a result, all sketch instances are
guaranteed to achieve the same or improved accuracy.
Applicability: Applicable conditions for this optimization
use two sketch features. The first sketch feature is counter
array type. Sketching algorithms have different types of
counter arrays; the single-level (SL) type has 2D counter
arrays, and the multi-level (ML) type has multiple levels of 2D
counter arrays. The second sketch feature is counter update
type. Sketching algorithms have different ways of updating
counters. It can be bitmaps (BITMAP) or integer counters that
only add values (COUNTER). Refer §A.1 for a full list of five
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Figure 7: SALUMERGE (OCtr2) reduces SALUs by making SALUs
update two counter arrays simultaneously.

counter update types. S ⊂ S must satisfy five conditions to
apply this optimization (Table 4): the same counter array type,
the same counter update type, the same flowkey, the same
flowsize, and the same epoch (C1, C2, C4, C5, C6).
SALUMERGE (OCtr2). Combining two counter updates
into one SALU allocation. Leveraging the full capability of
the underlying hardware resources can help resource reduc-
tion of S. We observe that SALU can update two registers
addressed in the same index and we can leverage this feature
to update two counter arrays simultaneously. As a result, we
can reduce SALUs by up to 2x. We explain this optimization
by using an example in Fig. 7. We have two sketch instances
with two counter arrays each, and we originally needed four
SALUs. Then, we can make SALUs update two counter ar-
rays simultaneously and reduce SALUs from 4 to 2.

We find two rules in the Tofino switch for a SALU to update
two counter arrays. (R1) derives applicable conditions, and
(R2) incurs SRAM overhead.● (R1) Column indexes for counter updates are the same
● (R2) Two counter arrays have the same width

Applicability: (R1) derives two applicable conditions (C1,
C4). If sketch instances use the same counter array type (C1)
(e.g., sketch instances are either all single-level or all multi-
level) and use the same definition of flowkey (C4), we can
apply this optimization. Because flowkeys are the same, we
can leverage HASHREUSE (OHash1), and SALU can update
two counter arrays using the reused hash result for the column
index. If flowkeys are different, then column indexes for the
counter update can not be the same, which will violate (R1).
Note that we should not let SALU update two counter arrays
within a sketch instance because updating the same column
index will lose hash independence and degrade accuracy.
Implication: This optimization can incur the additional
SRAM overhead due to (R2). Suppose we have two sketch
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instances {s1,s2} with two counter arrays each as in Fig. 7
with width of {w1,w2} s.t. w1 > w2. Suppose we can apply
the optimization to {s1,s2}. Then, we should pick the longer
width w1 for counter arrays to preserve the accuracy of both{s1,s2}. As a result, the accuracy will be maintained (e.g.,
for s1) or improved (e.g., for s2). However, this will incur an
SRAM overhead of w2−w1 for s2, as marked in Fig. 7. De-
spite the SRAM overhead, we argue that this optimization is
still effective and practical for three reasons. First, increased
SRAM is not wasted but will improve accuracy. Second, the
overall SRAM overhead is bounded by 2x ( 2 max(w1,w2)

w1+w2
≤ 2).

Third, SRAM is not the imminent bottleneck as we will see
in the evaluation.

4.3 Heavy Flowkey Storage
To optimize the third workflow step of heavy flowkey storage,
we have one optimization HFSREUSE (OKey).

HFSREUSE (OKey). Reusing heavy flowkey storage across
sketch instances. A large portion of sketching algorithms
store heavy flowkeys in the switch data plane [9, 14, 16, 17,
27, 32, 41]. We can reduce the usage of SALUs (the hardware
used for memory accesses) by reusing heavy flowkey storage
across sketch instances. If multiple sketch instances have the
same definition of flowkey (e.g., srcIP), we can store heavy
flowkey in one heavy flowkey storage to save SALUs. We
can generalize this idea to sketch instances with different
definitions of flowkey using the notion of union-key. Suppose
we have two sketch instances S = {s1,s2} with two different
flowkey definitions F ={{srcIP}, {dstIP}}. Then, instead of
maintaining two heavy flowkey storage, we use one flowkey
storage using union-key of {srcIP, dstIP} where union-key
can be computed by (UK = ∪i fi). Then, for a given packet,
if either {srcIP} is identified as a heavy flowkey for s1 or
{dstIP} is identified as a heavy flowkey for s2. We store {srcIP,
dstIP} of the given packet in the heavy flowkey storage.

We can do a further optimization to reduce memory us-
age of heavy flowkey storage. Suppose S = {s1,s2} and
F ={{srcIP}, {dstIP}}. For a given packet, if {srcIP} is iden-
tified as a heavy flowkey whereas {dstIP} is not, we store
{srcIP, 0} so that the control plane knows this flowkey is only
for s1. To generalize this idea to multiple sketch instances, we
can compute a conditional union-key UKC = ∪ j f jwhere (flow
size estimate) j > threshold j and set 0 to (UK −UKC) when
we store heavy flowkey into the storage.

Applicability: We can apply this optimization to a set of
sketch instances S if all sketch instances in S tracks heavy
flowkeys (C3) as in Table 4. For different measurement
epochs, we can compute the greatest common denominator
(GCD) among all epochs, and the control plane can retrieve
heavy flowkeys every time period of GCD. For example, if
there are sketch instances with 10s, 20s, and 30s measure-
ment epochs, the control plane retrieves heavy flowkeys for

every 10s, and we can reconstruct heavy flowkeys for sketch
instances of 20s and 30s.

Implication: By storing fine-grained heavy flowkeys by
union-key, the control plane can retrieve heavy flowkeys for
individual sketch instances by aggregation without missing
any heavy flowkeys. This optimization incurs small addi-
tional computations on the switch control plane. However,
this overhead does not affect the overall performance because
this control plane computation is not on the critical path to
provide measurement results. While the switch data plane
updates the counter arrays, the switch control plane can in-
dependently execute heavy flowkey aggregation on the CPU.
Another small overhead of the pipeline stage can occur, but
we will see in the evaluation that the impact is small.

5 Strategy Finder
In the previous section, we proposed five optimizations{O j} j∈{Hash1, Hash2, Ctr1, Ctr2, Key} and their applicable condi-
tions to a subset of sketch instances S = {si}n

i=1 ⊂ S. In this
section, we aim to develop a strategy finder that partitionsS into the best applicable subsets so that five optimization
building blocks can produce the maximum benefit for any
given ensemble S .

5.1 Problem Formulation
We formulate an optimization problem to find the optimal
strategy. We consider partitions of S because each opti-
mization O j is applied to disjoint subsets of S. SupposePS = {Pk�Pk is kth partition of the set S} is a set containing all
partitions of the set S where Pk = {Sl ⊂S ��l Sl =S}. The goal
is to find the optimal strategy X∗, which minimizes hardware
resources while satisfying the applicable conditions:

min
X

HwResource(X) (5)

s.t.
�PS ��
k=1

x jk = 1,∀ j ∈ {Hash1, Hash2, Ctr1, Ctr2, Key} (6)

Valid(X) = 1 (7)

The decision variable is X = {Xj} j∈{Hash1, Hash2, Ctr1, Ctr2, Key}.
Xj selects a partition Pk ∈ PS for O j so that O j is applied
to all subsets ∈ Pk. To express this, we define Xj = {x jk�x jk ∈{0,1}}k∈{1,...,�PS �} and x jk = 1 if Pk is selected. Note that (6)
makes Xj pick only one partition Pk for O j. About con-
straint (7), we use Valid(X) ∈ {0,1} to denote whether strat-
egy X is valid or not. X is valid if all subsets ∈ Pk satisfy
the applicable conditions of O j for ∀ j. It is assumed that
applicable conditions are met for the subset S ⊂ S containing
a single sketch instance s.t. �S� = 1. For objective function (5),
we aim to find a strategy X∗ that minimizes hardware resource
among all valid strategies X . To model this objective function
HwResource(X), we use the linear combination of four key
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resource usage:

LinearComb(X ,R) =�
r∈Rar ⋅ resourcer(X) (8)

R = {SALU, HashUnit, SRAM, PipelineStage} (9)

Network operators can use (8) and customize the objective
function by choosing different coefficient sets {ar}r∈R for
their preference. For example, suppose network operators
desire to reduce SRAM more than other resources to run
the ensemble with memory-intensive applications, they can
increase the weight for aSRAM in (8).

