
TRUSTSKETCH: Trustworthy Sketch-based
Telemetry on Cloud Hosts

Zhuo Cheng
Carnegie Mellon University

Maria Apostolaki
Princeton University

Zaoxing Liu
University of Maryland

Vyas Sekar
Carnegie Mellon University

Abstract—Cloud providers deploy telemetry tools in software
to perform end-host network analytics. Recent efforts show
that sketches, a kind of approximate data structure, are a
promising basis for software-based telemetry, as they provide
high fidelity for many statistics with a low resource footprint.
However, an attacker can compromise sketch-based telemetry
results via software vulnerabilities. Consequently, they can nullify
the use of telemetry; e.g., avoiding attack detection or inducing
accounting discrepancies. In this paper, we formally define the
requirements for trustworthy sketch-based telemetry and show
that prior work cannot meet those due to the sketch’s probabilistic
nature and performance requirements. We present the design
and implementation TRUSTSKETCH, a general framework for
trustworthy sketch telemetry that can support a wide spectrum
of sketching algorithms. We show that TRUSTSKETCH is able to
detect a wide range of attacks on sketch-based telemetry in a
timely fashion while incurring only minimal overhead.

I. INTRODUCTION
Cloud providers (e.g., AWS [2], Microsoft Azure [14] and

GCP [8]) rely on network telemetry for management tasks such
as anomaly detection [79], billing [17], and traffic engineer-
ing [33], [46]. Traditionally, network monitoring relied largely
on telemetry capabilities installed on network hardware (e.g.,
routers and programmable switches). Increasingly, however,
we find that monitoring traffic in software on end hosts is
becoming a more attractive alternative thanks to its imme-
diate deployability and flexibility. Moreover, with the recent
announcements on reduced support for programmable router
hardware (e.g., the discontinued Tofino programmable switch
product line at Intel [11]), end-host telemetry capability will
likely play an even more vital role.

In this context, sketch-based telemetry [55], [67], [68], [91]
has been shown to be particularly promising for monitoring
traffic in end-host software. In contrast to capturing full packets
or flows, sketches are a class of probabilistic data structures
that estimate traffic statistics online (e.g., tracking heavy hitters
[36], [39], [74], [85], measuring entropy [62], counting distinct
flows [30]) with low resource footprints. Recently, sketches
have been integrated into popular network packet libraries; for
example, NitroSketch [19] has been used in Intel DPDK [41].

Existing work on sketch-based telemetry in end hosts largely
considers a benign setting and overlooks the likelihood of
the telemetry results being compromised by an attacker. For

Hypervisor
Sketch

VSwitch

Server

Run by customer
(untrusted)

Run by provider
(trusted)Hardware

Network

Hypervisor
Sketch

VM VM VM

privilege
escalation

Hardware

Network

VM VM VMAfter attack
VSwitch

Fig. 1: System Model: a cloud provider deploys sketch-based
telemetry in the hypervisor to monitor network traffic of tenants’ VMs.
A malicious customer could get privilege escalation and get access
to the hypervisor to compromise the telemetry results.

example, consider a cloud telemetry deployment as shown
in Fig. 1, where cloud providers offer virtual machines to
customers and run sketches on the hypervisor to monitor
network traffic on the end host. Malicious cloud users may
obtain privilege escalation, access to hypervisor, and virtual
switches by exploiting existing software vulnerabilities in the
data center (e.g., SaltStack [9], VMware ESXi [20], Xen [22]).

Using such exploits, a malicious cloud attacker can com-
promise the telemetry results in one of three possible ways:
(i) modifying the sketch execution logic; (ii) modifying the
relevant memory regions that store the sketch counters; or (iii)
injecting or dropping packets, or modifying packet headers
in the memory. This is especially worrisome as disabling or
corrupting sketch-based telemetry gives adversaries extraordi-
nary power to launch novel attacks that can go unnoticed for
extended periods of time; i.e., because the telemetry results are
corrupted downstream anomaly detection or alerting systems
are rendered ineffective. For example, attackers may be able
to launch new attacks on other VMs or hosts without being
detected.

An ideal trustworthy software sketch framework must satisfy
three requirements:

• Correctness: The framework must meet three integrity re-
quirements (formally defined in §III-A). Concretely, the sketch
memory is updated exclusively (memory integrity) by the
packets that traverse the network (input integrity) according to
the predefined sketch logic (compute integrity).
• Generality: Operators might deploy different sketches for
different telemetry tasks, so the framework needs to support
a wide range of sketches.
• Performance: The framework must incur minimum through-
put degradation and additional latency with minimal impact
on resource usage (computation, memory, and network) and
minimal hardware modifications.

