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ABSTRACT

Centralized data plane verification (DPV) faces significant scalabil-

ity issues in large networks (i.e., the verifier being a performance

bottleneck and single point of failure and requiring a reliable man-

agement network). We tackle this scalability challenge by intro-

ducing Tulkun, a distributed, on-device DPV framework. Our key

insight is that DPV can be transformed into a counting problem

on a directed acyclic graph, which can be naturally decomposed

into lightweight tasks executed at network devices, enabling fast

data plane checking in networks of various scales and types. With

this insight, Tulkun consists of (1) a declarative invariant speci-

fication language, (2) a planner that employs a novel data struc-

ture DPVNet to systematically decompose global verification into

on-device counting tasks, (3) a distributed verification messaging

(DVM) protocol that specifies how on-device verifiers efficiently

communicate task results to jointly verify the invariants, and (4)

a mechanism to verify invariant fault-tolerance with minimal in-

volvement of the planner. Extensive experiments with real-world

datasets (WAN/LAN/DC) show that Tulkun verifies a real, large DC

in 41 seconds while others tools need minutes or up to tens of hours,

and shows an up to 2355× speed up on 80% quantile of incremental

verification with small overhead on commodity network devices.
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1 INTRODUCTION

There has been a long line of research on data plane verification [3,

4, 7, 34, 37, 41, 43–45, 53, 55, 61, 74, 82, 83, 85, 86, 90, 92, 93]. Earlier

tools analyzed a snapshot of the complete data plane of the network

to identify network errors (e.g., blackholes, waypoint violation and

forwarding loops) [3, 4, 34, 44, 53, 55, 61, 74, 75, 82, 83, 85, 86, 90, 92];

and recent solutions focus on incremental verification (i.e., verifying
forwarding rule updates) [7, 37, 41, 43, 45, 92, 93]. State-of-the-art

DPV tools (e.g., [93]) can achieve an incremental verification time

of tens of microseconds per rule update.

Centralized DPVs do not scale. Despite the substantial progress

in acceleratingDPV, existing tools employ a centralized architecture,

lacking the scalability needed for deployment in large networks.

Specifically, they use a centralized verifier to collect the data plane

from each network device and verify the invariants. This verifier

becomes the performance bottleneck and the single point of failure

(PoF) of DPV tools, e.g., our test shows that it takes APKeep [93] ~1

hour to verify a 48-ary fattree (§9.3). More importantly, this design

requires a management network to provide reliable, low-latency

connections between the server and network devices, which itself

is hard to build for large-scale networks [22].

Some studies [7, 34, 41, 90] have attempted to tackle these limi-

tations of centralized DPV. Libra [90] partitions the IP-prefix based

data plane into disjoint packet spaces to achieve parallel verification

in a cluster, but it cannot efficiently partition a data plane that for-

wards on an arbitrary mix of headers. Azure RCDC [41] partitions

the data plane by device and verify the availability of all shortest

paths in parallel in a cluster, but it can only verify this specific

invariant. Flash [34] proposes to process massive data plane rules

in batch to accelerate the computation of equivalence classes, but

it is slow in incremental verification. To relax the need of a reliable,

low-latency management network, Flash [34] proposes an early

detection mechanism to detect data plane violations with incom-

plete information. However, our test using its open-sourced proto-

type [33] shows that even if the verifier misses the updated rules

of only three randomly chosen devices, in 9 out of 11 LAN/WAN

datasets, Flash detects zero errors in 80% of the experiment cases.

In this paper, we systematically tackle the important problem of

how to scale DPV to be applicable in large networks. Not only can a

scalable DPV tool quickly find errors in large networks, it can also

support novel routing services (e.g., convergence-free routing [48,

69], real-time control plane repair [27], fast switching among mul-

tiple data planes [16, 49, 72], and interdomain DPV [17, 84]) to

respond to network errors quickly to improve network availability.

Proposal: Offload DPV to distributed computations on net-

work devices. Instead of continuing to squeeze incremental per-

formance improvements out of centralized DPV, we embrace a

https://doi.org/10.1145/3603269.3604843
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distributed design to circumvent the inherent scalability bottleneck

of centralized design. Azure RCDC [41] takes the first step in this

direction by partitioning verification into local contracts of devices.

It gives an interesting analogy between local contracts and program

verification using annotation with inductive loop invariants, but

stops at communication-free local contracts for the particular all-

shortest-path availability invariant and validating them in parallel

on a centralized cluster. In contrast, we go beyond and show that for

a wide range of invariants (e.g., reachability, multicast and anycast),

with lightweight tasks running on commodity network devices and

limited communication among them, we can verify these invariants

in a compositional way, achieving scalable DPV in generic settings.

Key insight: Transform DPV to distributed counting. The

fundamental challenge in realizing distributed verification is how

to allocate lightweight tasks running on commodity network de-

vices because they have little spare computation power. While our

position paper suggested the promise of distributed DPV [81], it

fell short in answering several important questions, including (1)

how to specify and verify generic, common invariants efficiently,

(2) how to verify data planes with packet transformations, (3) how

to minimize the information exchange between devices to reduce

the overhead, and (4) how to efficiently verify the fault-tolerance

of invariants. To this end, we design Tulkun, a generic, distributed,

on-device DPV framework, with a key insight: the problem of DPV

can be transformed into a counting problem in a directed acyclic

graph (DAG) representing all valid paths in the network; the latter

can be decomposed into lightweight tasks at nodes on the DAG that

are distributively executed at corresponding devices, enabling fast

DPV in networks of various scales with scalability approximately

linear to the network diameter. As depicted in Figure 1, Tulkun has

four key designs (D1-D4):

D1: A declarative invariant specification language (§3). This

language abstracts an invariant as a tuple of packet space, ingress

devices and behavior, where a behavior is a predicate onwhether the

paths of packets match a pattern specified in a regular expression.

It allows operators to flexibly specify common invariants studied

by existing DPV tools (e.g., reachability, blackhole-freeness, and
waypoint), and more advanced, yet understudied invariants (e.g.,
multicast, anycast, no-redundant-delivery, and all-shortest-path

availability).

D2: A verification planner to allocate tasks to devices (§4).

Given an invariant, the planner leverages the automata theory [50]

to multiply its path pattern regular expressions and the network

topology to compute DPVNet, a DAG compactly representing all

paths in the network that satisfies the path patterns in the invari-

ant, and transforms the DPV problem into a counting problem on

DPVNet. The latter can be solved by a reverse topological traversal

along DPVNet. In its turn, each node in DPVNet takes as input the
data plane of its corresponding device and the counting results

of its downstream nodes to compute for different packets, how

many copies of them can be delivered to the intended destinations

along downstream paths in DPVNet. This traversal can be naturally

decomposed into on-device counting tasks, one for each node in

DPVNet, and distributed to the corresponding network devices. We

design optimizations to compute the minimal counting information

of each node inDPVNet to send to its upstream neighbors, and prove

that for invariants like all-shortest-path availability, their minimal
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Figure 1: The architecture and workflow of Tulkun.

counting information is an empty set, i.e., the local contracts in
Azure RCDC [41] is a special case of Tulkun.

D3: On-device verifiers equipped with a DVM protocol (§5).

On-device verifiers execute the counting tasks specified by the

planner and share their results with neighbor devices to collabora-

tively verify the invariants. We are inspired by vector-based routing

protocols [56, 64] to design a DVM protocol that specifies how

neighboring on-device verifiers communicate counting results in

an efficient, correct way.

D4: Minimizing planner-verifiers communication (§6). To

avoid the planner becoming the scalability bottleneck, we design a

mechanism to let on-device verifiers check the fault-tolerance of

invariants with minimal involvement of the planner. Specifically,

the planner precomputes a fault-tolerant DPVNet representing the

union of all valid paths in all operator-specified failure scenes and

sends tasks to verifiers. When failures happen, verifiers adaptively

adjust their tasks to count along paths in the DPVNet corresponding
to the updated topology, without contacting the planner.

Implementation (§8).We implement a prototype of Tulkun and

release it as an open source project [79] with a set of demos [78].

Tulkun is being evaluated by a couple of major vendors to integrate

into their commodity switches. Our proposal to integrate Tulkun

as a feature of SONiC is also under review by the community [65].

Evaluation results (§9). We evaluate Tulkun extensively using

real-world datasets, in hardware testbed and simulations. Tulkun

consistently outperforms centralized DPV tools under various net-

works (WAN/LAN/DC) andDPV scenarios: (1) Verifying a real, large

DC in less than 41 seconds while the state-of-the-art DPV tools

take minutes and the classic ones take tens of hours; (2) Achieving

an up to 2355× speedup on 80% quantile of incremental verification,

with little resource overhead.

2 OVERVIEW

This section introduces some key concepts in Tulkun, and illustrates

its workflow using an example.

2.1 Basic Concepts

Data plane model. For ease of exposition, given a network device,

we model its data plane as a match-action table, where the entries

are ordered in descending priority. Each entry has a match field to

match packets on packet headers (e.g., TCP/IP 5-tuple) and an action
field to perform packet actions. Possible actions include modifying

the headers of the packet and forwarding the packet to a group of

the next-hops [25, 41]. An empty group means the action is to drop

the packet. If an action forwards the packet to all next-hops in a
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(a) An example network. 𝑝 has 1 universe of 2 traces: { [𝑆,𝐴, 𝐵 ], [𝑆,𝐴,𝑊 ,𝐷 ] }.
𝑞 has 2 universes of 1 trace each: { [𝑆,𝐴, 𝐵, 𝐷 ] } and { [𝑆,𝐴,𝑊 ,𝐷 ] }.

(b) An example invariant. (c) The DPVNet and the counting process.

Figure 2: An illustration example to demonstrate the workflow of Tulkun.

non-empty group, we call it an 𝐴𝐿𝐿-type action. If it forwards the

packet to one of the next-hops in a non-empty group, we call it an

𝐴𝑁𝑌 -type action. Given an 𝐴𝑁𝑌 -type action, we do not assume

any knowledge on how the device selects one next-hop from the

group. It is because this selection algorithm is vendor-specific, and

sometimes a blackbox [25].