5.2 Challenges
We face three challenges in formulating and solving the opti-
mization problem.

C-1. Large search space. We have a large search space for
enumeration because the number of possible partition �PS �
increases exponentially as the number of sketch instances�S � increases [8]. Even after we consider constraint (6), the
decision variable X has �PS �5 combinations because X selects
five partitions among PS . This large search space makes find-
ing the optimal solution X∗ become intractable. In practice,
operators often need to reconfigure sketch ensembles, and
waiting for the optimization to complete may end up being
on the critical path [50].

C-2. Modeling the valid function. It is hard to define
Valid(X) due to the dependencies among optimizations.
Specifically, there exist dependencies between Ow1 and Ow2
for w ∈ {Hash, Ctr} because they are applied to the same work-
flow steps. Thus, it is unclear whether a sketch instance si can
be benefited from Ow1 and Ow2 at the same time. Further, if
they can, then it is also unclear how to figure out the relation-
ship between Xw1 and Xw2 to detect the validity of X to define
Valid(X).
C-3. Modeling the objective function. We find that comput-
ing LinearComb(X ,R) takes a long time because accurately
measuring pipeline stage usage requires the compilation of
an optimized P4 code by applying strategy X . The execution
time for resourcepipeline_stage(X) takes several minutes. This
delay will significantly impede the search process, and finding
a solution X∗ can become even more intractable.

5.3 Our Approach
Next, we reformulate the problem and show that finding the
optimal strategies for each O j will create the overall solution
X∗. This reduces search space significantly and makes the
problem tractable.

Excluding pipeline stage from the objective function. To
handle (C-3), we make a pragmatic choice of excluding
the pipeline stage from the objective function. We use
LinearComb(X ,R′) as objective function where R′ = {SALU,
HashUnit, SRAM}. resourcer(X) for r ∈ R′ can be quickly

computed because X contains information about the num-
ber of reused or XOR-reconstructed hash units, reused or
co-located counter arrays, and reused heavy flowkey storage.
The impact of this decision cannot be measured because the
optimal objective function is unknown and difficult to define.
However, we can still identify effective solutions that can
yield significant benefits in practice because there is a corre-
lation between the resource reduction on R′ and the pipeline
stage reduction (§8).
Search space decomposition across workflow steps. To
overcome the challenge of large search space (C-1), we can
decompose the optimization problem into three sub-problems,
and solution X∗ can be achieved by solving sub-problems
separately. Specifically, we decompose the decision variable
X into three groups corresponding to three workflow steps:

XHash = {XHash1,XHash2},XCtr = {XCtr1,XCtr2},XKEY = {XKey}
Then, we can also decompose the valid function and the ob-
jective function as follows:

X = ∪w∈{Hash, Ctr, KEY}Xw (10)

Valid(X) = �
w∈{Hash, Ctr, KEY}

Valid(Xw) (11)

HwResource(X) = �
w∈{Hash, Ctr, KEY}

HwResource(Xw) (12)

This problem decomposition is possible for two reasons.
First, although there are dependencies in terms of applica-
bility within Xw, there are no dependencies across Xw be-
cause optimizations are independently applied to different
workflow steps. Thus, Valid(X) can be achieved by mul-
tiplication of decomposed Valid(Xw) as in (11). Second,
HwResource(X) can be achieved by summation of decom-
posed HwResource(Xw) as in (12). Without the idea of ex-
cluding pipeline stage usage, this linearity property (12) does
not hold because measuring pipeline stage usage must con-
sider the overall table dependency graph (TDG) among work-
flow steps (Xw). As a result, a solution X∗ can be achieved
by X∗ = {X∗Hash,X

∗
Ctr,X

∗
KEY} where X∗w is a solution of each

sub-problem for w ∈ {Hash, Ctr, KEY} as follows:

min
Xw

HwResource(Xw) s.t. Valid(Xw) = 1 (13)

Two-step enumeration for XHash and XCtr. Although we can
decompose Valid(X) into three Valid(Xw) as in (11), it is still
unclear how to realize Valid(Xw) for w ∈ {Hash, Ctr} because
there exist dependencies between Ow1 and Ow2. We can solve
this problem using an enumeration technique that efficiently
explores the search space. Suppose the enumeration does not
miss out on valid Xw (s.t. Valid(Xw) = 1) while efficiently
skips invalid Xw. In that case, it will help to solve not only
the challenge (C-2) of modeling an valid function but also the
challenge (C-1) by reducing search space. To achieve this, we
develop a two-step enumeration technique as in Alg. 1.
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Algorithm 1 TwoStepEnumeration
1: procedure TWOSTEPENUMERATION(S,w)
2: PS = {Pk �Pk is kth partition of the set S}
3: min← INT MAX
4: for Xw1 s.t. selected Pw1 ∈PS is valid do
5: for Xw2 s.t. Pw1 ≤ Pw2 ∈PS do
6: Xw ← {Xw1,Xw2}
7: Pw12 = NESTEDPARTITION(Pw1,Pw2)
8: if Pw12 is valid then
9: if min >HwResource(Xw) then

10: min←HwResource(Xw)
11: X∗w ← Xw

12: return X∗w

We explain this algorithm by both cases of w ∈ {Hash, Ctr}.
Let’s first see an example for w=Hash, HASHREUSE (OHash1)
and HASHXOR (OHash2). Suppose we have five sketch in-
stances S = {si}5

i=1 with flowkey definition F ={{srcIP},
{srcIP}, {dstIP}, {srcIP, dstIP}, {srcPort}}. Then the algo-
rithm enumerates all valid Pw1 at line 4 in Alg. 1. Pw1 ={{s1,s2},{s3},{s4},{s5}} can be picked because {s1,s2}
have the same flowkey so that we can reuse hash results to
reduce hash units. Next, given picked Pw1, it enumerates Pw2
s.t. Pw1 ≤ Pw2

2 to create nested partition Pw12 using Pw1 and
Pw2. If Pw2 = {{s1,s2,s3,s4},{s5}} is picked, then the nested
partition is Pw12 = {{{s1,s2},{s3},{s4}},{{s5}}}. To see the
validity of Pw12, check whether all subsets in Pw12 satisfy ap-
plicable conditions of OHash2 at line 8. Picked Pw12 is valid
because subset S = {{s1,s2},{s3},{s4}} ∈Pw12 satisfies appli-
cable conditions of �S� = 3 and {srcIP} ∪ {dstIP} = {srcIP,
dstIP} as in (3) at §4.1. Note that {s1,s2} is handled as if it is
a single sketch instance with a flowkey of {srcIP}.

Interestingly, the same algorithm works for w = Ctr,
SALUREUSE (OCtr1) and SALUMERGE (OCtr2). First, the
algorithm enumerates Pw1 where all subsets in Pw1 satisfy ap-
plicable conditions (C1, C2, C4, C5, C6) of OCtr1. For picked
Pw1, OCtr1 is applied to all subsets ∈ Pw1, meaning that each
subset has one set of counter arrays for reuse W as discussed
as in (3) at §4.2. Then each subset can be handled as if it is a
single sketch instance with counter arrays configured with W.
Next, we can detect the validity of nested partition Pw12 using
the applicable conditions (C1, C4) of OCtr2 at line 8 in Alg. 1.