Unfortunately, existing solutions and seemingly natural ex-
tensions cannot satisfy these requirements. For example, code

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23065
www.ndss-symposium.org

attestation [49] cannot prevent an attacker from changing the
computation and memory of the sketch at run time, failing the
correctness requirement. Techniques such as mirroring traffic
to the cloud controller [80] to cross-validate the data-plane
telemetry would double the traffic and would be impractical,
failing the performance requirement.

In this paper, we present the design and implementation of
TRUSTSKETCH. Our design uses secure enclaves (e.g., Intel
SGX [71]), which provide a private region of memory for
secure computation and are already deployed in today’s data
center [4], [5]. Given the limited size of enclave memory, we
carefully partition the telemetry system (consisting of a sketch,
a virtual switch, and an I/O module which is a connection
between network applications and the NIC) and only place the
sketch in the secure enclaves to achieve runtime computation
and memory integrity.

However, only using the enclave cannot provide the input
integrity: packets go through untrusted host memory between
the NIC and the enclave, so an attacker could corrupt the
packets monitored by the sketch. To solve the problem, we
consider the NIC as the second point of trust. This is a rea-
sonable design choice because the NIC is standalone hardware
and has a smaller and more stable code base, which means a
smaller attack surface. Our solution uses the NIC to verify
that the packet sequence between the enclave and the NIC
is unchanged: the enclave and the NIC would periodically
compute a hash of the packets they saw based on a shared
secret key. In the evaluation, we show that this solution only
uses a small resource footprint of the NIC.

We solve two practical challenges to make TRUSTSKETCH
feasible. First, we need to decide how often to compute the
hash. Simply computing one hash for each packet would incur
high computation overhead and greatly degrade throughput.
Computing hash for a predefined number of packets would
fail to detect an attack in time because the packet rate is
changing dynamically. We run timers at the enclave and the
NIC, which times off periodically to divide packets into epoch
and calculate a new hash for each epoch. Second, modern NICs
use multithread to process packets in parallel to achieve high
throughput. Each NIC thread would only process a substream
of the packets, so we need a way to match the packet stream
between the NIC and the enclave. To solve the problem, we
append the packet sequence number as a tag to the packet, and
reconstruct the packet substreams at the enclave and the NIC
based on the tag. Then we compute one hash for each packet
substream.

We validate the correctness of the design TRUSTSKETCH
using a qualitative case-by-case analysis and a formal model
based on a system modeling language Alloy [58]. We build
an end-to-end prototype of TRUSTSKETCH using Intel SGX
and Netronome SmartNIC [15]. We run our prototype against
multiple realistic attack scenarios and demonstrate that it
successfully and timely detects the attacks without any prior
knowledge of the attacker’s strategy. We run TRUSTSKETCH
with eight sketches to protect five distinct telemetry tasks
and show that TRUSTSKETCH adds 7% overhead in terms
of throughput and 6µs to overall latency. We also show that
TRUSTSKETCH only uses 1.9% CPU and 0.53% memory
resources of the NIC, which means that it is promising to
be implemented on commodity NICs.

II. BACKGROUND & MOTIVATION
In this section, we first discuss the cloud telemetry model

that we consider. Next, we give some background on sketches.
Finally, we present our threat model and show how an attacker
could compromise sketch-based telemetry.

A. Setting: Cloud Network Telemetry
We consider a public cloud environment in which providers

(e.g., AWS [2], Microsoft Azure [14], and GCP [8]) operate
physical servers interconnected by network fabrics in data
centers and offer infrastructure-as-a-service (IaaS) to their
customers. Through virtual resource orchestration platforms
(e.g., OpenStack [16] and Kubernetes [13]), cloud tenants have
access to custom VM instances1 on physical machines. This
setting is practical today. Although offloading the network
stack and the hypervisor to SmartNICs is a promising direc-
tion, deploying hypervisors with telemetry capability on the
CPU is still mainstream due to the benefits of easy program-
ming and fewer hardware changes. For example, AWS runs
Firecracker [23] as a software hypervisor for the Lambda ser-
vice. Azure NIC deployment uses the RDMA capability [29]
between servers while the virtual network is still on the CPU.
Therefore, our work focuses on software-based telemetry that
is deployed on host servers (i.e., on software switches).