Packet traces and universes. Inspired by NetKAT [4], we intro-

duce the concept of packet trace to record the state of a packet as

it travels from device to device, and use it to define the network

behavior of packet forwarding. When 𝑝 enters a network from an

ingress device 𝑆 , a packet trace of 𝑝 is defined as a non-empty se-
quence of devices visited by 𝑝 until it is delivered to the destination

device or dropped.

However, due to ALL-type actions, a packet may not be limited

to one packet trace each time it enters a network. For example, in

Figure 2a, the network forwards a packet 𝑝 with a destination IP

10.0.0.0 along a set of two traces {[𝑆,𝐴, 𝐵], [𝑆,𝐴,𝑊 , 𝐷]} because 𝐴
forwards it to both 𝐵 and𝑊 . We denote this set to be a universe of
packet 𝑝 from ingress 𝑆 . In addition, with the existence of ANY-type

actions, a packet may traverse one of a number of different sets
of packet traces (universes) each time it enters a network. In the

same example, consider a packet 𝑞 with a destination IP 10.0.1.0

and a destination port 80. When it enters the network in different

instances, the network may forward 𝑞 according to the universe

{[𝑆,𝐴, 𝐵, 𝐷]} or the universe {[𝑆,𝐴,𝑊 , 𝐷]} because 𝐴 forwards 𝑞

to either 𝐵 or𝑊 . These universes (each being a set of traces) can be

thought of as a "multiverse" - should the packet enter the network

multiple times, it may experience different fates each time.

The notion of universes is a foundation of Tulkun. We are in-

spired by multipath consistency [24], where a packet is either ac-

cepted on all paths or none at all, but go beyond. For each invariant,

we verify whether it holds in all universes.

2.2 Workflow

We demonstrate Tulkun’s workflow with the network in Figure 2a

and an invariant: for all packets destined to 10.0.0.0/23, when enter-

ing the network at 𝑆 , they must reach 𝐷 via a simple path passing

𝑊 . Tulkun verifies it in three phases.

2.2.1 Invariant Specification. In Tulkun, operators specify veri-

fication invariants using a declarative language. An invariant is

specified as a (𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑝𝑎𝑐𝑒, 𝑖𝑛𝑔𝑟𝑒𝑠𝑠_𝑠𝑒𝑡, 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 ) tuple. The se-
mantic means: for each packet 𝑝 in 𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑝𝑎𝑐𝑒 entering the

network from any device in 𝑖𝑛𝑔𝑟𝑒𝑠𝑠_𝑠𝑒𝑡 , the traces of 𝑝 in all its

universes must satisfy the constraint specified in 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 , which is

specified as a tuple of a regular expression of valid paths 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝

and a match operator. Figure 2b gives the program of the example

invariant, where loop_free is a shortcut in the language for a reg-

ular expression that accepts no path with a loop. It specifies that

when any 𝑝 destined to 10.0.0.0/23 enters from 𝑆 , at least 1 copy of

it will be delivered to 𝐷 along a simple path waypointing𝑊 .

2.2.2 Verification Decomposition and Distribution. Given an in-

variant, Tulkun uses a planner to decide the tasks to be executed

distributively on devices to verify it. The core challenge is how to

make these on-device tasks lightweight, because a network device

typically runs multiple protocols (e.g., SNMP, OSPF and BGP) on

a low-end CPU, with little computation power to spare. To this

end, the Tulkun planner employs a data structure called DPVNet to
decompose the DPV problem into small on-device verification tasks,

and distribute them to on-device verifiers for distributed execution.

From invariant and topology to DPVNet. The planner lever-

ages the automata theory [50] to multiply the regular expression

𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 and the topology and get a DAG called DPVNet. Similar

to the product graph [11, 39, 66], a DPVNet compactly represents

all paths in the topology that match 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 . It is decided only by

𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 and the topology, and is independent of the actual data

plane of the network.

Figure 2c gives the DPVNet in our example. Devices in the net-

work and nodes in DPVNet have a 1-to-many mapping. Each node

𝑢 in DPVNet has a concatenation of 𝑢.𝑑𝑒𝑣 and an integer as its

identifier. For example, device 𝐵 in the network is mapped to 𝐵1

and 𝐵2 in DPVNet, because the regular expression allows packets

to reach 𝐷 via [𝐵,𝑊 , 𝐷] or [𝑊, 𝐵, 𝐷].
Backward counting alongDPVNet.WithDPVNet, a DPV problem

is transformed into a counting problem on DPVNet: given a packet
𝑝 , can the network deliver a satisfactory number of copies of 𝑝 to the
destination node along paths in the DVNet in each universe? In our

example, the problem of verifying whether the data plane of the

network (Figure 2b) satisfies the invariant is transformed into the

problem of counting whether at least 1 copy of each 𝑝 destined to

10.0.0.0/23 is delivered to 𝐷1 in Figure 2c in all of 𝑝’s universes.
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This counting problem can be solved by traversing DPVNet in
reverse topological order. In its turn, each node 𝑢 takes as input (1)

the data plane of 𝑢.𝑑𝑒𝑣 and (2) for different 𝑝 in 𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑝𝑎𝑐𝑒 , the

number of copies that can be delivered from each of𝑢’s downstream

neighbors to the destination, along DPVNet, by the network data

plane, to compute the number of copies that can be delivered from

𝑢 to the destination along DPVNet by the network data plane. In

the end, the source node of DPVNet computes the final result.

Figure 2c illustrates this process. We use 𝑃1, 𝑃2, 𝑃3, 𝑃4 to repre-

sent the packet spaces {𝑑𝑠𝑡𝐼𝑃 = 10.0.0.0/23}, {𝑑𝑠𝑡𝐼𝑃 = 10.0.0.0/24},
{𝑑𝑠𝑡𝐼𝑃 = 10.0.1.0/24, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡 = 80}, and {𝑑𝑠𝑡𝐼𝑃= 10.0.1.0/24,
𝑑𝑠𝑡𝑃𝑜𝑟𝑡 ≠ 80}, respectively. 𝑃2, 𝑃3 and 𝑃4 are disjoint and 𝑃1 =

𝑃2 ∪ 𝑃3 ∪ 𝑃4. Each 𝑢 in DPVNet initializes a (𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑝𝑎𝑐𝑒, 𝑐𝑜𝑢𝑛𝑡)
mapping (𝑃1, 0), except for𝐷1 that initializes the mapping as (𝑃1, 1)
(i.e., one copy of any packet in 𝑃1 will be sent to the correct external
ports). We traverse all the nodes in DPVNet in reverse topological

order to update their mappings. Each node 𝑢 checks the data plane

of 𝑢.𝑑𝑒𝑣 to find the set of next-hop devices 𝑢.𝑑𝑒𝑣 will forward 𝑃1
to. If the action of forwarding to this next-hop set is of 𝐴𝐿𝐿-type,

the mapping at 𝑢 can be updated by adding up the count of all

downstream neighbors of 𝑢 whose corresponding device belongs

to the set of next-hops of 𝑢.𝑑𝑒𝑣 for forwarding 𝑃1. For example,

node𝑊 1 updates its mapping to (𝑃1, 1) because𝑊 forwards 𝑃1 to

𝐷 . 𝐵2 updates to [(𝑃2, 0), (𝑃3 ∪ 𝑃4, 1)] because 𝐵 forwards 𝑃3 ∪ 𝑃4
to 𝐷 , but drops 𝑃2. However, 𝐵1 does not update its mapping be-

cause 𝐵 does not forward to𝑊 . Similarly, although𝑊 2 has two

downstream neighbors 𝐵2 an 𝐷1, each with an updated mapping

(𝑃1, 1), in its turn,𝑊 2 updates its mapping to (𝑃1, 1) instead of

[(𝑃2, 1), (𝑃3 ∪ 𝑃4, 2)], because𝑊 only forwards 𝑃1 to 𝐷 , not 𝐵.

Given a node 𝑢 in DPVNet, if the action of forwarding is of

𝐴𝑁𝑌 -type, the count may vary at different universes. As such,

we update the mapping at 𝑢 to record these distinct counts. For

example, 𝐴 would forward 𝑃3 to either 𝐵 or𝑊 . As such, in one

universe where 𝐴 forwards 𝑃3 to 𝐵, the mapping of 𝑃3 at 𝐴1 is

(𝑃3, 0), because 𝐵1’s updated mapping is (𝑃1, 0) and 𝑃3 ⊂ 𝑃1. In the

other universe where 𝐴 forwards 𝑃3 to𝑊 , the mapping of 𝑃3 at 𝐴1

is (𝑃3, 1) because𝑊 3’s updated mapping is (𝑃1, 1). Therefore, the
updated mapping of 𝑃3 at 𝐴1 is (𝑃3, [0, 1]), indicating the different

counts at different universes. In the end, the updated mapping of 𝑆1

[(𝑃2∪𝑃4, 1), (𝑃3, [0, 1])] is the final counting results, indicating that
Figure 2a does not satisfy the invariant in Figure 2b in all universes,

i.e., the network data plane is erroneous.

Counting decomposition and distribution. This counting al-

gorithm allows a natural decomposition into on-device counting

tasks to be executed distributively on network devices. For each

node 𝑢 in DPVNet, an on-device counting task: (1) takes as input

the data plane of 𝑢.𝑑𝑒𝑣 and the results of on-device counting tasks

of all downstream neighbors of 𝑢 whose corresponding devices

belong to the set of next-hop devices 𝑢.𝑑𝑒𝑣 forwards packets to;

(2) computes the number of copies that can be delivered from 𝑢 to

the destination along DPVNet, by the network data plane in each

universe; and (3) sends the computed result to devices where its

upstream neighbors in DPVNet reside in. After the decomposition,

the planner sends the counting task of each 𝑢 and the lists of 𝑢’s

downstream and upstream neighbors to device 𝑢.𝑑𝑒𝑣 .