HFSREUSE (OKey) does not need this two-step enumer-
ation. The solution for OKey is one subset S containing all
sketch instances that track heavy flowkey because this will
minimize the hardware resource usage.
Search space decomposition within workflow steps. Al-
though two-step enumeration reduces search space by picking
Pw1 first and then Pw2 such that Pw1 ≤ Pw2, this enumeration
technique still takes a long time to finish (e.g., more than a
day). To this end, we come up with an idea to decompose

2If every element of partition Pw1 is a subset of some element of partition
Pw2, then Pw1 ≤ Pw2. In other words, Pw1 is finer and Pw2 is coarser.
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Figure 8: Overview of auto-code composition.

01: /* 1. hash computation step */
02: s#_h = HashUnit(seed1, FLOWKEY);
03: s#_value = TCAM_LPM(s#_h);
04: /* 2. counter update step */
05: CounterUpdate(seed2, FLOWKEY, WIDTH,
06:                   SL, PCSA, s1_value);
07: /* 3. heavy flowkey storage step – no code */

Figure 9: Code template example for PCSA.

Xw1 and Xw2 by using a greedy heuristic algorithm. Instead
of running a nested loop (lines 4-5 in Alg. 1) for finding Pw1
and Pw2, we can first find the optimal P∗w1 given S and then
finds P∗w2 based on already fixed P∗w1. This greedy heuristic
algorithm decomposes the search space of {Xw1,Xw2} into
separate {Xw1} and {Xw2}.

The insight behind this greedy heuristic algorithm comes
from the applicability-benefit trade-off between Ow1 and Ow2.
Ow1 is more difficult to apply but has a high resource reduc-
tion benefit. Ow2 is easier to apply but has a low resource
benefit. Thus, it makes sense that the algorithm first applies
Ow1 as much as possible, then next applies Ow2. We can not
prove whether this greedy heuristic algorithm can find the
same or close solution compared to the two-step enumeration.
However, we empirically show that the overhead of objective
function increase is small (e.g., less than 2%) while solving
time of the greedy heuristic algorithm is more than three
orders of magnitude faster (§D.3).

6 Auto-Code Composition
Using solution X∗ from the strategy finder, we need two steps
to generate an optimized P4 code for S as in Fig. 8.

6.1 Sketch P4 Codes and Concatenation
The first step requires network operators to provide N sketch
P4 codes that should match with sketch features and config-
urable parameters for the ensemble S = {si}N

i=1 (e.g., Table 1).

Code template library. Writing N sketch P4 codes from
scratch is a cumbersome task for network operators. An ef-
fective way is to provide code templates of the sketching
algorithm with which P4 code for a sketch instance can be
created. We build code templates for sketching algorithms
so that network operators can configure the template with
tunable parameters. Fig. 9 shows a code template example of
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one sketching algorithm PCSA [20]. Network operators can
fill out placeholders using configurable parameters.

SketchLib. To further simplify the code template, we con-
sider using a common library to write codes for sketch in-
stances, such as SketchLib [4]. The idea of using API calls
makes code templates simple and concise. We extend Sketch-
Lib to enable the flexible configuration of various sketch
features and configurable parameters. For example, API call
CounterUpdate() in Fig. 9 at line 5 gets any definition of
flowkey and any counter update type (e.g., PCSA type is used
in this example). A full list of extended API calls of SketchLib
is in §C.1.

Code concatenation. Finally, the concatenator in Fig. 8 gets
the input of N sketch P4 codes created from code templates
and concatenates N sketch P4 codes into one merged P4 code.

6.2 Code Rewriting
The second step is code rewriting to translate the selected
strategy X∗ into optimized code. Code rewriter in Fig. 8 gets
three inputs; a merged P4 code from the first step, strategy X∗
from the strategy finder, and Library for Optimization (Lib for
Opt) that is used to apply SALUMERGE (OCtr2). Using X∗ ={X∗Hash,X

∗
Ctr,X

∗
KEY}, the code rewriter sequentially translates

X∗w to each workflow step in a merged P4 code by rewriting
short lines of code. Leveraging the code templates makes the
code rewriting process a lot easier. First, a merged sketch
P4 code is structured in a way that the code rewriter can
easily parse and apply optimizations. Second, the amount of
code rewrite is minimized because sketch code templates are
concise by using API calls in SketchLib and Lib for Opt.

7 Implementation

Auto-code composition. We use two examples, OHash1 and
OHash2 to illustrate how we auto-generate an optimized code.
Fig. 10 is the code snippet without optimization and we call it
before code. Fig. 11 is the code snippet after applying X∗Hash
and we call it after code. We have S = {si}4

i=1, F ={{srcIP},
{srcIP}, {dstIP}, {srcIP, dstIP}}. The before code allocates
hash units to generate hash results for each flowkey (lines 3,
7, 10, 13 in Fig. 10). To emulate different logical hash seeds
for independence, we configure the hash units with different
CRC polynomials in practice. Then, we apply optimizations
using a given solution X∗Hash = {{{s1,s2},{s3},{s4}}}, which
means the code should reuse {srcIP} for {s1,s2} and use XOR
operation to create a hash result for {srcIP, dstIP} = {srcIP}⊕ {dstIP}. If we look at line 4 in Fig. 11, the hash result of
s2 reuses the hash result of s1. Line 6 in Fig. 11 shows XOR-
based hash result reconstruction. As a result, the usage of the
hash unit is reduced from 4 to 2.

Applying SALUMERGE (OCtr2) requires new codes for
implementing two counter arrays to share one SALU that
the before code does not have. Thus, we build a new library
(Lib for Opt) shown in Fig. 8 to implement OCtr2 and the

01: // code for s1
02: /* 1. hash computation step */
03: s1_h = HashUnit(seed1, srcIP);
04: ... /* 2. counter update step */
05: ... /* 3. heavy flowkey storage step */
06: // code for s2
07: s2_h = HashUnit(seed2, srcIP);
08: ...
09: // code for s3
10: s3_h = HashUnit(seed3, dstIP);
11: ...
12: // code for s4
13: s4_h = HashUnit(seed4, srcIP, dstIP);
14: ...

Figure 10: [Before] HASHREUSE (OHash1) and HASHXOR
(OHash2).

01: // code for s1, s2, s3
02: /* 1. hash computation step */
03: s1_h = HashUnit(seed1, srcIP);
04: s2_h = s1_h;
05: s3_h = HashUnit(seed3, dstIP);
06: s4_h = s1_h ^ s3_h;
07: ...

Figure 11: [After] HASHREUSE (OHash1) to {s1,s2} and
HASHXOR (OHash2) to {{s1,s2},s3,s4}.
code rewriter can use this library for applying OCtr2. The
definition of the API call for Lib for Opt is in §C.1. For
other optimizations {O j} j∈{Hash1, Hash2, Ctr1, Key}, we do not
need new API calls because a simple rewrite is enough for
implementing reusing resources (OHash1, OHash2, OCtr1) or
XOR operation (OHash2) (e.g., at line 6 in Fig. 11). As a result,
the code rewriter can translate all five optimizations into an
optimized code. We show examples of before and after code
snippets for OHash1, OCtr1, OKey in §C.2.

Strategy finder. One minor issue here is that while imple-
menting SALUMERGE (OCtr2) on the Tofino switch, we face
a known problem of sketch inaccuracy caused by the counter
read and reset delays [37]. To address this, we add one more
applicable condition of the same epoch (C6) to OCtr2.