Such a telemetry infrastructure typically obtains packet
header information (e.g., source and destination IPs, ports,
and protocols) and aggregates them as flows to compute
statistics (e.g., entropy [75], distinct flow [28], [30], heavy
hitters [36], [40]). Operators then use the statistics to perform
various management tasks, such as DDoS detection [30], [68],
traffic engineering [33], [46], anomaly detection [79], and
accounting [17].

B. Background on Sketches
Research efforts in network telemetry [57], [67]–[69], [88],

[89] have proposed to run sketches on software switches. At a
high level, sketches are compact probabilistic data structures
that can provide accurate flow-level statistics and use low
computational and memory resources [53], [67]. Thus, the
cloud provider can integrate sketches into the data plane in
virtual switches [53], [67] (e.g., Open vSwitch [77], VPP [45])
and obtain traffic statistics online, as shown in Fig. 1.

To show how the basic structure of sketches works, we use
the popular Count-Min Sketch [40] as an example as shown in
Fig. 2. The Count-Min Sketch model captures a general model
for a wide range of sketches [31], [36], [68]. While different
sketching algorithms differ in specifics of how they maintain
counters and report estimates, the general structure follows this
similar pattern.

At a high level, Count-Min Sketch maintains a 2D array of
counters (e.g., r rows and d counters per row). When a packet
arrives, the sketch extracts the flow key from the packet header
(e.g., source IP address or 5-tuple) and uses the flow key to
compute r independent hash values. These r hash values will
then be used as indices to decide which counters to increment
(+1 in this case) in each row. Thus, the minimum of the r
counters is an estimate of the total number of packets in this
flow. The Count-Min Sketch also maintains a heap to track
the Top-K largest flows. Using this sketch, one can accurately

1Our work also applies to containerized deployments. For clarity, we focus
on VMs in the rest of the paper.

2

Send Counters &

Heap to controller

r * d Counters

Heap:
t rack f low keys

r hashes

5 +1 9 12

10 4 6 +1

3 5 +1 4

pkt

Flow Key

Fig. 2: A sketch-based telemetry tool is composed
of a 2D counter array and a heap.

Sketch
compute1

2

Sketch
input3

r * d Counters

r hashes

5 +1 9 12

10 4 6 +1

3 5 +1 4

pkt

Flow Key

Heap:
track flow keys

Sketch
memory

Fig. 3: Strategies an attacker can use to compro-
mise the sketch telemetry results.

0 10 20 30 40 50
Counter Modifying Rate (%)

0
20
40
60
80

100

Re
la

tiv
e

Er
ro

r (
%

)

L2 Norm
Entropy
L1 Norm
Cardinality

Fig. 4: An attacker could increase
the telemetry error to 100% by mod-
ifying 20% of the counters.

estimate the heavy hitters in the traffic for each monitoring
window. At the end of each monitoring interval, the sketch can
report the Counters and the Heap to the controller, which can
be used for other tasks (e.g., DDoS detection and accounting).

C. Threat Model and Attacks
Goals We consider an attacker whose goal is to compromise
the integrity of the telemetry results for their benefit. For
instance, an attacker using multiple cloud VMs to launch
a DDoS attack against another tenant could try to remain
undetected by preventing telemetry from catching her VMs’
traffic to the victim. Similarly, an attacker using the cloud
could try to reduce her network costs by altering the telemetry
to impact the cloud’s accounting.

Our goal is to provide accurate and trustworthy telemetry
results even in the presence of potential attackers. Although
our solution does not directly mitigate such attacks, it provides
a way to detect anomalous behaviors promptly and reliably,
which facilitates subsequent forensic analysis and mitigation
efforts.
Capabilities We consider an attacker who gets privilege
escalation and controls the software stack of a server, including
a hypervisor, virtual switch, and virtual machines. While
strong, the threat model is practical: a VMware hypervisor
vulnerability [20] (i.e., uninitialized stack memory usage in the
virtual network adapter) has been used to escape the VM and
get a root shell on the host. In addition, there are other software
vulnerabilities in the data center that allow the attacker to
get privilege escalation, such as SaltStack [9] and Xen [22].
We assume that the attacker cannot control the enclave (a
secure memory region) and the SmartNIC due to the hardware
security features provided by the vendors (more details in
§IV-A). We do not consider side-channel attacks since our
work focuses on protecting the integrity of the telemetry results
rather than the confidentiality. Our threat model is equivalent
to prior work in the cloud computing space (e.g., [42], [66],
[76], [78]).
Illustrative attacks. To make our discussion concrete, we
next describe three exemplar attacks.