Minimizing planner-verifiers communication.One hurdle that

may make the planner the scalability bottleneck is fault tolerance,

invs ::= inv∗

inv ::= (𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑝𝑎𝑐𝑒, 𝑖𝑛𝑔𝑟𝑒𝑠𝑠_𝑠𝑒𝑡, 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟,
[𝑓 𝑎𝑢𝑙𝑡_𝑠𝑐𝑒𝑛𝑒𝑠])

𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 ::= (𝑚𝑎𝑡𝑐ℎ_𝑜𝑝, 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝) | not 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟
| 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 or 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟
| 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 and 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟

𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 ::= (regular expression over the set of devices,

[𝑙𝑒𝑛𝑔𝑡ℎ_𝑓 𝑖𝑙𝑡𝑒𝑟𝑠])
𝑚𝑎𝑡𝑐ℎ_𝑜𝑝 ::= exist 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 | equal
𝑒𝑥𝑖𝑠𝑡_𝑒𝑥𝑝 ::= == 𝑁 | >= 𝑁 | > 𝑁 | <= 𝑁 | < 𝑁

Figure 3: The basic abstract syntax of the Tulkun invariant

specification language.

because an invariant may have different sets of valid paths under

different failure scenarios (e.g., shortest-path reachability under 𝑘-

link-failure). To this end, we design a mechanism consisting of fault-

tolerant DPVNet precomputation and online recounting to allow

on-device verifiers to verify the fault-tolerance of invariants with

minimal involvement of the planner. The communication between

the planner-verifiers is restricted to the cases when (1) the operator

makes planned topology changes or specifies new invariants; (2) a

data plane error is found by on-device verifiers; and (3) on-device

verifiers find failure scenes that are not pre-specified by operators.

2.2.3 Distributed, Event-Driven Verification using DVM Protocol.
On-device verifiers execute the tasks sent from the plannner in a

distributed, event-driven way. When events (e.g., rule update and
the arrival of neighbors’ updated results) happen, on-device veri-

fiers update the results of their tasks, and send them to neighbors

if needed. We design a DVM protocol that specifies how verifiers

incrementally update and communicate their task results efficiently

and correctly.

Consider a scenario in Figure 2, where 𝐵 updates its action to

forward 𝑃3∪𝑃4 to𝑊 , instead of𝐷 . The changed mappings of differ-

ent nodes are circled with boxes in Figure 2c. 𝐵 locally updates the

results of 𝐵1 and 𝐵2 to [(𝑃2, 0), (𝑃3∪𝑃4, 1)] and [(𝑃1, 0)], and sends
the updates to𝐴 along (𝐵1, 𝐴1) and𝑊 along (𝐵2,𝑊 2), respectively.
Upon receiving the update,𝑊 does not update the mapping of𝑊 2

because𝑊 does not forward any packet to 𝐵. As such,𝑊 sends no

update to 𝐴 along (𝑊 3, 𝐴1). In contrast, 𝐴 updates its task result

of node 𝐴1 to [(𝑃1, 1)] because (1) the count of 𝑃2 and 𝑃4 at 𝐴1

does not change; (2) no matter whether 𝐴 forwards 𝑃3 to 𝐵 or𝑊 ,

1 copy of each packet will be sent to 𝐷 , and (3) 𝑃2 ∪ 𝑃3 ∪ 𝑃4 = 𝑃1.
Finally, 𝑆 updates its local result for 𝑆1 to [(𝑃1, 1)], i.e., the invariant
is satisfied after the update.

3 SPECIFICATION LANGUAGE

Tulkun provides a declarative language for operators to specify

verification invariants based on the concepts of traces and universes.

Figure 3 gives its simplified grammar.

Language overview. On a high level, an invariant is specified by

a (𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑝𝑎𝑐𝑒 , 𝑖𝑛𝑔𝑟𝑒𝑠𝑠_𝑠𝑒𝑡 , 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 ) tuple, with semantics as

explained in §2.2.1. Operators can also include an optional field

𝑓 𝑎𝑢𝑙𝑡_𝑠𝑐𝑒𝑛𝑒𝑠 in the tuple to specify fault tolerance of invariants

(see §6 for details). To specify behaviors, we use the building block

of (𝑚𝑎𝑡𝑐ℎ_𝑜𝑝, 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝) entries. The basic syntax provides two

𝑚𝑎𝑡𝑐ℎ_𝑜𝑝 operators. One is exist 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 , which requires that

in each universe, the number of traces matching 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 satisfies
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Invariants Tulkun specifications

Reachability [24, 53, 55] (𝑃, [𝑆 ], (exist >= 1, 𝑆.∗𝐷 ) )
Isolation [24, 53, 55] (𝑃, [𝑆 ], (exist == 0, 𝑆.∗𝐷 ) )
Loop-freeness [55] (𝑃, [𝑆 ], (exist == 0, .∗ and not( (not 𝑋 )∗

or ( (not 𝑋 )∗𝑋 (not 𝑋 )∗ ) ) and ( (not 𝑌 )∗
or ( (not 𝑌 )∗𝑌 (not 𝑌 )∗ ) ) . . . , ) )

Black hole freeness[55] (𝑃, [𝑆 ], (exist == 0, .∗ and not 𝑆.∗𝐷 ) )
Waypoint reachability [43] (𝑃, [𝑆 ], (exist >= 1, 𝑆.∗𝑊 .∗𝐷 ) )
Reachability with limited path

length [43]

(𝑃, [𝑆 ], (exist >= 1, 𝑆𝐷 |𝑆.𝐷 |𝑆..𝐷 ) )

Different-ingress same reacha-

bility [45, 55]

(𝑃, [𝑋,𝑌 ], (exist >= 1, 𝑋 .∗𝐷 |𝑌 .∗𝐷 ) )

All-shortest-path reachability

[41]

(𝑃, [𝑆 ], (equal, (𝑆.∗𝐷 , (== shortest) ) )

Non-redundant reachability

[Tulkun]

(𝑃, [𝑆 ], (exist == 1, 𝑆.∗𝐷 ) )

Mulicast [Tulkun] (𝑃, [𝑆 ], ( (exist >= 1, 𝑆 .∗𝐷 ) and (𝑒𝑥𝑖𝑠𝑡 >=

1, 𝑆 .∗𝐸 ) ) )
Anycast [Tulkun] (𝑃, [𝑆 ], ( (exist >= 1, 𝑆 .∗𝐷 ) and (exist ==

0, 𝑆 .∗𝐸 ) ) or ( (exist == 0, 𝑆 .∗𝐷 ) and (exist ==
1, 𝑆 .∗𝐸 ) ) )

Table 1: Tulkun specifications for selected invariants.

𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 . For example, exist >= 1 specifies at least one trace

should match 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 in each universe, and can be used to ex-

press reachability invariants. The other operator is equal, which
specifies an equivalence behavior: the union of universes for each

𝑝 in 𝑝𝑘𝑡_𝑠𝑝𝑎𝑐𝑒 from each ingress in 𝑖𝑛𝑔𝑟𝑒𝑠𝑠_𝑠𝑒𝑡 must be equal to

the set of all possible paths that match 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 [41]. Operators

specify 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 as a regular expression over the set of devices,

with an optional field 𝑙𝑒𝑛𝑔𝑡ℎ_𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 to filter it with length con-

straints. For example, (𝑆.∗𝐷, (<= shortest+1)) represents all paths
that match 𝑆.∗𝐷 and have a hop count no more than that of the

shortest one plus 1. Behaviors can also be specified as conjunctions,

disjunctions, and negations of (𝑚𝑎𝑡𝑐ℎ_𝑜𝑝, 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝) pairs.
These two operators can be used to form a wide range of invari-

ants in DPV. Table 1 provides examples of invariants that can be

specified and verified in Tulkun, and the corresponding specifica-

tions in the Tulkun language. For example, using exist 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 ,
operators can express simpler invariants (e.g., reachability, way-
point reachability, and loop-freeness) that are well studied by exist-

ing DPV tools [43–45, 83, 93], and more advanced invariants (e.g.,
multicast, anycast and no-redundant-delivery routing). Another

example is an invariant given in Azure RCDC [41], which requires

that all pairs of ToR devices should reach each other along a short-

est path, and all ToR-to-ToR shortest paths should be available in

the data plane. This can be formulated as an equal behavior on all

shortest paths across all universes (row 9 in Table 1).

Note that once an invariant is specified, Tulkun checks whether it

is consistently satisfied across all universes. As such, the multipath

consistency [24, 53] is expressed separately as reachability and

isolation invariants.

Convenience features. Tulkun builds and provides operators with

a (𝑑𝑒𝑣𝑖𝑐𝑒, 𝐼𝑃_𝑝𝑟𝑒 𝑓 𝑖𝑥) mapping for network devices with external

ports (e.g., a ToR switch or a border router), where each tuple means

that 𝐼𝑃_𝑝𝑟𝑒 𝑓 𝑖𝑥 can be reached via an external port of 𝑑𝑒𝑣𝑖𝑐𝑒 . If an

invariant is submitted with inconsistencies between the destination

IPs in 𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑝𝑎𝑐𝑒 and the destination devices in its corresponding

𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 , Tulkun will raise an error to operators.

The language provides syntax sugar to simplify the expression

of invariants. For example, it allows users to specify a device set

and provides device iterators. It provides shortcuts of behaviors,

e.g., loop_free, and length filters, e.g., shortest. It also provides a

third𝑚𝑎𝑡𝑐ℎ_𝑜𝑝 called subset, which requires for packet 𝑝 entering

Figure 4: The finite automaton of 𝑆.∗𝑊 .∗𝐷 with an alphabet

Σ = {𝑆,𝑊 ,𝐴, 𝐵, 𝐷}.
the network from ingress 𝑆 , the set of traces of 𝑝 in each universe

is a non-empty subset of 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 . A behavior subset 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝
is a shortcut of (match >= 1 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝) and (match == 0 .∗ and
(not 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝)). We omit their details for the sake of simplicity.

Expressiveness and limitation. This language can express all

"single-path" invariants that require the packet traces of one packet

space to satisfy a certain regular expression pattern. It covers all

invariants studied in DPV literature, except for middlebox traversal

symmetry [53] (i.e., 𝑆-𝐷 and 𝐷-𝑆 must pass the same middlebox).

We discuss how to extend Tulkun to specify and verify such "multi-

path" invariants that compare the packet traces of two packet spaces

(e.g., route symmetry and path node-/ link-disjointness) in §7.