8 Evaluation

Our extensive set of experiments shows that Sketchovsky
can achieve both a low resource footprint and high accuracy
simultaneously.

8.1 Experimental Setup

Testbed. We evaluate Sketchovsky on a local testbed with an
Edgecore Wedge 100BF Tofino-based programmable switch
and a server equipped with dual Intel Xeon Silver 4110 CPUs,
128GB RAM, and a 100Gbps Mellanox CX-4 NIC connected
to the switch. We use the P4-16 version with the Tofino SDE
version of 9.5.1.
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Sketching algorithms. We use eleven sketch algorithms
that measure six different statistics.3 Although Bloom filter
(BF) is not a sketching algorithm, we include BF because it
also follows the workflow steps of sketching algorithms, and
Sketchovsky can optimize it.
Four ensemble types. We use four types of ensembles that
network operators would practically consider using. In ensem-
bles of (Type 1. Same Sketch), (Type 2. Same Flowkey), and
(Type 3. Same Epoch), all sketch instances in the ensemble
use the same sketching algorithm, flowkey, and epoch, respec-
tively. For (Type 4. Random), sketch instances in an ensemble
are picked randomly.
Ensemble Generator. To create four types of ensembles,
we build an ensemble generator that takes two inputs; (1) the
ensemble type and (2) the number of sketch instances for
the ensemble. Using these two inputs, the ensemble generator
randomly picks sketching algorithms and assigns configurable
parameters from a large pool of candidates. A full list of
candidates for parameters is in §D.1. The ensemble generator
does not allow any two sketch instances in an ensemble to
have the same statistic, flowkey, flowsize, and epoch.
Metrics. We use three metrics for accuracy: (1) Relative
Error (RE): �True−Estimate�

True , where True is the ground truth value
and Estimate is the estimated value. We use this metric for
sketching algorithms for cardinality and entropy. (2) Average
Relative Error (ARE): 1

k ∑k
i=1
� fi− f̂i�

fi
, where k means the top k

heavy flows. fi is the actual flow size for flow i, and f̂i is the
estimated flow size from the sketch instances. This metric is
used to evaluate the accuracy of the heavy hitter and heavy
change detection. We use k=50. (3) Weighted Mean Relative
Difference (WMRD) is used for MRAC [28].

For resource reduction, we use two metrics: (1) Resource
Usage (RU): Used

Available , where Used is the amount of resource
used for the ensemble and Available is the total amount of
available resource on the switch; and (2) Resource Reduction
(RR): RU (before) - RU (after)

RU (before) , where RU (before) is the amount of
used resource before applying optimizations of Sketchovsky
and RU (after) is the amount of used resource after optimiza-
tion.

8.2 Accuracy
We show that Sketchovsky does not degrade accuracy and
sometimes improves accuracy. For this experiment, we picked
four ensembles from each ensemble type. A full list of base
sketch algorithms and configurable parameters for picked en-
sembles is in §D.2. Given each ensemble as input, we generate

3Linear counting (LC) [44], HyperLogLog (HLL) [21], PCSA [20], multi-
resolution bitmap (MRB) [19] measure cardinality. Count-sketch (CS) [14],
count-min sketch (CM) [17] can detect heavy hitters, and K-ary sketch
(KARY) [27] can detect heavy change. Entropy sketch (ENT) [29] mea-
sures entropy, MRAC [28] measures flow size distribution (FSD). UnivMon
(UM) [32] can measure general statistics. Bloom filter (BF) [11] can do the
membership test. A full list of sketching algorithms that we used for our
experiments with sketch features is in §D.1.
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Figure 12: Overall accuracy evaluation.

sketch P4 codes for the Tofino switch both before and after
we use Sketchovsky for optimization. All five optimizations
are enabled. We then run sketch P4 codes for (four picked
ensembles) × (before and after optimizations) on the Tofino
switch and compare the accuracy of the sketch instances. We
use five traffic workloads of inter-ISP packet traces collected
on different dates.4 For each traffic workload, we send ten 60s
packet traces from a directly connected server to the Tofino
switch using tcpreplay at full speed.

Fig. 12 shows the overall accuracy results. We grouped
sketch instances into four different statistics based on the
sketching algorithm used. The X-axis in Fig. 12 shows the
number of sketch instances with the same sketching algorithm
(e.g., HLL(4) means there are four sketch instances using the
sketching algorithm of HLL). The Y-axis shows the quartiles
of errors for sketch instances. We see that none of the sketch
instances lose accuracy after optimization. In fact, we ob-
serve some accuracy improvements. Thanks to OCtr1, counter
arrays of KARY are increased from 1 to 3, and the error is
reduced. In addition, we do not miss any heavy flowkeys both
before and after optimization. Because BF does not produce
measurement results, the accuracy result for two BF sketch
instances is not shown.

8.3 Resource Reduction

Sketchovsky makes infeasible ensembles feasible. We show
the resource reduction benefits of using Sketchovsky. For this
experiment, we generate a total of 400 ensembles of sketch
instances; (four ensemble types) × (10 different numbers of
sketch instances from 2, 4, ..., 20) × (10 different ensembles).
Then, we run Sketchovsky to produce 400 sketch P4 codes
both before and after optimization.5 Next, we compile the
codes using the Tofino compiler to check the feasibility. To
make the experiment more realistic, we append codes for L2
switching, L3 routing, and access control list (ACL) to all of
the before and after optimization codes. L2 and ACL consume
55% of on-switch SRAM in total, and L3 uses 63% of TCAM.

4We use five CAIDA backbone traces captured in 3/20/14 Sanjose,
6/19/14 Sanjose, 1/21/16 Chicago, 5/17/18 NYC, and 8/16/18 NYC [2]

5We use count-min sketches to create ensembles for (Ensemble Type 1)
because it is one of the most popular and widely-used sketching algorithms.
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Figure 13: Feasibility comparison of ensembles before vs after.

T1 Same Sketch T2 Same Flowkey T3 Same Epoch T4 Random
0

50

100

150

200

R
U

(%
)

Before Hash Unit

After Hash Unit

Before SALU

After SALU

Before SRAM

After SRAM

Figure 14: Resource usage comparison before vs after for the num-
ber of sketch instances = 12.

The X-axis in Fig. 13 is the number of sketch instances
in the ensemble. The Y-axis is the number of feasible en-
sembles among ten ensembles per different number of sketch
instances. The result shows that 42 ensembles that were pre-
viously infeasible become feasible with Sketchovsky. For
example, if we look at "Ensemble Type 1" and "6 sketch in-
stances", only 3 out of 10 ensembles were feasible before
optimization. However, all ten ensembles become feasible
after optimization. Note that the pipeline stage overhead of
OHash2 and OKey does not negatively impact feasibility after
applying them.

Resource usage before and after optimization. Fig. 14
shows the use of individual resources before and after opti-
mization. Using the ensemble generator, we generated 1200
ensembles; (four ensemble types) × (300 different ensembles).
Each ensemble has 12 sketch instances. Because some en-
sembles are not feasible on the Tofino switch because of the
limited number of stages, we calculated resource use using
the strategy finder so we are not limited by, and do not show,
pipeline stages. We cross-checked the resource use between
the strategy finder and the Tofino compiler for feasible ensem-
bles. Each bar in Fig. 14 shows the median value, and the error
line shows the 10% and 90% percentile among 300 ensem-
bles. The red-dotted line shows the total available resources
on the switch, so values above the red line represent infeasible
ensembles. Fig. 14 visually shows how previously infeasible
ensembles become feasible. SRAM usage of heavy flowkey
storage before and after optimization is similar because heavy
flowkeys overlap across sketch instances.
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Figure 15: Resource reduction result.