Runtime Compute Attack (1⃝ in Fig. 3): An attacker could
modify the runtime execution logic of the sketch (e.g., by
modifying the runtime libraries). As a concrete illustration,
Fig. 4 shows the impact on the accuracy of the UnivMon sketch
when an attacker modifies counter update logic by updating
a fraction of counters to random numbers. The accuracy
degrades significantly; e.g., the error can be as high as 100%
even when only 20% of the counters are modified.

Memory Attack (2⃝ in Fig. 3): An attacker could also
modify the sketch data in memory. For example, he could

read the memory mapping table maintained by the operating
system to know the exact memory address of the sketch heap
and remove the relevant flow key of the attack flows. We find
that the error can be as high as 40% even when only 20% of
the entries are dropped (figure not shown).

Input Attack (3⃝ in Fig. 3): An attacker could inject packets
into the packet buffer maintained by the virtual switch, which
stores packets that are sent from the VMs, have already been
processed by the sketch and are waiting to be sent out by the
NIC. In this case, the injected packets are sent out by the NIC,
but are not seen (monitored) by the sketch. We find that the
error can be as high as 40% even when only 5% packets are
injected (figure not shown).

Takeaways. While sketch-based telemetry running in cloud
virtual switches is promising due to performance and low
footprint, existing solutions are designed in a benign non-
adversarial setting. Consequently, an attacker can impact the
integrity of telemetry results to enable further downstream
goals (e.g., avoid detection).

III. REQUIREMENTS AND EXISTING SOLUTIONS
Given the threats to sketch-based telemetry, we identify

the security requirements that any trustworthy sketch-based
telemetry must strive to achieve. Then, we discuss two prac-
tical system requirements. Finally, we explain why existing
solutions cannot meet these requirements in our context.

A. Security Requirements
Suppose that in an ideal world, the sketch would output

Counters and Heap to the controller, and in an unsecured
world, the sketch would output Counters ′ and Heap′ re-
spectively. Our overarching goal is to achieve tamper evi-
dence, meaning that one of two conditions occurs: Either (i)
Counters ′ = Counters and Heap′ = Heap, or (ii) raise
an alert if Counters ′ ̸= Counters or Heap′ ̸= Heap. In
other words, we ensure that the adversary cannot tamper
with the telemetry results, or if they do, the tampering can
be immediately detected. To achieve this, we identify and
formally define three necessary security requirements2.

Sketch-compute-integrity. Since the attacker might manipu-
late the sketch computation procedure (i.e., changing how the
sketch updates the counters and the heap) , 1⃝ in Fig. 3), we
need to ensure that the execution of sketches is not corrupted
by the attacker at run-time. Specifically, for each input packet
p, the sketch executes instructions Ihash to compute the hash,
Icounter to update the counter, and Iheap to update heap.

2As we will see, these are independently necessary as removing any of them
will introduce opportunities for correctness violations.

3

Similarly in an unsecured world, I ′hash , I ′counter and I ′heap are
executed. We need to guarantee that

Ihash = I ′hash
Icounter = I ′counter

Iheap = I ′heap

(1)

or raise an alert when Eq. 1 does not hold.

Sketch-memory-integrity. Even if we guarantee Sketch-
compute-integrity, an attacker can still use the memory attack
(i.e., modify the sketch counters or the heap , 2⃝ in Fig. 3) .
Assume in an ideal world, given the memory update instruc-
tions Ihash and Icounter , the sketch will update the counters
from Countersbefore to Countersafter and update the heap
from Heapbefore to Heapafter . Assume that in an unsecured
world, the sketch will update the counters to Countersafter

′

and update the heap to Heapafter
′. We need to guarantee that

Countersafter = Countersafter
′

Heapafter = Heapafter
′ (2)

or raise an alert when Eq. 2 does not hold.

Sketch-input-integrity. Even if we guarantee Sketch-
compute-integrity and Sketch-memory-integrity, an attacker
could still launch an input attack (3⃝ in Fig. 3). Thus, we need
an sketch-input-integrity to ensure that the sketch monitors
every packet in order sent and received by the NIC.