4 VERIFICATION PLANNER

We introduce DPVNet and how to use it for verification decomposi-

tion assuming an invariant has one regular expression, and then

describe how to handle more complex invariants.

4.1 DPVNet
Given a 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 and a network, DPVNet is a DAG representing

all paths in the network that matches 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 . DPVNet can be

constructed in different ways (e.g., graph dual variables). We are

inspired by network synthesis [11, 39, 66] and leverage the automata

theory [50] for DPVNet construction.
Specifically, given a 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 , we first convert its regular ex-

pression into a finite automaton (Σ, 𝑄, 𝐹, 𝑞0, 𝛿). Σ is the alphabet

whose symbols are network device identifiers. 𝑄 is the set of states.

𝑞0 is the initial state. 𝐹 is the set of accepting states. 𝛿 : 𝑄 × Σ→ 𝑄

is the state transition function. For example, Figure 4 shows the

finite automaton of 𝑆.∗𝑊 .∗𝐷 .
After converting 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 to a finite automaton, the planner

multiplies it with the topology and gets a product graph 𝐺 ′ =

(𝑉 ′, 𝐸′). Each node 𝑢 ∈ 𝑉 ′ has an attribute 𝑑𝑒𝑣 representing a

device in the network and an attribute 𝑠𝑡𝑎𝑡𝑒 representing its state

in the finite automaton of 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 . Given two nodes 𝑢, 𝑣 ∈ 𝑉 ′,
there exists a directed link (𝑢, 𝑣) ∈ 𝐸′ if (1) (𝑢.𝑑𝑒𝑣, 𝑣 .𝑑𝑒𝑣) is a link
in the network, and (2) 𝛿 (𝑢.𝑠𝑡𝑎𝑡𝑒, 𝑣 .𝑑𝑒𝑣) = 𝑣 .𝑠𝑡𝑎𝑡𝑒 . If 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 has

length filters, we trim 𝐺 ′ to only keep paths satisfying the filters.

Finally, the planner performs state minimization on 𝐺 ′ to remove

redundant nodes [36], and assigns each remaining node 𝑢 a unique

identifier to get the DPVNet. An example of DPVNet was given in

Figure 2c. We refer readers to [50] for a comprehensive tutorial on

automata multiplication.

4.2 Verification Decomposition

Our key insight is to transform DPV to a counting problem on

DPVNet and decompose it into on-device counting tasks. Specifi-

cally, an invariant on 𝑝 in the form of (exist 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝, 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝)
can be verified by counting whether the network can deliver a

satisfactory number of copies of 𝑝 to the destination along paths in

the DPVNet in each universe. It can be solved by a reverse topologi-

cal traversal of DPVNet (Algorithm 1), during which each node 𝑢
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Algorithm 1: Count(DPVNet, 𝑝).
1 foreach 𝑢𝑖 , 𝑖 = 1, . . . , 𝑛 in reverse topological order do
2 if 𝑢𝑖 is a destination then

3 c𝑖 ← 1

4 else

5 foreach 𝑣𝑗 ∈ 𝑁𝑑 (𝑢𝑖 ) do
6 if 𝑣𝑗 .𝑑𝑒𝑣 ∈ 𝑢𝑖 .𝑑𝑒𝑣.𝑓 𝑤𝑑 (𝑝 ) then
7 𝑏𝑖 𝑗 ← 1;

8 if 𝑢𝑖 .𝑑𝑒𝑣.𝑓 𝑤𝑑 (𝑝 ) .𝑡𝑦𝑝𝑒 == 𝐴𝐿𝐿 then

9 Update c𝑢 with Equation (1);

10 else

11 Update c𝑢 with Equation (2);

12 return c𝑛 ;

counts the number of copies of 𝑝 in all 𝑝’s universes that can reach

the destination from 𝑢.

Counting at nodes. Each 𝑢𝑖 only keeps unique counting of differ-

ent universes to avoid information explosion. If 𝑢𝑖 is a destination

in DPVNet, its count is 1. Denote the downstream neighbors of 𝑢𝑖
in DPVNet as 𝑁𝑑 (𝑢𝑖 ) = {𝑣 𝑗 } 𝑗 , and their counting results as sets

{c𝑣𝑗 } 𝑗 . Let 𝑏𝑖 𝑗 = 1 if the group of next-hops for 𝑝 on𝑢𝑖 .𝑑𝑒𝑣 includes

𝑣 𝑗 .𝑑𝑒𝑣 , and 0 otherwise. Define ⊗ as the cross-product sum operator

for sets, i.e., c1 ⊗ c2 = (𝑎 + 𝑏 |𝑎 ∈ c1, 𝑏 ∈ c2). If 𝑢𝑖 .𝑑𝑒𝑣 ’s forwarding
action for 𝑝 is of type 𝐴𝐿𝐿, the count of 𝑝 at 𝑢𝑖 is,

c𝑢𝑖 = ⊗𝑗 :𝑏𝑖 𝑗=1 (c𝑣𝑗 ) . (1)

For example, in Figure 2c, for packets in 𝑃1, the count at𝑊 1 is [1],
the result of 𝐷1, because𝑊 forwards 𝑃1 to only 𝐷 .

Define ⊕ as the union operator for sets. Let 𝛿 = 1 if 𝑢𝑖 .𝑑𝑒𝑣

forwards 𝑝 to at least one device that does not have a corresponding

node in 𝑁𝑑 (𝑢𝑖 ), and 0 otherwise. If 𝑢𝑖 ’s forwarding action for 𝑝 is

of type 𝐴𝑁𝑌 , the count of 𝑝 at 𝑢𝑖 is,

c𝑢𝑖 =

{
⊕𝑗 :𝑏𝑖 𝑗=1 (c𝑣𝑗 ), if 𝛿 = 0,

(⊕𝑗 :𝑏𝑖 𝑗=1 (c𝑣𝑗 )) ⊕ 0, if 𝛿 = 1.
(2)

Still in Figure 2c, for packets in 𝑃3, the count at𝐴1 is [0, 1], the union
of [0] from 𝐵1 and [1] from𝑊 2 because 𝐴1’s device 𝐴 forwards

packets in 𝑃3 to either 𝐵 or𝑊 . The proof sketch of this counting

algorithm’s correctness is in Appendix A.1.

Distributed counting. This algorithm can be naturally decom-

posed into lightweight tasks, one for each node 𝑢 in DPVNet, to
enable distributed counting. The planner sends 𝑢.𝑑𝑒𝑣 the task of

𝑢 and its lists of downstream and upstream neighbors. 𝑢.𝑑𝑒𝑣 re-

ceives the counts from 𝑣 𝑗 .𝑑𝑒𝑣 , where 𝑣 𝑗 ∈ 𝑁𝑑 (𝑢), computes c𝑢
using Equations (1)(2), and sends c𝑢 to the corresponding devices

of all 𝑢’s upstream neighbors in DPVNet. In the end, the counts

at the source node of DPVNet (e.g., c𝑆1 at 𝑆1 in Figure 2c) are the

numbers of copies of 𝑝 delivered to the destination of DPVNet in all

𝑝’s universes. The device of the source node can then easily verify

the invariant.

Optimizing counting result propagation. If there are a huge

number of paths in DPVNet, c𝑢 can be large due to 𝐴𝑁𝑌 -type

actions at devices (e.g., a chained diamond topology). Letting 𝑢.𝑑𝑒𝑣

send the complete c𝑢 to the devices of 𝑢’s upstream neighbors

may result in large communication and computation overhead.

Given an invariant, we define the minimal counting information
of 𝑢 as the minimal set of elements in c𝑢 that needs sending to its

upstream nodes so that the source node in DPVNet can correctly

(a) A network for anycast. (b) The correct DPVNet and counting.

Figure 5: Verifying anycast, an invariant with multiple

𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 with different destinations.

verify the invariant, assuming arbitrary data planes at devices and

𝑢 not knowing the network topology.

For exist 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 operation, suppose two sets c1, c2 with all

non-negative elements. For any 𝑥 ∈ c1 and𝑦 ∈ c2, 𝑎 = 𝑥+𝑦 ∈ c1⊗c2
satisfies 𝑎 ≥ 𝑥 and 𝑎 ≥ 𝑦. We then have:

Proposition 1. Given an invariant with exist 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 op-
eration, the minimal counting information of node 𝑢 is 𝑚𝑖𝑛(c𝑢 )
(𝑚𝑎𝑥 (c𝑢 )) if 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 is ≥ 𝑁 or > 𝑁 (≤ 𝑁 or < 𝑁 ), and the
first𝑚𝑖𝑛( |c𝑢 |, 2) smallest elements in c𝑢 if 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 is == 𝑁 . The
proof is in Appendix A.2.

For an invariant with an equal operator, we prove that the mini-

mal counting information of any 𝑢 is ∅. Specifically, no node 𝑢 even

needs to compute c𝑢 . It only needs to check if 𝑢.𝑑𝑒𝑣 forwards any

packet specified in the invariant to all the devices corresponding

to the downstream neighbors of 𝑢 in DPVNet. If not, a network

error is identified, and 𝑢.𝑑𝑒𝑣 can immediately report it. This design

enables local verification on generic equivalence invariants, making

the local contracts on all-shortest-path availability in RCDC [41] a

special case.

Computing consistent counting results. Tulkun guarantees

the eventual consistency of counting. Counting tasks are event-

driven. Given an event (e.g., a rule update or a count update received
from the device of a downstream neighbor of 𝑢), 𝑢.𝑑𝑒𝑣 updates the

counting result for 𝑢, and sends it to the devices of 𝑢’s upstream

neighbors if the result changes. As such, assuming the network

becomes stable at some point, the device of the source node of

DPVNetwill eventually update its count result to be consistent with
the network data plane.

4.3 Compound Invariants

We introduce how to decide on-device tasks for invariants with

a logic combination of (exist 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝, 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝) pairs since
the equal operator can be verified locally. Because an invariant

with 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s of different sources can be handled by adding a

virtual source device connected to all the sources, we focus on the

destinations of 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s.

Regular expressions with different destinations. A natural

strawman is to build a DPVNet for each 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 , let devices count
along all DPVNets and cross-multiply the results at the source.