Resources Total OHash1 OHash2 OCtr1 OCtr2 OKey

Type 1 Hash Unit 21.3 3.1 0.1 18.1
Same SALU 25.7 - 0.8 24.9
Sketch SRAM -0.02 - -0.02

Type 2 Hash Unit 27.6 10.4 - 17.2
Same SALU 33.1 3.8 5.9 23.4

Flowkey SRAM 1.8 2.3 -0.5

Type 3 Hash Unit 18.9 5.5 0.04 13.4
Same SALU 24.7 2.2 3.7 18.8
Epoch SRAM 0.9 1.3 -0.4

Type 4 Hash Unit 15.5 1.9 0.04 13.6
Random SALU 20.4 0.5 1.0 18.9

SRAM 0.2 0.3 -0.1

Table 5: Breakdown of resource reduction by each optimization for
the number of sketch instances = 12.

Sensitivity analysis on the number of sketch instances. We
show a more detailed view of resource reduction by looking
at ensembles with different numbers of sketch instances. We
generate (four ensemble types) × (12 different numbers of
sketch instances from 2, 4, ..., 24) × (300 different ensembles).
The X-axis of Fig. 15 is the number of sketch instances, and
the Y-axis is the average reduction for the three resource
types of 300 ensembles between before and after optimization.
We can see that hash unit reduction is up to 40%, SALU
reduction is up to 45%, and SRAM reduction is up to 7%.
As the ensemble has more sketch instances, we have more
opportunities to apply optimizations, and resource reduction
benefits increase. SRAM reduction is more limited, but we
do observe SRAM reduction for type 2 due to OCtr1 because
reusing counter arrays can reduce SRAM.

Fig. 15 also shows that the resource reduction depends on
the ensemble type. Ensemble type 2 has sketch instances with
the same flowkey, which makes many optimizations easier to
apply. Thus, ensemble type 2 has the highest resource reduc-
tion. On the other hand, type 4 has random sketch instances,
so optimizations are the least likely to be applied, resulting in
the smallest resource reduction. However, even for random
ensemble type, the reduction of the hash unit is up to 20% and
SALU is up to 26% because Sketchovsky offers five multiple
building blocks for optimization.
Breakdown on individual optimizations. We zoom into
ensembles with 12 sketch instances and show the break-
down of resource reduction in Table 5. HFSREUSE (OKey)
shows consistently high resource reduction for all four en-
semble types (18% to 25% SALU reduction). Note that OKey
can also reduce hash units. This is because of the specific
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hardware architecture of Tofino; one hash unit must be al-
located for one SALU (now we call this HashUnit-SALU
coupling). HASHREUSE (OHash1) is the next impactful op-
timization. For type 2, OHash1 reduces hash units by up to
10.4%. SALUREUSE (OCtr1) reduces both SALU and SRAM
and SALUMERGE (OCtr2) reduces SALUs but increases small
SRAM overhead (negative values such as -0.5%). Finally,
HASHXOR (OHash2) has the least impact on Tofino because
of HashUnit-SALU coupling. Note that the application of
OCtr1 and OCtr2 enables OHash1 automatically. Thus the im-
pact of OCtr1 and OCtr2 is bigger than shown in Table 5.

9 Discussion

Measurement-sketch mapping. We currently assume the
ensemble of sketch instances is given as input. An interesting
direction for future work is to automatically generate the
most efficient ensemble of sketch instances for a given set of
measurement tasks. We posit that explicitly considering the
characteristic of input workload and the resource-accuracy
trade-off in an ensemble setting using Sketchovsky could be
an interesting direction for future work [33, 47].

Generalizing to other hardware. While our prototype uses
Tofino due to its open-source development API, we posit
that our research contributions, such as optimization building
blocks, strategy finder, and auto-code composition framework,
can be adapted to other programmable switches and platforms
as they have similar resource bottlenecks [31, 40].

Generalizing to other sketching algorithms. Today, some
sketching algorithms are still infeasible in the data plane
due to their complex data structures [39, 40]. We envision
Sketchovsky to be useful for implementing other feasible
sketching algorithms on programmable switches than the
eleven sketching algorithms we demonstrated in §8. In this
section, we elaborate on the applicability of Sketchovsky’s
main components, including optimization building blocks,
strategy finder, and auto-code composition framework, to
other sketches.

First, the optimization building blocks proposed in
Sketchovsky are based on common compute and memory
operations in sketching algorithms (e.g., hash computations,
arithmetic counter updates, heavy flowkey storage). Since
all sketching algorithms perform hash computations, OHash1
and OHash2 are generally applicable to current and future
sketching algorithms. For counter updates, some sketch-
ing algorithms may have complicated counter update op-
erations (e.g., threshold-based counter updates in ElasticS-
ketch [45]). Sketchovsky cannot directly support these compli-
cated counter updates and requires a case study to determine
whether resource savings are possible. It is also possible that
these complicated counter operations are fundamentally ex-
cluded from further optimizations. For heavy flowkey storage,
the sketching algorithms that require storing heavy flowkeys
[9, 16, 41] can benefit from OKey. In summary, the individual

optimizations introduced in Sketchovsky are broadly applica-
ble to sketching algorithms.

Second, the strategy finder is a general optimizer to maxi-
mize resource saving. As long as the specifications of sketch-
ing algorithms such as counter array type and counter update
type are given as input, the strategy finder will output an
optimized strategy. For example, a user may define single-
level (SL) or multi-level (ML) as the counter array type and
COUNTER or SIGNCOUNTER as the counter update type.
When optimizing counting bloom filters [11] as part of an en-
semble, the user can define the same counter array and counter
update types as the count-min sketch [17], and exclude the
heavy flowkey storage part.

Finally, the auto-code composition framework can accom-
modate new sketching algorithms as long as their sketch
templates are properly defined based on the specification of
Sketchovsky. A sketch template follows three main steps, i.e.,
hash computation, counter updates, and flowkey storage. For
the auto-code composition framework to work, the user needs
to ensure that if several sketches share a common operation
(e.g., signed counter update), the code provided for implement-
ing the operation must be the same across the sketch templates.
For example, implementing a counting bloom filter should
reuse codes from a count-min sketch for the hash computation
and counter update operations. In summary, Sketchovsky can
be generalized to other sketching algorithms.

10 Conclusions
In this paper, we tackle an often ignored problem of run-
ning an ensemble of sketch instances to support a given port-
folio of measurement tasks. To the best of our knowledge,
Sketchovsky is the first end-to-end system that explores cross-
sketch optimizations in practice. We showed that our novel
cross-sketch optimization building blocks and efficient strat-
egy finder make previously infeasible ensembles of sketch
instances feasible on modern hardware.
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A Supplement to Background
A.1 Counter Update Type
We introduce five counter update types as in Alg. 2.
1. BITMAP is just a bitmap.
2. COUNTER receives index and size for the counter update,

then increase the counter depending on packet counts or
packet bytes.

3. SIGNCOUNTER receives one additional input of 1-bit
hash result. Depending on this hash value, it will either
increase or decrease the counter. The 1-bit hash value is
computed by using flowkey.

4. HLL type can be used for loglog-variant sketches [18,
21]. It receives index and value as inputs and updates the
counter if it is less than the value. Value can be computed
by a function r(hash) where hash ∈ {0,1}32,r(hash) is
the position of the leftmost 1-bit (e.g., r(0001 . . .) = 4) and
hash is computed using flowkey [21]. This r function can
be implemented efficiently by using TCAM in the switch
data plane [4].