We define the sketch input integrity requirement by taking
two observations into account. First, some complex sketches
[25], [52], [69] depend on packet order, so we want to
guarantee that the sketch monitors the same sequence of
incoming (outgoing) packets as the NIC receives (sends).
Second, since sketches work based on packet header, we only
need to check the packet header. For a sequence of packets P ,
we use P [i].hdr to denote the header of the i-th packet in that
sequence. We use Sin, Sout, Nin, Nout to denote the incoming
and outgoing packet sequence seen by the sketch and the NIC.
Then, we need to ensure that

Sin [i].hdr = Nin [i].hdr ,∀i ∈ N+

Sout [i].hdr = Nout [i].hdr ,∀i ∈ N+ (3)

or raise an alert when Eq. 3 does not hold. For Nin, Nout, we
do not consider non-data packets (e.g., control packets between
NIC and controller).

B. System Requirements
In addition to security requirements, we also need:

Performance. With today’s high link speeds, any telemetry
system may experience a large volume of packets, so we need
to support high processing throughput and low latency. Also,
we want to maximize the (computation, memory and network)
resource available to the customers and maintain low resource
usage for the telemetry system.

Generality. We can consider creating solutions that use partic-
ular algorithmic properties of specific sketches for robustness.
However, this would not generalize well across sketches and
will restrict operators who often deploy different types of
telemetry goals. Thus, our system needs to be agnostic to the
specifics of sketch algorithms.

Solution Cross Checking Software Attestation Secure Memory

Compute Integrity × ×
Memory Integrity ×

Input Integrity × ×
Performance ×
Generality

TABLE I: Summary of Strawman Solutions and Limitations.

C. Existing Solutions and Limitations
Next, we discuss why seemingly natural strawman solutions

from the trustworthy computing literature can not meet our
requirements. We summarize our discussion in Table I.

First, we can cross check results by running the sketch with
the same input at different locations and comparing the results
to verify the telemetry result. While such an approach could
satisfy our security requirements, it incurs high network and
compute overhead and thus fails the performance requirement.
For example, we could mirror traffic via the NIC (e.g., up to
100Gbps) to another location (e.g., a separate server or con-
troller) [80], incurring prohibitively large computation and net-
work overheads. We can reduce these overheads by mirroring
only a subset of sampled packets. However, since sketches are
probabilistic data structures (i.e., the same input can generate
different outputs at different times), precisely reconstructing
the telemetry result with partial input (i.e., sampled packets) is
hard and we cannot distinguish inaccuracies in reconstruction
vs. malicious behavior.

Second, we could consider code attestation techniques
(e.g., [49]) to verify the integrity of the sketch code at boot
time. However, code attestation cannot provide runtime sketch-
compute-integrity as it is only a static checker that verifies the
code before execution. Thus, attested sketch code can still be
interrupted or corrupted during the runtime execution (e.g., by
modifying runtime libraries).

Third, we could leverage secure memory features such
as AMD Secure Memory Encryption (SME) [3] to provide
sketch-memory-integrity. SME leverages specialized hardware
to encrypt data before writing it to the main memory. We
could calculate and store MAC (message authentication code)
along with the data in memory to ensure its integrity. However,
sketch-memory-integrity alone is not sufficient for trustworthy
telemetry as we still need to provide sketch-compute-integrity
and sketch-input-integrity.

IV. DESIGN OVERVIEW
In this section, we first discuss two roots of trust for ensuring

the telemetry integrity: secure enclave and SmartNIC. Then,
we explore the design space of leveraging these hardware
bases and explain why some strawman designs fail. Finally,
we describe our design choices.

A. Roots of Trust
Our design is based on two practical roots of trust that are

available on modern server hardware.

An enclave is an integrated CPU feature that allocates
a private region of memory for isolated runtime execution.
Software running outside the enclave (including privileged
software such as kernel or hypervisor) is not able to read or
modify computation and data in the enclave. Enclaves have
already been deployed in today’s data centers [4], [5].

We impose restrictions on attacker capabilities so that an
attacker cannot read or modify the code and data in the enclave,

4

similar to prior work [42], [66], [78]. We acknowledge that
powerful attackers could use side channels in the enclave (e.g.,
page fault [86], cache timing [35], [50], branch prediction [63])
to compromise the confidentiality of data stored inside the
enclave. Note, however, that our work focuses on integrity
and thus such side channels that impact confidentiality are an
explicit non-goal for our work.