However, it is incorrect. Consider an anycast invariant for 𝑆 to

reach 𝐷 or 𝐸, but not both (Figure 5a). It is satisfied in the net-

work. But if we build two DPVNets, 𝑆1 → 𝐷1 and 𝑆2 → 𝐸1, one

for each destination. After counting on both DPVNets, 𝑆1 and 𝑆2
each get [0, 1] for 𝐷1 and 𝐸1, respectively. The cross-product is

[(0, 0), (0, 1), (0, 1), (1, 1)], raising a false-positive network error.

To address this issue, for such an invariant, we first construct

a single DPVNet representing all paths in the network that match
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(a) A network and its data plane. (b) The updated topology with

virtual destinations.

Figure 6: Verifying an invariant withmultiple 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s with

the same destination.

at least one regular expression in 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s by multiplying the

union of all regular expressions with the topology. We then spec-

ify one counting task for one regular expression at every node in

DPVNet, including all destination nodes. Consider the anycast ex-

ample. The planner computes one DPVNet in Figure 5b. Each node

counts the number of packets reaching both 𝐷 and 𝐸. The count

of 𝐷1 is [(𝑆.∗𝐷, 1), (𝑆.∗𝐸, 0)] and 𝐸1 is [(𝑆.∗𝐷, 0), (𝑆.∗𝐸, 1)]. After
𝑆1 receives these results and processes them using Equation (2), it

determines that in each universe, a packet is sent to 𝐷 or 𝐸, but not

both, i.e., the invariant is satisfied.
Regular expressions with the same destination. Following the

case of different destinations, one strawman is to also construct

a single DPVNet for the union of such 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s. However, be-

cause they have the same destination, the counting along DPVNet
cannot differentiate the counts for different 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s, unless the

information of paths is collected and sent along with the counting

results. That would lead to large communication and computation

overhead at devices.

Another strawman is to construct one DPVNet for one 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 ,
count separately and aggregate the result at the source in cross-

product. But false positives can arise again. Consider Figure 6a and

an invariant (𝑃, [𝑆], (exist >= 2, (𝑆.∗𝐷 and loop_free) or (exist >=
1, 𝑆 .∗𝑊 .∗𝐷 and loop_free))), which specifies at least two copies

of each packet in 𝑃 should reach 𝐷 along a simple path, or at

least one copy should reach 𝐷 along a simple path passing𝑊 . Fig-

ure 6a satisfies this invariant. But if we construct a DPVNet for
each 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 and perform counting separately, 𝑆 will receive a

count [1, 2] for reaching 𝐷 with a simple path, and a count [0, 1]
for reaching 𝐷 with a simple path passing𝑊 . The cross-product

[(1, 0), (1, 1), (2, 0), (2, 1)] raises a phantom error.

We add virtual destination devices to handle such invariants.

Suppose an invariant has 𝑚 (exist 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑖 , 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑖 ) pairs
where 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑖s have the same destination 𝐷 . We change 𝐷 to

𝐷1
and add𝑚 − 1 virtual devices 𝐷𝑖

(𝑖 = 2, . . . ,𝑚). Each 𝐷𝑖
has the

same set of neighbors as 𝐷 does in the network topology. We then

rewrite the destination of 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑖 to 𝐷
𝑖
(𝑖 = 1, . . . ,𝑚). Figure 6b

gives the updated topology to handle the invariant above.

Afterward, we take the union of all 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s, and intersect it

with an auxiliary 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 specifying any two 𝐷𝑖 , 𝐷 𝑗
should not

co-exist in a path. We then multiply the resulting regular expression

with the new topology to generate one single DPVNet. Counting
can then proceed as the case for regular expressions with different

destinations, by letting each device treat all its actions forwarding to

𝐷 as forwarding to all 𝐷𝑖
s, and adjust Equations (1)(2) accordingly.

5 DVM PROTOCOL

Given link (𝑢, 𝑣) in DPVNet, DVM defines the format and order of

messages 𝑣 .𝑑𝑒𝑣 sends to 𝑢.𝑑𝑒𝑣 , and the actions 𝑢.𝑑𝑒𝑣 takes when

receiving the messages. DVM is inspired by vector-based routing

protocols [56, 64]. One distinction is that it needs no loop-prevention
mechanism. It is because the messages are sent along the reverse

direction in the DAG DPVNet. As such, no message loop will be
formed. For ease of presentation, we introduce DVM assuming a

single destination.

5.1 Information Storage

Each device stores two types of information: LEC (local equivalence

class) and CIB (counting information base). Given a device 𝑋 , a

LEC is a set of packets whose actions are identical at 𝑋 . 𝑋 stores

its LECs in a (𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑝𝑎𝑐𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) mapping called the LEC table.

We choose to encode packet sets as predicates using binary decision
diagram (BDD [14]), and use BDD-based DPV tools [83, 93] to

maintain a table of minimal number of LECs at devices. It is because

in DVM, devices perform packet set operations (e.g.,∪ and∩), which
can be realized efficiently using logical operations on BDD.

Given a device 𝑋 , CIB stores for each 𝑋 .𝑛𝑜𝑑𝑒 in DPVNet (i.e.,
nodes with a device ID 𝑋 ), for different packet sets, the number of

packet copies that can reach from 𝑋 .𝑛𝑜𝑑𝑒 to the destination node

in DPVNet. For each 𝑋 .𝑛𝑜𝑑𝑒 , 𝑋 stores three distinct types of CIB:

• 𝐶𝐼𝐵𝐼𝑛(𝑣) for each of 𝑋 .𝑛𝑜𝑑𝑒’s downstream neighbors 𝑣 : it stores

the latest, unprocessed counting results received from 𝑣 in a

(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑐𝑜𝑢𝑛𝑡) mapping;

• 𝐿𝑜𝑐𝐶𝐼𝐵(𝑋 .𝑛𝑜𝑑𝑒): it stores for different predicates, the latest num-

ber of packet copies that can reach from 𝑋 .𝑛𝑜𝑑𝑒 to the destina-

tion node in (𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑐𝑜𝑢𝑛𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦) tuples, where
the 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 field records the input to get the 𝑐𝑜𝑢𝑛𝑡 field (i.e.,
the right-hand side of Equations (1)(2));

• 𝐶𝐼𝐵𝑂𝑢𝑡 (𝑋 .𝑛𝑜𝑑𝑒): it stores the count results to be sent to the

upstream nodes of 𝑋 .𝑛𝑜𝑑𝑒 in (𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑐𝑜𝑢𝑛𝑡) tuples.

Figure 7a gives an exampleDPVNet, with the counts of node 𝑣 , 𝑧, the
LEC table of 𝑢.𝑑𝑒𝑣 , and𝐶𝐼𝐵𝐼𝑛(𝑣),𝐶𝐼𝐵𝐼𝑛(𝑧) and 𝐿𝑜𝑐𝐶𝐼𝐵(𝑢) at node
𝑢. Specifically, the 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 field is ( [𝑣, 𝑃1, 1], [𝑧, 𝑃1, 1]) because
the 𝑐𝑜𝑢𝑛𝑡 2 of predicate 𝑃1 is computed via the results of both 𝑣

and 𝑧 (i.e., 2 = 1 + 1).

5.2 Message Format and Handling

Messages in DVM are sent over TCP connections to ensure in-order

message delivery and processing. DVM defines control messages to

manage the connections between devices. We focus on the UPDATE

message that is used to transfer counting results between devices.

UPDATE message format. An UPDATE message has three fields:

(1) intended link: along which link in DPVNet the result is prop-
agated oppositely ((e.g., (𝑊 1, 𝐷1) or (𝑊 2, 𝐷1) in Figure 2c)); (2)

withdrawn predicates: a list of predicates whose counting results

are obsolete; and (3) incoming counting results: a list of predicates

with their latest counts.

UPDATE message principle. DVM maintains an important prin-

ciple: for each UPDATE, the union of withdrawn predicates equal to

the union of the predicates of incoming counting results. It ensures

a node always receives the latest, complete counting results from

its downstream neighbors, guaranteeing the eventual consistency

between the verification result at the source of DPVNet and a stable
data plane.
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(a) A DPVNet with LEC table of 𝑢.𝑑𝑒𝑣,𝐶𝐼𝐵𝐼𝑛 and 𝐿𝑜𝑐𝐶𝐼𝐵 of 𝑢.

withdrawn predicates
P1

incoming counting
results

Predicate count
P2 1
P3 0

predicate count action causality

P2 2 fwd(ALL,
{z.dev, v.dev})

([z, P1, 1],
[v, P2, 1])

P3 1 fwd(ALL,
{z.dev, v.dev})

([z, P1, 1],
[v, P3, 0])

LocCIB(u)Message(v)

predicate count
P2 1
P3 0

CIBIn(v)

P1 = P2 ∪ P3
(b) 𝑢.𝑑𝑒𝑣 handles an UPDATE from 𝑣.𝑑𝑒𝑣 to update𝐶𝐼𝐵𝐼𝑛 (𝑣) and 𝐿𝑜𝑐𝐶𝐼𝐵 (𝑢 ) .

Figure 7: An illustration example to demonstrate the key data structure and process of the DVM protocol.

UPDATE message handling. Consider link (𝑢, 𝑣) in DPVNet. Sup-
pose𝑢.𝑑𝑒𝑣 receives from 𝑣 .𝑑𝑒𝑣 anUPDATEmessagewhose intended

link is (𝑢, 𝑣). 𝑢.𝑑𝑒𝑣 handles it in three steps.

Step 1: updating 𝐶𝐼𝐵𝐼𝑛(𝑣). 𝑢.𝑑𝑒𝑣 updates 𝐶𝐼𝐵𝐼𝑛(𝑣) by removing

entries whose predicates belong to withdrawn predicates and in-

serting all entries in incoming counting results.