5. PCSA receives index and bitmask as inputs. Then it
uses the bit-OR operation to update the counter using the
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bitmask. Bitmask value can be computed by shift operation(1 << r(hash)).
Algorithm 2 Five Counter Update Types

1: function BITMAP(index)
2: A[index] = 1
3: function COUNTER(index, size)
4: A[index] = A[index] + size
5: function SIGNCOUNTER(hash, index, size)
6: if hash == 0 then
7: A[index] = A[index] + size
8: else if hash == 1 then
9: A[index] = A[index] - size

10: function HLL(index, value)
11: if A[index] < value then
12: A[index] = value
13: function PCSA(index, bitmask)
14: A[index] = A[index] | bitmask

B Supplement to Optimizations
B.1 SRAM reduction of SALUREUSE (OCtr1)
SALUREUSE (OCtr1) reduces not only SALUs but also SRAM.
Suppose S = {si}n

i=1 is a set of sketch instances and C ={(ri,wi)}n
i=1 represent that si has ri number of counter ar-

rays with width wi. W represents row and width of counter
arrays for reuse after applying OCtr1.

W = {w∗j }maxi(ri)
j=1 where w∗j =max

i
{wi�ri ≥ j} (14)

Then, SRAM usage changes from ∑n
i=1 riwi to ∑maxi(ri)

j=1 w∗j .
OCtr1 will always maintain or reduce SRAM usage be-
cause ∑n

i=1 riwi −∑maxi(ri)
j=1 w∗j ≥ 0. Suppose comp(x,y) ∈{0,1} where x,y ∈ N. If x ≤ y → comp(x,y) = 1, otherwise→ comp(x,y) = 0.

n�
i=1

riwi−maxi(ri)�
j=1

w∗j =
maxi(ri)�

j=1
�( n�

i=1
wi ⋅comp(ri, j))−w∗j �

( n�
i=1

wi ⋅comp(ri, j))−w∗j ≥ 0 for 1 ≤ j ≤maxi(ri) due to (14)

Thus,
n�

i=1
riwi−maxi(ri)�

j=1
w∗j ≥ 0

C Supplement to Auto-code Composition
C.1 SketchLib and Lib for Optimization
SketchLib. We extended API calls from SketchLib as in Ta-
ble 6 for the easier code-rewrite process.● TCAM_LPM (hash_result) uses TCAM for the longest

prefix match to compute the leftmost position of 1-bit in the

01: /* 1. hash computation step – no code */
02: /* 2. counter update step */
03: s#_est1 = CounterUpdate(seed1, FLOWKEY, WIDTH, 
04:                         SL, Counter, FLOWSIZE);
05: s#_est2 = CounterUpdate(seed2, FLOWKEY, WIDTH,
06:                         SL, Counter, FLOWSIZE);
07: s#_est3 = CounterUpdate(seed3, FLOWKEY, WIDTH,
08:                         SL, Counter, FLOWSIZE);
09: s#_th = AboveThreshold(s#_est1, s#_est2, s#_est3,
10:                                       THRESHOLD);
11: /* 3. counter update step */
12: if (s#_th) { HFS(FLOWKEY); }

Figure 16: Code template example for count-min sketch.

hash result, which is used in many sketching algorithms.
This API call is the same as tcam_optimization() in
SketchLib.
● CounterUpdate (seed, flowkey, width, CA_type,

CU_type, ...) does one counter update for configured
flowkey, counter array type (CA_type) of whether
single-level (SL) or multi-level (ML), counter update
type (CU_type), width of counter array (width). seed is
used for the hash unit to generate column index for the
counter update. Depending on the different CU_type, it
takes more parameters (e.g., packet length for COUNTER
type or value out of TCAM_LPM for HLL/PCSA type). We
extended consolidate_update() in SketchLib to build
this API call.
● AboveThreshold (LIST(estimate), threshold)

gets the threshold and a list of flow size estimates
(these are return values after each counter update). This
API call returns whether the overall flow size estimate
is above the threshold or not6. This logic was part
of heavy_flowkey_storage() in SketchLib and we
separate the API call for the code rewrite process.
● HFS (flowkey) stores heavy flowkey. This API extends
heavy_flowkey_threshold() in SketchLib by support-
ing any definition of flowkey.
You can see how these API calls are used in Fig. 16,

which is a code template example for count-min sketch.
Network operators can put {srcIP, dstIP} to FLOWKEY,
hdr.ipv4.total_len to FLOWSIZE, and 1024 to WIDTH. For
different numbers of counter arrays (e.g., 3 counter arrays),
network operators should write multiple lines of code for
counter updates (e.g., lines 3-8 in Fig. 16).
Lib for Opt. Lib for Opt is used to implement SALUMERGE
(OCtr2) as in Table 6.● CounterUpdate_2 (seed, flowkey, width,

CA_type, CU_type1, CU_type2, ...) This API
looks similar to CounterUpdate() but the difference
is that this API does two counter updates by using one
SALU. Thus, parameters include two counter update types
6For count-min sketch, overall flow size estimate is min of List (estimate).

For count-sketch, overall flow size estimate is median of List (estimate).
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Two Libs API Name API Parameters Explanation

SketchLib

TCAM_LPM() hash_result Same as tcam_optimization() in SketchLib
CounterUpdate() seed, flowkey, width, CA_type, CU_type, ... Extends consolidate_update() in SketchLib
AboveThreshold() LIST(estimate), threshold Extends heavy_flowkey_storage() in SketchLib
HFS() flowkey Extends heavy_flowkey_storage() in SketchLib

Lib for Opt CounterUpdate_2()
seed, flowkey, width, CA_type, CU_type1,

CU_type2, ...
New API for SALUMERGE (OCtr2)

Table 6: API calls in extended SketchLib and Lib for optimization.

01: // code for s1
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s1_est1 = CounterUpdate(seed1, srcIP, 2K, SL,
05:                             Counter, pktlen);
06: s1_est2 = CounterUpdate(seed2, srcIP, 2K, SL,
07:                             Counter, pktlen);
08: s1_est3 = CounterUpdate(seed3, srcIP, 2K, SL, 
09:                             Counter, pktlen);
10: s1_th = AboveThreshold(s1_est1, s1_est2, s1_est3,
11: 100);
12: ... /* 3. heavy flowkey storage step */
13:
14: // code for s2
15: ... /* 1. hash computation step */
16: /* 2. counter update step */
17: s2_est1 = CounterUpdate(seed4, srcIP, 4K, SL,
18:                             Counter, pktlen);
19: s2_est2 = CounterUpdate(seed5, srcIP, 4K, SL, 
20:                             Counter, pktlen);
21: s2_th = AboveThreshold(s2_est1, s2_est2, 100);
22: ... /* 3. heavy flowkey storage step */
23:
24: // code for s3
25: ... /* 1. hash computation step */
26: /* 2. counter update step */
27: CounterUpdate(seed6, srcIP, 4K, SL, Counter,
28:                                      pktlen);
29: ... /* 3. heavy flowkey storage step */

Figure 17: [Before] SALUREUSE (OCtr1).
CU_type1 and CU_type2. There are one flowkey, one
width, and one counter array type because they should be
the same due to applicable conditions of OCtr2.

C.2 Before and After Code Snippets for OCtr1,
OCtr2, and OKey

Code rewrite for counter update. Code rewriter
uses {X∗Ctr1,X

∗
Ctr2} to apply SALUREUSE (OCtr1) and

SALUMERGE (OCtr2) to counter update step. Although
OCtr1 and OCtr2 can be applied simultaneously, we explain
code rewrite logic separately for better readability. Code
rewrite for OCtr1 to S requires code changes with lines using
CounterUpdate() in the extended SketchLib. Code rewrite
for OCtr2 uses a new API call, CounterUpdate_2().