A SmartNIC is a programmable network interface card
that can run custom code to process packets, such as network
functions (e.g., NAT) and network protocol offloading (e.g.,
TLS, VXLAN). Many types of SmartNIC have already been
deployed in today’s data centers [47].

We consider the NIC to be trusted i.e., an attacker cannot
read or modify the code and data on a SmartNIC. This design
choice is in line with prior work [76] and has several justifica-
tions. First, the NIC code could be signed by the operator and
verified by the NIC before execution. Additionally, the NIC
operates as standalone hardware with its own firmware, which
is distinct from the hypervisor code. As a result, an attacker
would need to discover separate vulnerabilities specific to the
NIC to compromise its security. Moreover, the firmware is
updated less frequently and typically has a smaller code base,
reducing the potential attack surface.

Constraints. Although trusted, both the enclave and Smart-
NIC have constraints in resources and functionality. For
enclave, we consider the second generation of Intel SGX
(SGXv2) [43], the latest enclave supported by Intel. Any data
transferred between the enclave and the NIC must go through
the unprotected host memory. This problem still exists for
the next-generation enclave (e.g., Intel TDX [12]). Moreover,
instructions that change privilege levels (i.e., syscall and int
instructions) are not supported inside an enclave.

Commodity SmartNICs have limited computing and mem-
ory resources. They often only allow a limited number of
instructions and memory accesses for each packet to support
high line-rate packet processing. Also, the NIC resources are
shared by other offloaded network functions (e.g., NAT, TLS).
So we want to use minimum NIC resources for network
telemetry. Although some high-end SmartNICs (e.g., Mellanox
BlueField [72]) have more resources, a general framework is
required to work with the commodity SmartNIC of limited
resource.

B. Design Space
In general, a sketch-based telemetry system includes a vir-

tual switch, a sketch, and an associated I/O module. The virtual
switch in software is responsible for emulating the network
switch function for the VMs, thus implementing operations
such as forwarding and NAT. The sketch, as we describe in
§II-B, is responsible for telemetry and contains a 2D counter
array and a heap. The I/O module (e.g., Intel DPDK [41]) is a
software component that acts as a connecting bridge between
network applications and the NIC. The I/O module manages
packet buffers on the server and interacts with the NIC driver
to send and receive packets.

Given these components, we can explore the design space
of options that considers where these components could run
in our server stack : host, enclave, or NIC. For example, the
virtual switch and the sketch could run in the host memory,
the enclave, or the NIC. Similarly, the I/O module could run in

Enclave

Host

I/O

VSwitch

SmartNIC

Sketch

(b) Sketch in NIC

Host

SmartNIC

Enclave

I/O

VSwitch

Sketch

(c) All in Enclave

Host

I/O

VSwitch

Sketch

(a) Vanilla

Enclave

SmartNIC

Host
I/O

Enclave
Checker

Sketch

Host
VSwitch

SmartNIC
Checker

(d) TrustSketch

MAC
Periodically
Exchange

MAC

Solution (a) (b) (c) (d)

Compute Integrity ×
Memory Integrity ×

Input Integrity × ×
Performance ×
Generality ×

Fig. 5: While various solution are possible in our design space,
only TRUSTSKETCH satisfies all requirements. (a) the sketch-based
telemetry as done today; (b) only the Sketch in the NIC as in [24],
[91]; (c) all related components in the enclave as in [78]; (d)
TRUSTSKETCH places only the sketch in the enclave and implements
a input validation that runs between two checkers.

the host memory or in the enclave. Note that the I/O module
cannot fully run on the NIC because it interacts with drivers
to support other software network applications.

Different design choices naturally entail trade-offs between
security, performance and generality. To see why, consider two
points from this design space. One design choice is to run the
sketch on the NIC to achieve the three security requirements
as we illustrate in Fig. 5(b). While it might be feasible to
run some simple sketches on a commodity NIC, such as
CountMin Sketch [40], NIC’s resource constraints are typically
prohibitive for real sketches. For instance, UnivMon [68] needs
to update multiple counters and maintain multiple priority
queues, resulting in an unbearable resource load for the NIC.
Similarly, Hydra [70] uses up to tens of MBs for multidimen-
sional telemetry, which are not available in typical commodity
NICs. Also, virtual switch might update some packet header
fields (e.g., Network Address Translation). Only offloading the
sketch to the NIC would cause the sketch to get incorrect
packet header fields. Offloading the virtual switch to the NIC
could solve the context problem, but the virtual switch would
consume lots of computation and memory resource of the NIC.