Step 2: updating 𝐿𝑜𝑐𝐶𝐼𝐵(𝑢). To update 𝐿𝑜𝑐𝐶𝐼𝐵(𝑢), 𝑢.𝑑𝑒𝑣 first

finds all affected entries, i.e., the ones that need to be updated. To be
concrete, an entry in 𝐿𝑜𝑐𝐶𝐼𝐵(𝑢) needs to be updated if its 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦
field has one predicate from 𝑣 and belongs to the withdrawn pred-

icates of this message. It then updates the counting results of all

affected entries one by one. Specifically, for each pair of an affected

entry 𝑟 and an entry 𝑟 ′ from the incoming counting results, 𝑢.𝑑𝑒𝑣

computes the intersection of their predicates. If the intersection is

not empty, a new entry 𝑟𝑛𝑒𝑤 is created in 𝐿𝑜𝑐𝐶𝐼𝐵(𝑢) for predicate
𝑟 .𝑝𝑟𝑒𝑑 ∩ 𝑟 ′ .𝑝𝑟𝑒𝑑 . The 𝑐𝑜𝑢𝑛𝑡 of 𝑟𝑛𝑒𝑤 is computed in two steps: (1)

perform an inverse operation of ⊗ or ⊕ between 𝑟 .𝑐𝑜𝑢𝑛𝑡 and 𝑣 ’s

previous counting result in 𝑟 .𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦, to remove the impact of

the latter; and (2) perform ⊗ or ⊕ between the result from the last

step and 𝑟 ′ .𝑐𝑜𝑢𝑛𝑡 to get the latest counting result. The 𝑎𝑐𝑡𝑖𝑜𝑛 field

is the same as 𝑟 . The 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 of this entry inherits from that of 𝑟 ,

with a tuple (𝑣, 𝑟 ′) replacing 𝑣 ’s previous record. After computing

all new entries, all affected entries are removed from 𝐿𝑜𝑐𝐶𝐼𝐵(𝑢).
Figure 7b shows how 𝑢 in Figure 7a processes an UPDATE mes-

sage from 𝑣 .𝑑𝑒𝑣 to update its 𝐶𝐼𝐵𝐼𝑛(𝑣) and 𝐿𝑜𝑐𝐶𝐼𝐵(𝑢).
Step 3: updating 𝐶𝐼𝐵𝑂𝑢𝑡 (𝑢). 𝑢.𝑑𝑒𝑣 puts the predicates of all en-
tries removed from 𝐿𝑜𝑐𝐶𝐼𝐵(𝑢) in the withdrawn predicates. For

all inserted entries of 𝐿𝑜𝑐𝐶𝐼𝐵(𝑢), it strips 𝑎𝑐𝑡𝑖𝑜𝑛 and 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦,

merges entries with the same 𝑐𝑜𝑢𝑛𝑡 value, and puts the results in

the incoming counting results.

After processing the UPDATE message, for each upstream neigh-

bor 𝑤 of 𝑢, 𝑢.𝑑𝑒𝑣 sends an UPDATE messaging consisting of an

intended link (𝑤,𝑢) and 𝐶𝐼𝐵𝑂𝑢𝑡 (𝑢).
Internal event handling. If 𝑢.𝑑𝑒𝑣 has an internal event (e.g., rule
update or link down), we handle it similarly to an UPDATEmessage.

For example, if a link is down, we consider predicates forwarded

to that link update their counts to 0. The predicates whose for-

warding actions are changed by the update are considered with-

drawn predicates and the predicates in incoming count results of

an UPDATE message. Different from regular UPDATE messages,

no 𝐶𝐼𝐵𝐼𝑛(𝑣) needs updating. The counts of newly inserted entries

in 𝐿𝑜𝑐𝐶𝐼𝐵(𝑢) are computed by inverting ⊗/⊕ and reading related

entries in different 𝐶𝐼𝐵𝐼𝑛(𝑣)s. Predicates with new counts are in-

cluded as withdrawn predicates and incoming counting results in

𝐶𝐼𝐵𝑂𝑢𝑡 (𝑢).

Handling packet transformation. Suppose device 𝑋 needs to

compute the counting for 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒1 and it has a rule that trans-

forms packets in 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒1 to packets in 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒2 before for-

warding them. In DVM, for each 𝑋 .𝑛𝑜𝑑𝑒 in DPVNet, 𝑋 sends a SUB-

SCRIBE message 𝑠𝑢𝑏 (𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒1, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒2) to all 𝑣 .𝑑𝑒𝑣s, where 𝑣

is a downstream node of 𝑋 .𝑛𝑜𝑑𝑒 , to specify that 𝑣 should send the

counting result of 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒2, not 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒1, to𝑋 .𝑛𝑜𝑑𝑒 . 𝑣 .𝑑𝑒𝑣 then

follows this message to send the counting result of 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒2 in

UPDATE messages. 𝑋 uses this received result to update the count-

ing result of 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒1, and sends it to the upstream neighbors of

𝑋 .𝑛𝑜𝑑𝑒 . If 𝑋 ’s packet transformation rule is updated later, 𝑋 needs

to send new SUBSCRIBE messages accordingly.

6 MINIMIZING PLANNER-VERIFIERS

COMMUNICATION

We design a mechanism for on-device verifiers to check the fault

tolerance of invariants with minimal involvement with the planner,

avoiding the latter becoming the bottleneck.

Basic idea: precomputing fault-tolerant DPVNet and online

recounting. Given an invariant with specified fault tolerance, (e.g.,
shortest-path reachability under 2-link-failure), the planner com-

putes a DPVNet to represent the union of all valid paths in all fault

scenes, decomposes it into on-device tasks labeled with different

scenes, and sends them to on-device verifiers. Verifiers first per-

form counting along paths corresponding to the original topology.

When a fault scene happens, verifiers detecting link failures flood

them using a link state synchronization protocol [31, 32]. After syn-

chronization, the destinations recount along paths in the DPVNet
corresponding to this scene. If an unspecified fault scene or one

with no valid path in DPVNet happens, any device finding this

during flooding reports it to the planner.

Specifying fault-tolerance. Operators use the 𝑓 𝑎𝑢𝑙𝑡_𝑠𝑐𝑒𝑛𝑒𝑠 field

to specify the fault-tolerance of invariants. It is a set of fault scenes

𝑓1, 𝑓2, . . ., each expressed as a set of failed links. For example, (𝑃, [𝑆],
(exist >= 1, (𝑆.∗𝐷 ), ({(𝐴, 𝐵)}, {(𝐵,𝑊 ), (𝐵, 𝐷)})) requires that 𝑆
should reach 𝐷 not only when all links are up, but also when (𝐴, 𝐵)
is down and when both (𝐵,𝑊 ) and (𝐵, 𝐷) are down. Syntax sugars
are provided to simplify the expression (e.g., any_two for all 2-link-

failures).

Relating fault-tolerant DPVNet with 𝑙𝑒𝑛𝑔𝑡ℎ_𝑓 𝑖𝑙𝑡𝑒𝑟s. Given an

invariant, we compute its fault-tolerantDPVNet based on the 𝑙𝑒𝑛𝑔𝑡ℎ
_𝑓 𝑖𝑙𝑡𝑒𝑟s in its 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 . A length filter is concrete if it stays the
same in all fault scenes as in the original topology (e.g., < 5 hops),

and is symbolic if it may change by fault scenes (e.g., == 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 ).
Given a network𝐺 and an invariant Ψ, denote the set of valid paths



Distributed, On-Device Data Plane Verification ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Figure 8: Fault-tolerantDPVNet of (≤ shortest+1) reachability
from 𝑆 to 𝐷 in Figure 2a with 2-link-failure.

as 𝑅(𝐺,Ψ). Given a fault scene 𝑓 , its topology 𝐺 𝑓 is a subgraph of

𝐺 . We have:

Proposition 2. If Ψ has no symbolic length filter, for any fault
scene 𝑓 , 𝑅(𝐺 𝑓 ,Ψ) ⊂ 𝑅(𝐺,Ψ). Otherwise, for any two fault scenes
𝑓 , 𝑓 ′ such that 𝑓 ′ ⊂ 𝑓 , 𝑅(𝐺 𝑓 ,Ψ) ⊂ 𝑅(𝐺 𝑓 ′ ,Ψ).
Computing fault-tolerant DPVNet. Given an invariant Ψ with

fault tolerance but no symbolic length filter, its fault-tolerantDPVNet
is the same as that without any failure, a direct result of Propo-

sition 2. For such an invariant, when a link fails, the verifiers on

the devices of this link do not flood the fault scene, but update the

counts of predicates forwarded along this link as 0 and propagate

these updated counts to other devices along the DPVNet.
Given an Ψ with symbolic filters and a network 𝐺 , the planner

traverses all fault scenes, including the original topology, in as-

cending order of the number of failed links, to iteratively compute

valid paths for each scene and label them. For each fault scene 𝑓 , if

𝑅(𝐺,Ψ) does not use any link in 𝑓 , the algorithm skips 𝑓 because

𝑅(𝐺,Ψ) = 𝑅(𝐺 𝑓 ,Ψ). Otherwise, it first computes the concrete val-

ues of symbolic length filters for paths that match 𝑟𝑒𝑔_𝑒𝑥𝑝 in 𝐺 𝑓 .

For each filter, it looks for a maximal subset fault scene 𝑓 ′ that is
previously traversed and has the same filter values as 𝑓 . If 𝑓 ′ is
found, it checks all the valid paths of 𝑓 ′ and labels the ones that

still exist when all links in 𝑓 − 𝑓 ′ fail as the valid paths of 𝑓 . If no

𝑓 ′ is found, the algorithm performs a breadth-first-search to find

the set of valid paths matching 𝑟𝑒𝑔_𝑒𝑥𝑝 and the filters in 𝐺 𝑓 . If no

valid path is found for 𝑓 , Tulkun records it as an intolerable fault

scene. Intermediate results (e.g., paths matching 𝑟𝑒𝑔_𝑒𝑥𝑝 but not

the filters in𝐺 𝑓 or the other way around) are stored for incremental

search in the next iteration.

The algorithm’s correctness also lies in Proposition 2. Figure 8

shows the fault-tolerant DPVNet of invariant (𝑑𝑠𝑡𝐼𝑃 = 10.0.0.0/23,
[𝑆], (exist >= 1, (𝑆.∗𝐷 , (<= shortest + 1)), (any_two)) in the

topology in Figure 2a.

7 DISCUSSION

Why not forward propagation? Although forward propagation

along DPVNet can also get the correct result, we choose backpropa-

gation because it allows each device to have counting results from

itself to the final destinations, which can be used by routing services

(e.g., convergence-free routing [48, 69] and fast switching among

data planes [49, 72]) to respond to network errors to improve avail-

ability. Forward propagation cannot provide such information.