We first look at how to apply OCtr1 using X∗Ctr1 by look-
ing at the before (Fig. 17) and after (Fig. 18) code snippets.
Three sketch instances {s1,s2,s3} in Fig. 17 are count-min
sketch, K-ary sketch, and entropy sketch respectively and
they have different resource parameters C = {(ri,wi)}3

i=1 =

01: // optimized code for s1, s2, s3
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s_est1 = CounterUpdate(seed1, srcIP, 8K, SL,
05:                             Counter, pktlen);
06: s_est2 = CounterUpdate(seed2, srcIP, 4K, SL, 
07:                             Counter, pktlen);
08: s_est3 = CounterUpdate(seed3, srcIP, 2K, SL, 
09:                             Counter, pktlen);
10: s1_th = AboveThreshold(s_est1, s_est2, s_est3,
11: 100);
12: s2_th = AboveThreshold(s_est1, s_est2, s_est3,
13:                                           200);
14: ... /* 3. counter update step */

Figure 18: [After] SALUREUSE (OCtr1) to {s1,s2,s3}.{(3,2K),(2,4K),(1,8K)}. {s1,s2} tracks heavy flowkey and
they check whether flow size estimate is above threshold at
line 10 and 21 in Fig. 17. X∗Ctr1 specifies that code rewriter
should apply OCtr1 to {s1,s2,s3}, meaning that they satisfy
applicable conditions for OCtr1. Then, the code rewriter com-
putes row and width of counter arrays for reuse W as dis-
cussed as in (3), §4.2. As a result, W = {8K,4K,2K} is com-
puted in this example and the code rewriter applies this as in
lines 4-9 in code snippet Fig. 18.

Next, we look at how the code rewriter applies OCtr2 by
using X∗Ctr2. Fig. 19 is the before code snippet and Fig. 20
is the after code snippet. {s1,s2,s3} in Fig. 19 are count-
min sketch, entropy sketch, and PCSA sketch respectively
and C = {(3,2K),(2,4K),(1,8K)}. We cannot apply OCtr1
to {s1,s2,s3} for this example because flowsize definitions
are different between s1 and s2 (s1 tracks packet bytes if
we look at lines 5, 7, 9 in Fig. 19 whereas s2 tracks packet
counts at lines 17-18 in Fig. 19). Counter update types are also
different between {s1,s2} and {s3}. {s1,s2} uses COUNTER
type whereas {s3} uses PCSA type.

Instead of OCtr1, we can apply OCtr2 and X∗Ctr2 specifies
that the code rewriter can apply OCtr2 to {s1,s2,s3}. Using
the information in X∗Ctr2, the code rewriter knows that the first
two counter arrays of s1 can share SALUs with s2, and the last
counter array of s1 can share a SALU with s3. We use the new
API call CounterUpdate_2() to apply this optimization at
lines 4-9 in Fig. 20. For the first two counter arrays (lines 4-7),
both counter update types are COUNTER type. Thus, the API
call takes two additional parameters of flowsize definitions
of packet bytes and packet counts. For the third counter array
(lines 8-9), counter update types are COUNTER and PCSA.
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01: // code for s1
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s1_est1 = CounterUpdate(seed1, srcIP, 2K, SL,
05:                             Counter, pktlen);
06: s1_est2 = CounterUpdate(seed2, srcIP, 2K, SL,
07:                             Counter, pktlen);
08: s1_est3 = CounterUpdate(seed3, srcIP, 2K, SL, 
09:                             Counter, pktlen);
10: s1_th = AboveThreshold(s1_est1, s1_est2, s1_est3,
11: 100);
12: ... /* 3. heavy flowkey storage step */
13:
14: // code for s2
15: ... /* 1. hash computation step */
16: /* 2. counter update step */
17: CounterUpdate(seed4, srcIP, 4K, SL, Counter, 1);
18: CounterUpdate(seed5, srcIP, 4K, SL, Counter, 1);
19: ... /* 3. heavy flowkey storage step */
20:
21: // code for s3
22: ... /* 1. hash computation step */
23: /* 2. counter update step */
24: CounterUpdate(seed6, srcIP, 8K, SL, PCSA,
25:                                     s3_value);
26: ... /* 3. heavy flowkey storage step */

Figure 19: [Before] SALUMERGE (OCtr2).

01: // optimized code for s1, s2, s3
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s_est1 = CounterUpdate_2(seed1, srcIP, 8K, SL,
05:                   Counter, Counter, pktlen, 1);
06: s_est2 = CounterUpdate_2(seed2, srcIP, 4K, SL, 
07:                   Counter, Counter, pktlen, 1);
08: s_est3 = CounterUpdate(seed3, srcIP, 2K, SL, 
09:                 Counter, PCSA, pktlen, s3_value);
10: s1_th = AboveThreshold(s_est1, s_est2, s_est3,
11: 100);
12: ... /* 3. counter update step */

Figure 20: [After] SALUMERGE (OCtr2) to {s1,s2,s3}.

Thus, two additional parameters are flowsize definition of
packet bytes and an output value of TCAM_LPM written as
s3_value at line 9 in Fig. 20.

Code rewrite for heavy flowkey storage. Code rewriter
uses X∗Key to apply HFSREUSE (OKey) to the heavy flowkey
storage step. Fig. 21 is the before code snippet and Fig. 22
is the after code snippet. We have four sketch instances{s1,s2,s3,s4} with different flowkeys F = {{srcIP}, {srcIP,
dstIP}, {srcIP, srcPort}, {srcIP, dstIP, srcPort, dstPort}} and
all sketch instances track heavy flowkey. OKey uses union
key UK = ∪i fi for the heavy flowkey storage for reuse. In
this example, UK ={srcIP, dstIP, srcPort, dstPort} is written
at line 14 in Fig. 22. Recall that we have further optimiza-
tion using conditional union-key UKC = ∪ j f jwhere (flow size
estimate) j > threshold j and set 0 to (UK −UKC). This opti-
mization is written in the code at lines 6-11 in Fig. 22. For

01: // code for s1
02: ... /* 1. hash computation step */
03: ... /* 2. counter update step */
04: /* 3. heavy flowkey storage step */
05: if (s1_th) { HFS(srcIP); }
06:
07: // code for s2
08: ... 
09: /* 3. heavy flowkey storage step */
10: if (s2_th) { HFS(srcIP, dstIP); }
11:
12: // code for s3
13: ... 
14: /* 3. heavy flowkey storage step */
15: if (s3_th) { HFS(srcIP, srcPort); }
16:
17: // code for s4
18: ... 
19: /* 3. heavy flowkey storage step */
20: if (s4_th) { HFS(srcIP, dstIP, srcPort, dstPort); }

Figure 21: [Before] HFSREUSE (OKey).

01: // code for s1, s2, s3, s4
02: ... /* 1. hash computation step */
03: ... /* 2. counter update step */
04: /* 3. heavy flowkey storage step */
05: hf_srcIP = hf_dstIP = hf_srcPort = hf_dstPort = 0
06: if (s1_th || s2_th || s3_th || s4_th) {
07:   hf_srcIP = srcIP;
08: }
09: if (s2_th || s4_th) { hf_dstIP = dstIP; }
10: if (s3_th) { hf_srcPort = srcPort; }
11: if (s4_th) {hf_dstPort = dstPort; }
12:
13: if (s1_th || s2_th || s3_th || s4_th) {
14:   HFS(hf_srcIP, hf_dstIP, hf_srcPort, hf_dstPort);
15: }

Figure 22: [After] HFSREUSE (OKey) to {s1,s2,s3,s4}.

each packet header field (e.g., dstIP), it detects which sketch
instances have this header field (e.g., s2 and s4 because f2 and
f4 have dstIP). Then if any of those sketch instances is above
the threshold (at line 9), those header fields are included in
UKC. If not, this header field is set to zero (at line 5). As a
result, we can reduce 4 heavy flowkey storages to 1 heavy
flowkey storage.