An alternative design choice would be to run all three
components in the enclave as we illustrate in Fig. 5(c).
However, this would fail the sketch-input-integrity because
packets go through unprotected host memory between the
enclave and the SmartNIC and could be corrupted. Second,
the original virtual switch and I/O module heavily rely on
system calls that are not supported by the enclave. To address
this limitation, prior work, such as SCONE [27], Graphene-
SGX [37], have introduced shielded execution frameworks that
enable the execution of unmodified applications inside the
enclave. However, these frameworks do not provide enough
low-level networking support [60] to run the I/O module inside
the enclave. Furthermore, if we simply place all components
inside the enclave, it would significantly increase the size
of the trusted computing base (TCB) by a factor of 99x, as
demonstrated in §VII-B.

5

C. Our Design: TRUSTSKETCH
Taking into account the constraints of the enclave and

the NIC, we design TRUSTSKETCH to navigate the trade-off
across security, performance, and generality.

TRUSTSKETCH provides compute and memory integrity
by running only the sketch in the enclave. We observe that
while trustworthy telemetry incorporates multiple components,
only the sketch computation logic and the memory are crucial
for the telemetry result. We also recognize a unique opportu-
nity: the sketch has a small memory footprint and uses simple
operations e.g., hashing, additions; thus, it could fit in the
resource budget of an enclave. Hence, we only put the sketch
in the enclave and leave the virtual switch and the I/O module
(i.e., DPDK [41]) in host memory. The sketch in the enclave
get access to packets managed by the I/O module through
pointers to avoid packet copy (§VII-B). This choice provides
the sketch-compute-integrity and sketch-memory-integrity, and
minimizes enclave memory usage. Also, running the whole
sketch in the enclave makes our solution general as one does
not need to modify any sketch code.

TRUSTSKETCH provides input integrity by validating the
I/O using the SmartNIC. While the enclave provides the
sketch-compute-integrity and sketch-memory-integrity, it does
not support direct and secure access to the NIC’s memory, thus
cannot provide sketch-input-integrity3 (similar to Fig. 5(c)).
Common solutions such as adding a digest in the each packet
header [56] or constructing sketches in each end and com-
paring them [65], [90] do not offer sketch-input-integrity as
they do not detect packet reorderings and deteriorate perfor-
mance by incurring significant overhead and/or involving the
controller.

To provide sketch-input-integrity at scale, TRUSTSKETCH
leverages a domain-specific observation: re-orderings and
packet drops cannot occur unless there is an attacker. Indeed,
since there are not multiple paths between the enclave and
the NIC, reordering are not possible. To avoid drops caused
by congestion between the enclave and the NIC, the fastest
component, namely, the NIC can be rate-limited to match the
speed of the enclave.

Driven by these insights, TRUSTSKETCH runs a simple-yet-
effective input validation with two checkers: one at the enclave
and one at the NIC. The checkers would compute a message
authentication code (MAC) over the packets they have seen and
periodically exchange the MAC. To prevent the attacker from
re-calculating the MAC, TRUSTSKETCH uses a shared key in
the MAC that is negotiated between the enclave and the NIC
at bootstrap stage. To make TRUSTSKETCH react independent
of the traffic rate, the validation process is directed (separate
for incoming and outgoing traffic) and time-triggered.

V. ENSURING INPUT INTEGRITY IN TRUSTSKETCH
At a high level, TRUSTSKETCH uses well-known best

practices in using enclaves for compute and memory integrity
and we defer specific implementation details to §VII. In this
section, we focus on the harder problem of ensuring input
integrity. In particular, we need to tackle practical challenges
in synchronizing exchange of traffic summaries between the
enclave and NIC and ensuring correct operation in the presence
of multi-threaded operation, which is critical for performance.

3This is a problem also with the new generation enclave (e.g., Intel TDX [12]).

VM
Enclave
Sketch NIC NetworkVirtual

Switch

P1P2P3

Enclave
MAC

P1P2P3

NIC
MAC

Check by NIC

P1 P2 P3

NIC
MAC

P1 P2 P3

Enclave
MAC

Check by Enclave

outgoing

incoming

Fig. 6: Strawman 2: calculate separate MACs for in and out direction
based on predefined number of packets (2 in this figure) .