Large networks with a huge number of valid paths. First,

our survey and private conversations with operators suggest that

they usually want the network to use paths with limited hops, if

not the shortest ones. The number of such paths is small even

in large networks. Second, for invariants with a huge number of

valid paths, Tulkun verifies them via divide-and-conquer: divide

the network into abstracted one-big-switches, construct DPVNet on
this abstract network, and perform intra-/inter-partition distributed

verifications.

Incremental deployment. Tulkun can be deployed incrementally

in two non-exclusive ways. One is to assign an off-device instance

(e.g., VM) for each device without an on-device verifier, to play as

a verifier to collect the data plane from the device and exchange

messages with others based on DPVNet. It is a generalization of

RCDC, whose local verifiers are deployed in off-device instances.

The other is the divide-and-conquer above. We assign one instance

for each partition to perform intra-/inter-partition verification.

Verifying transient data planes. Tulkun currently guarantees

the eventual consistency between the verification result and the net-

work data plane. To verify transient data planes in networks where

the data plane frequently changes, we may extend Tulkun’s DVM

protocol to capture and verify stable snapshots of the network data

plane by leveraging Libra’s design on taking stable snapshots [90].

Local verification of invariants with exist operators. Consider

such an invariant, given a node𝑢 in aDPVNet, if we assume𝑢 knows

the network topology (e.g., through pre-configuration), under cer-

tain conditions, the minimal counting information of𝑢 could also be

∅, the same as that for invariants with equal operators we proved

in §4.2. One such condition is 𝑢.𝑑𝑒𝑣 is a cut of the network (e.g., 𝐴
in the example network in Figure 2a). A systematic exploration of

such conditions is an interesting future research question.

Multi-path comparison. To support "multi-path" invariants that

compare the packet traces of two packet spaces (e.g., route symme-

try and node-disjointness), Tulkun can extend its language with an

𝑖𝑑 keyword to refer to different packet spaces and allow users to

define trace comparison operators. It then constructs the DPVNet
for each packet space, lets on-device verifiers collect the actual

downstream paths and send them to upstream neighbors, and per-

forms user-defined comparison operations on the collected com-

plete paths.

Security and privacy risks. The on-device verifiers of Tulkun

may suffer from security vulnerabilities if their residing network

devices are breached. Preventing these breaches from happening is

an orthogonal research topic [46]. Tulkun currently has no privacy

issue because it operates in a single network. How to extend Tulkun

to an interdomain setting while preserving the privacy of different

networks is another open research question.

8 IMPLEMENTATION

Our prototype has ~9K lines of Java and Pyhon code, including a

verification planner and on-device verifiers (Figure 9). The planner

computes the DPVNet based on the invariant and topology, and

decides the on-device counting tasks.

In addition to security modules (i.e., authentication and autho-

rization interfaces) like those in other protocols (e.g., SNMP, OSPF

and BGP), an on-device verifier has (1) a LEC builder that reads

the data plane of the device to maintain a LEC table of a minimal

number of LECs, and (2) a verification agent that maintains TCP



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Xiang et al.

Figure 9: The implementation of Tulkun.

connections with the verifiers of neighbor devices, takes in the

LEC table and the DVM protocol UPDATE messages from neigh-

bor devices to update the on-devices CIBs, and sends out UPDATE

messages with latest counting results to neighbor devices, based

on counting tasks. For the verification agent, we use a thread pool

implementation, where a thread is assigned for a node in a DPVNet.
To avoid creating too many threads and hurting the system per-

formance, we design an opportunistic algorithm to merge threads

with similar responsibilities (e.g., invariants with different source

IP prefixes but same destination IP prefixes) into a single thread.

A dispatcher thread receives events (e.g., a LEC table update or a

DVM protocol UPDATE message), and dispatches events to the cor-

responding thread. A LEC table update is sent to all threads whose

invariants overlap with the update, and an UPDATE message is

dispatched based on the intended link field of the UPDATE message.

For predicate operation and transmission, we adapt and modify the

JDD [71] library to support the serialization and deserialization be-

tween BDD and the Protobuf data encoding [30], so that BDDs can

be efficiently transmitted between devices in UPDATE messages.

9 PERFORMANCE EVALUATION

We conduct extensive evaluations on Tulkun. Specifically, we study

four questions: (1) What is the capability of Tulkun in verifying

generic invariants? (§9.1) (2) What is the performance of Tulkun

in a testbed with different types of network devices, mimicking a

real-world WAN? (§9.2) (3) What is the performance of Tulkun in

various real-world, large networks under various DPV scenarios?

(§9.3) (4) What is the overhead of running Tulkun on commodity

network devices? (§9.4)

9.1 Functionality Demonstrations

We build a network of 5 switches in Figure 2a: 3 Mellanox [57], 1

Edgecore [19] and 1 UfiSpace [6], equipped with SONiC [58] or

ONL [63]. We run demos to verify (1) loop-free, waypoint reacha-

bility from 𝑆 to 𝐷 in Figure 2b, (2) loop-free, multicast from 𝑆 to 𝐶

and 𝐷 , (3) loop-free, anycast from 𝑆 to 𝐵 and 𝐷 , (4) different-ingress

consistent loop-free reachability from 𝑆 and 𝐵 to 𝐷 , and (5) all-

shortest-path availability from 𝑆 to 𝐶 [41]. We run each demo with

correct and erroneous data planes. The network always computes

the right results. We also provide an interactive demo in [78].

9.2 Testbed Experiments

We add 1 Mellanox switch and 3 UfiSpace switches to mimic the

9-device INet2 WAN [59]. We install public dataset rules [59] on

Figure 10: Datasets statistics.

switches and inject propagation latencies between switches based

on INet2 topology [77]. We verify the loop-free, blackhole-free,

all-pair reachability along paths with (≤ shortest + 2) hops.
Experiment 1: burst update. We first evaluate Tulkun in the

scenario of burst update, i.e., all forwarding rules are installed to

corresponding switches all at once. Tulkun finishes the verifica-

tion in 0.99 seconds, outperforming the best centralized DPV in

comparison by 2.09× (Figure 11a).

Experiment 2: incremental update. After the burst update, we

randomly generate 10𝐾 rule updates and apply and verify them

one by one. For 80% of the updates, Tulkun finishes the incremental

verification ≤ 5.42𝑚𝑠 , outperforming the best centralized DPV in

comparison by 4.90× (Figure 11c). This is because in Tulkun, when

a rule update happens, only devices whose task results are affected

need to incrementally update their results, and only these changed

results are sent to neighbors incrementally. For most rule updates,

the number of these affected devices is small [80]).

9.3 Large-Scale Simulations

We implement an event-driven simulator to evaluate Tulkun in

various networks on a server with 2 Xeon 4210R CPUs.

9.3.1 Simulation Setup. We first introduce the settings.

Datasets.We use 13 datasets in Figure 10. Four are public ones and

the others are synthesized with public topologies [35, 40, 47, 67].

FT-48 is a 48-ary fattree [2]. NGDC is a real, Clos-based DC. For

WAN, we assign link latencies based on topologies [77]. For LAN

and DC, we assign a 10𝜇s link latency.

Comparison methods. We compare Tulkun with five state-of-

the-art centralized DPV tools: AP [83], APKeep [93], Delta-net [37],

Veriflow [45] and Flash [34].We also compare Tulkunwith APT [86]

and Katra [7], two DPV tools designed to support packet transfor-

mation, in our technical report [80]. We reproduce Katra, and use

the open-sourced version of other tools.

Invariants. We verify the all-pair loop-free, blackhole-free, (≤
shortest + 2)-hop reachability in §9.2 with 3-link-failure for WAN/

LAN and the all-ToR-pair shortest path reachability for DC. Tulkun

also verifies the local contracts of all-shortest-path availability of

DC, as RCDC does, in our technical report [80].

Metrics. In all simulations, Tulkun successfully finds all the errors

we injected. We compute the verification time as the period from

the arrival of rule updates at devices to the time when all invariants

are verified, including the propagation delays. For centralized DPV,

we randomly assign a device as the location of the verifier, and let all

devices send it their data planes along lowest-latency paths. We also

study Tulkun’s message overhead [80] and the latency of Tulkun

planner to compute DPVNetwith different 𝑘-link-failures. Figure 13

shows that in 10 out of 11 topologies (removing AT1-2 and AT2-2

for deduplication), Tulkun computes 2-link-failure (3-link-failure)

tolerant DPVNet in <95s (<1440s).
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Figure 11: The verification time of Tulkun and other tools in LAN/WAN/DC datasets.
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Figure 12: The verification time of Tulkun under fault scenes.

9.3.2 Results: Burst Update. Figure 11a gives the verification time

of Tulkun, and its acceleration ratio over other tools. ForWAN/LAN,

Tulkun completes the verification in ≤ 1.60𝑠 and achieves an up to

6.21× speedup than the fastest centralized DPV. For DC, Tulkun

finishes verifying NGDC in 40.45𝑠 , outperforming AP, APKeep and

Veriflow (10s of hours) by three orders of magnitude (Delta-net

reports memory-out error after 5 hours). Even compared with Flash

(297.26𝑠), a recent tool designed specifically to verify such large-

scale networks, Tulkun is still 7.4× faster. It is because Tulkun

decomposes verification into on-device tasks, which have a depen-

dency chain roughly linear to the network diameter. A DC has a

small diameter (e.g., 4 hops). On-device verifiers achieve a very high
level of parallelization, enabling scalability. The verification time

of all tools is in our technical report [80].

Note that Tulkun is slower than AP and Flash in AT1-1 and AT2-

1, but faster in AT1-2 and AT2-2 whose topologies are the same

pairwise. It is because the latter two have a much higher number

of rules (3.39× and 11.97×). The bottleneck of AP and Flash is to

transform rules into equivalence classes (EC), whose time increases

linearlywith the number of rules. In contrast, Tulkun only computes

LEC on devices in parallel, and is not a bottleneck [80]. As such,

with more rules, Tulkun becomes faster than AP and Flash.