D Supplement to Evaluation
D.1 Eleven Sketch Algorithms for Evaluation
We use eleven sketching algorithms for our evaluation as
in Table 7. They have different sketch features. Counter array
type can be single-level (SL) or multi-level (ML). We also
show a pool of candidate configurable parameters per each
sketching algorithm in Table 7. For entropy sketch, counter
update type SIGNCOUNTER guarantees theoretically better
accuracy due to F2 estimation. However, we found that the
COUNTER type produces better accuracy in practice. Thus, we
use this COUNTER type for entropy sketch in our evaluation.
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Sketch Algorithms Sketch Features Configurable Parameters Candidates

Statistic Name Counter
Array

Counter
Update

Heavy
Flowkey Flowkey Flowsize Epoch Row Width Level

Membership BF [11] SL BITMAP N

{(srcIP),
(dstIP),

(srcIP, dstIP),
(srcIP, srcPort),
(dstIP, dstPort),

(4-tuple),
(5-tuple)}

{counts}

{10s,
20s,
30s,
40s}

{1}

{128K, 256K,
512K} -

Cardinality

LC [44] SL BITMAP N
MRB [19] ML BITMAP N {16K, 32K} {8, 16}
PCSA [20] SL PCSA N

{4K, 8K,
16K} -

HLL [21] SL HLL N

HH/HC
CS [14] SL SIGNCOUNTER Y {counts,

bytes}
{1, 2,
3, 4,
5}

CM [17] SL COUNTER Y
KARY [27] SL COUNTER Y

Entropy ENT [29] SL COUNTER N
{counts}General UM [32] ML SIGNCOUNTER Y {3,4,5} {2K} {16}

FSD MRAC [28] ML COUNTER N {1} {8, 16}

Table 7: Eleven sketch algorithms with sketch features and possible configurable parameters. (4-tuple) = (srcIP, dstIP, srcPort, dstPort). (5-tuple)
= (srcIP, dstIP, srcPort, dstPort, proto).

D.2 Four Ensembles for Accuracy Evaluation
Table 8 - Table 11 shows four picked ensembles for four en-
semble types. All five optimizations are found in four picked
ensembles.
Ensemble Type 1.● HASHREUSE (OHash1): none
● HASHXOR (OHash2): none
● SALUREUSE (OCtr1): none
● SALUMERGE (OCtr2): none
● HFSREUSE (OKey): {s1,s2,s3,s4,s5,s6}
Ensemble Type 2.● HASHREUSE (OHash1): {s3,s4,s6,s10}● HASHXOR (OHash2): none
● SALUREUSE (OCtr1): {s8,s9}● SALUMERGE (OCtr2): {{s1},{s2}}, {s7,{s8,s9}}● HFSREUSE (OKey): {s2,s8,s9}
Ensemble Type 3.● HASHREUSE (OHash1): {s3,s4}● HASHXOR (OHash2): none
● SALUREUSE (OCtr1): {s8,s9}● SALUMERGE (OCtr2): {{s3},{s4}}, {{s6},{s7}}● HFSREUSE (OKey): {s4,s5}
Ensemble Type 4.● HASHREUSE (OHash1): none
● HASHXOR (OHash2): {{s1},{s2},{s3}},{{s4},{s5},{s9}}● SALUREUSE (OCtr1): none
● SALUMERGE (OCtr2): {{s7},{s8}}● HFSREUSE (OKey): none

SI Base
SA (*)

Configurable Parameters
Flowkey Flowsize Epoch Resource

s1 CM (srcIP) counts 40s (1, 16K)
s2 CM (srcIP) bytes 10s (5, 4K)
s3 CM (srcIP, dstIP) bytes 30s (2, 16K)
s4 CM (srcIP, srcPort) bytes 30s (5, 8K)
s5 CM (dstIP, dstPort) bytes 20s (2, 4K)
s6 CM (5-tuple) counts 40s (5, 8K)

Table 8: Ensemble Type 1. Same Sketch Algorithm

SI Base
SA

Configurable Parameters
Flowkey(*) Flowsize Epoch Resource

s1 ENT (dstIP, dstPort) counts 10s (3, 16K)
s2 CS (dstIP, dstPort) counts 10s (3, 16K)
s3 MRB (dstIP, dstPort) - 20s (1, 16K, 8)
s4 MRAC (dstIP, dstPort) counts 20s (1, 2K, 8)
s5 BF (dstIP, dstPort) - 30s (3, 128K)
s6 MRB (dstIP, dstPort) - 30s (1, 16K, 16)
s7 ENT (dstIP, dstPort) counts 30s (4, 4K)
s8 CM (dstIP, dstPort) bytes 30s (3, 4K)
s9 KARY (dstIP, dstPort) bytes 30s (1, 4K)
s10 MRAC (dstIP, dstPort) counts 40s (1, 2K, 8)

Table 9: Ensemble Type 2. Same Flowkey

SI Base
SA

Configurable Parameters
Flowkey Flowsize Epoch(*) Resource

s1 HLL (srcIP) - 30s (1, 16K)
s2 HLL (dstIP) - 30s (1, 4K)
s3 MRAC (srcIP, dstIP) counts 30s (1, 2K, 8)
s4 UM (srcIP, dstIP) counts 30s (3, 2K, 16)
s5 UM (srcIP, srcPort) counts 30s (4, 2K, 16)
s6 PCSA (dstIP, dstPort) - 30s (1, 8K)
s7 ENT (dstIP, dstPort) counts 30s (2, 16K)
s8 BF (4-tuple) - 30s (3, 128K)
s9 LC (4-tuple) - 30s (1, 128K)
s10 ENT (5-tuple) counts 30s (5, 4K)

Table 10: Ensemble Type 3. Same Epoch
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SI Base
SA

Configurable Parameters
Flowkey Flowsize Epoch Resource

s1 MRAC (srcIP) counts 20s (1, 2K, 16)
s2 MRB (dstIP) - 30s (1, 16K, 8)
s3 MRB (srcIP, dstIP) - 20s (1, 32K, 8)
s4 HLL (srcIP, srcPort) - 10s (1, 4K)
s5 PCSA (dstIP, dstPort) - 20s (1, 16K)
s6 ENT (dstIP, dstPort) counts 30s (3, 8K)
s7 ENT (4-tuple) counts 30s (5, 4K)
s8 CS (4-tuple) counts 30s (3, 8K)
s9 PCSA (4-tuple) - 40s (1, 16K)
s10 HLL (5-tuple) - 30s (1, 8K)

Table 11: Ensemble Type 4. Random
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Figure 23: Two-step enumeration (TSE) vs greedy heuristic algo-
rithm (GHA).

D.3 Experiment for Greedy Heuristic Algo-
rithm

In the strategy finder section (§5), we propose the greedy
heuristic algorithm to tackle the problem of large search space.
Here we show that the performance loss of the greedy heuris-
tic algorithm is small while solving time is three orders of
magnitude faster.

Metric. We introduce two metrics for this experiment.

● Solving Time: time to find the solution.
● Objective Function Increase: HwResource(XG)

HwResource(XT) where XT is a
found solution using the two-step enumeration and XG is
from the greedy heuristic algorithm.

We can see in Fig. 23a that the greedy heuristic algorithm
is three orders of magnitude faster than two-step enumera-
tion. However, the objective function increase is less than 2%
(Fig. 23b). For solving time, we measure time for 300 ensem-
bles per data point in Fig. 23a and show the worst solving
time. Data points that take more than 24 hours are not shown.
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