9.3.3 Results: Incremental Update. We evaluate Tulkun for incre-

mental verification using the same methodology as in §9.2. The 80%

quantile verification time of Tulkun is up to 2355× faster than the

fastest centralized DPV (Figure 11c). Among all datasets, Tulkun

finishes verifying at least 72.72% rule updates in less than 10𝑚𝑠 ,

while this lower bound of other tools is < 1% (Figure 11b). It is for

the same reason as in experiments (§9.2), and proves that Tulkun

enables scalable DPV under various networks and DPV scenarios.

9.3.4 Results: Fault-Tolerance. For each LAN/WAN, we generate

50 fault scenes of ≤ 3 link failures based on the statistic of Mi-

crosoft’s WAN [95]. For each scene, we measure the verification

time of recounting along DPVNet with failure flooding (Figure 12a);

and generate 1K random rule updates after that to measure the

incremental verification time (Figure 12b and 12c). Tulkun consis-

tently outperforms others as in §9.3.3 and §9.3.2. It shows that by

computing a fault-tolerant DPVNet and online recounting, Tulkun

efficiently verifies fault-tolerant invariants without involving the

planner. We observe that Delta-net slightly outperforms Tulkun in

verifying the complete network with fault scenes in several datasets.

It is because in Tulkun, devices need to update their LECs after

fault scenes happen. In contrast, when there is no rule update in

fault scenes (i.e., the setting in Figure 12a), centralized DPVs do not

need to update their ECs. This observation shows that the EC data

structure of Delta-net (i.e., atom) is more effective than those of

other centralized DPVs in invariant checking. However, atom only

works for destination IP-prefix-based data planes.
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Figure 14: Initialization overhead.
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Figure 15: DVM UPDATE message processing overhead.

When there are rule updates in fault scenes (i.e., the setting in
Figure 12b and 12c), centralized DPVs provide comparable per-

formances as Tulkun does only in STFD, the campus network of

Stanford. It is because STFD has a much smaller scale than other

datasets, in terms of the number of devices, geo-locations and the

number of rules. This again demonstrates the scalability of Tulkun.

9.4 On-Device Microbenchmarks

We measure the overhead of Tulkun on-device verifiers on four

models of commodity switches. The fourth one is a Centec switch

using an ARM-based CPU and SONiC.

Initialization overhead. For each of 414 devices from WAN /

LAN and 6 devices from NGDC/Fattree (one edge, aggregation

and core switch, respectively), we measure the overhead of its

initialization phase in burst update (i.e., computing the initial LEC

and CIB), in terms of total time, maximal memory and CPU load,

on all four switch models. The CPU load is computed as 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒

/(𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑟𝑒𝑠). Figure 14 plots their CDFs. On all

four switches, all devices in the datasets complete initialization in

≤ 1.75𝑠 , with a CPU load ≤ 0.48, and a maximal memory ≤ 19.6𝑀𝐵.

The Centec switch has the worst time performance because it uses

an ARM-based CPU while other sue x86-based CPUs.

DVM UPDATE message processing overhead. For all 420 de-

vices in the datasets, we collect the trace of their received DVM

UPDATE messages in all the evaluations, replay them consecutively

on each switch, and measure the message processing overhead in

terms of total time, maximal memory, CPU load and per message

processing time (Figure 15). For 90% of devices, all four switches

process all UPDATE messages in ≤ 0.29𝑠 , with a maximal memory

≤ 19.57𝑀𝐵, and a CPU load ≤ 0.24. And for 90% of all 2895.62𝑘

UPDATE messages, the switches can process it in ≤ 3.52𝑚𝑠 .

These results show that Tulkun on-device verifiers can be de-

ployed on commodity switches with little overhead.

10 RELATEDWORK

Network verification includes CPV that checks errors in configura-

tions [1, 5, 8–10, 21, 23, 24, 26, 28, 29, 42, 62, 68, 73, 76, 87, 94]; and

DPV that checks errors in the data plane. Tulkun is a DPV tool, and

can help simulation-based CPV [24, 51, 54] verify the simulated DP.

Centralized DPV. Existing DPV tools [3, 34, 37, 41, 43–45, 53, 55,

61, 74, 75, 82, 83, 85, 86, 90, 92, 93] use a centralized verifier to

collect and analyze the data planes. Despite substantial optimiza-

tion efforts, centralized DPV does not scale due to the need for

reliable verifier-network connections and the verifier being a bot-

tleneck and single PoF. They also lack explicit support for generic

invariants such as anycast, multicast, no redundant routing and

1+1 routing. Libra [90], RCDC [41] and Flash [34] focus on scale up

DPV using parallelization and batch processing. However, they are

still centralized designs with the limitations above. Our position

paper [81] proposed the idea of distributed DPV, but left many

important questions unanswered. In contrast, we design Tulkun

with several key components to systematically decompose DPV

into tasks executed on network devices, achieving scalable DPV on

generic invariants with little overhead and minimal involvement

of a centralized component.

Verification of stateful/programmable DP. Some studies in-

vestigate the verification of stateful DP [15, 60, 88, 89, 91] and

programmable DP (e.g., P4 [13]) [18, 52]. Extending Tulkun to state-

ful and programmable DP is an interesting future work.

Network synthesis. Synthesis [11, 20, 39, 66, 70] is complementary

to verification. Tulkun is inspired by some of them [11, 39, 66] to

use automata theory to generate DPVNet.
Predicate representation. Tulkun chooses BDD [14] to represent

packets for its efficiency. Recent data structures (e.g., ddNF [12] and
#PEC [38]) may benefit Tulkun.

11 CONCLUSION

We design Tulkun, a distributed DPV framework to achieve scalable

DPV by decomposing verification to lightweight on-device counting

tasks. Experiments demonstrate the benefits of Tulkun. This work

does not raise any ethical issues.
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A PROOFS OF DPVNET BACKWARD

COUNTING

A.1 Proof Sketch of the Correctness of the

Counting Algorithm

For presentation purposes, we first summarize the backward count-

ing algorithm in DPVNet in Algorithm 1. Given a packet 𝑝 and

a DPVNet, the goal of Algorithm 1 is to compute the number of

copies of 𝑝 that can be delivered by the network to the destination

of DPVNet along paths in the DPVNet in each universe. Suppose

Algorithm 1 is incorrect. There could be three cases: (1) there exists

a path in DPVNet that is provided by the network data plane, but

is not counted by Algorithm 1; (2) There exists a path in DPVNet
that is not provided by the network data plane, but is counted by

Algorithm 1; (3) Algorithm 1 counts a path out of DPVNet. None of
these cases could happen because at each node 𝑢, Equations (1) (2)

only counts c𝑣𝑗 of 𝑣 𝑗 with 𝑏𝑖 𝑗 = 1, i.e., the downstream neighbors

of 𝑢 whose devices are in the next-hops of 𝑢.𝑑𝑒𝑣 forwarding 𝑝 to.

As such, Algorithm 1 is correct.

A.2 Proof of Proposition 1

Consider c𝑢 of packet 𝑝 at𝑢, and an upstream neighbor of𝑢, denoted

as 𝑤 . Suppose 𝑢.𝑑𝑒𝑣 is in the group of next-hops where 𝑤.𝑑𝑒𝑣

forwards 𝑝 . Because of the monotonicity of ⊗, in each universe that

𝑤.𝑑𝑒𝑣 forwards 𝑝 to 𝑢.𝑑𝑒𝑣 , the number of copies of 𝑝 that can be

sent from𝑤 to the destination in DPVNet is greater than or equal to

the number of copies of 𝑝 that can be sent from 𝑢 to the destination

in DPVNet. As such,
• When 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 is ≥ 𝑁 or > 𝑁 , each 𝑢 only sends 𝑚𝑖𝑛(c𝑢 )
to its upstream neighbors. With such information, in the end,

the source node of DPVNet can compute the lower bound of the

number of copies of 𝑝 delivered in all universes. If this lower

bound satisfies 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 , then all universes satisfy it. If this

lower bound does not satisfy 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 , a network error is found.

• When 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 is ≤ 𝑁 or < 𝑁 , each 𝑢 only sends𝑚𝑎𝑥 (c𝑢 ) to
its upstream neighbors. The analysis is similar, with the source

node computing the upper bound.

• When 𝑐𝑜𝑢𝑛𝑡_𝑒𝑥𝑝 is == 𝑁 , if c𝑢 has more than 1 count, it means

any action to forward 𝑝 to 𝑢 would mean a network error. In this

case, 𝑢 only needs to send its upstream neighbors any 2 counts

in c𝑢 to let them know that. If c𝑢 has only 1 count, 𝑢 sends it to

𝑢’s upstream neighbors for further counting. Summarizing these

two sub-cases, 𝑢 only needs to send the first𝑚𝑖𝑛( |c𝑢 |, 2) smallest

elements in c𝑢 to its upstream neighbors.

With this analysis, we complete the proof of Proposition 1.

B ARTIFACT APPENDIX

Abstract

The artifact provides an implementation of Tulkun using Java

and Python. It includes all key components in the paper and the

necessary datasets for reproducing the evaluation results in the

paper.

Scope

The artifact allows to validate the following evaluation results:

(1) The planner parses the invariant specification language (§3)

and generates DPVNet (§4, Figure 13)
(2) The results of testbed experiments (§9.2).

(3) The effects of burst update (§9.3.2), incremental update (§9.3.3)

and fault-tolerance (§9.3.4).

(4) The overhead of Tulkun on-device verifiers (§9.4).

Note that the exact values may vary on different machines (even

with the same CPU and memory configuration).

The artifact is only allowed for research purposes.

Contents

The artifact includes the following contents:

(1) An implementation of Tulkun planner.

(2) An implementation of Tulkun on-device verifier.

(3) A simulator that allows Tulkun to be simulated on a single

machine.

(4) The datasets (Figure 10) include topology, FIB, and packet

space.

Hosting

The artifact is hosted on GitHub.

Requirements

The planner requires a server with at least 16GB memory and

requires Python 3.9+.

The simulator requires a server with at least 16GB of memory

and requires JDK 8.

The on-device verifiers require network devices to have JDK 8

and may need to be adjusted for specific devices.
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