VM
Enclave
Sketch NIC NetworkVirtual

Switch

P1P2P3

P1 P2 P3No
Packets

No
Packets

Drop All
Packets

outgoing

incoming

Enclave
MAC

NIC
MAC

Fig. 7: Strawman 2 fails: the attacker can silently drop all packets,
while evading detection.

A. Synchronizing MAC exchanges
As mentioned in §IV-C, the checkers periodically calculate

a MAC on the packets they forward and compare their results.
To be effective, the comparison must be (i) precise as false
positives / negatives would degrade the performance or security
of the system ; (ii) timely such that the detection delay is
bounded; (iii) lightweight to incur minimum computation,
memory, and network overhead.

Strawman solutions To see why this is challenging, we
consider two strawman solutions and explain why they do not
meet the requirements. First, one could calculate one MAC
when T incoming and T outgoing packets (T is a predefined
number) have been forwarded. This strawman would only work
if the two directions are symmetric in rate. If the incoming rate
is different from the outgoing rate, then either some packets
will be left invalidated or the checkers will evaluate the MAC
on different sets of packets.

From the previous strawman, we can conclude that one
needs to maintain two summaries (one for each direction).
Thus, for the second strawman we consider that each checker
calculates one incoming MAC when they forward T incoming
packets, and one outgoing MAC when they forward T outgoing
packets. Then, they could exchange the incoming or outgoing
MAC separately. Fig. 6 shows an example with T = 2 packets.
However, an attacker could drop all packets between the
enclave and the NIC, as shown in Fig. 7. This attack would not
be detected because the NIC (enclave) would not receive any
outgoing (incoming) MAC packet and thus no MAC mismatch
would be detected.

Our approach TRUSTSKETCH builds on top of the second
strawman solution but refrains from using a packet-number-
based epoch. Instead, TRUSTSKETCH uses time-based epoch
and in-band synchronization. Concretely, TRUSTSKETCH runs
two timers, one at the enclave and one at the NIC. The timer
would periodically fire out to signal the end of one epoch. For
the outgoing packets, the Enclave-Checker would compute a
MAC using all packets in that epoch (e.g., there are 2 packets
in outgoing direction in Fig. 8) and send the MAC to the NIC-
Checker right after those packets.

6

VM
Enclave
Sketch NIC NetworkVirtual

Switch

P2 P1P3 P2 P1P3 Enclave
MAC

Enclave
MAC

1

2 3

outgoing NIC
sum 4

Fig. 8: MAC exchange. For outgoing packets, 1. the enclave timer
fires out; 2. the Enclave-Checker calculates a MAC; 3. the MAC
arrives at the NIC as an in-band notification; 4. the NIC-Checker
calculates a MAC and compares the two MACs. The incoming packets
follow a symmetric procedure (not shown).

Observing that even slight time drift between the two timers
would cause the checkers to calculate the MAC on differ-
ent sequences of packets, we need the two timers perfectly
synchronized, which is infeasible. Even assuming perfectly
synchronized timers, the set of packets inputted to the checkers
might be different, as some packets are in transit between the
enclave and the NIC. Our solution uses the MAC packet as
an in-band synchronization notification, which tells the NIC-
Checker when one epoch ends. Concretely, the timer at the
enclave signals the end of an epoch for the outgoing direction
(and triggers the enclave to send a MAC) and the timer at the
NIC for the incoming direction (and triggers the NIC to send a
MAC). When the NIC-Checker receives the MAC, it computes
a new MAC and compares the two MACs. In this way, we
provide synchronization between two checkers without the
need for perfectly synchronized timers. The procedure for
incoming packets is symmetric: NIC-Checker would compute
a MAC and send it to the Enclave-Checker.

If any checker finds a MAC mismatch, it raises an alert, i.e.,
notifies the controller. We discuss reactions for MAC mismatch
in §VII. If any checker does not receive the MAC over a
predefined time period, it also raises an alert. To ensure that
an attacker cannot counterfeit or replay the MAC packet, we
add a nonce-based cryptographic hash to the MAC packet.

B. Handling multithreading
Problem Modern NICs are built with multi-threads (e.g., the
Netronome NIC we use in our evaluation has 54 cores in total
and 4 threads on each core) to process packets in parallel to
maximize throughput. This would lead to two problems. First,
there will be a mismatch between the packets on which the
checkers will calculate the MAC, thus a false alert. Indeed,
if we simply run one checker on each NIC thread, the NIC
would generate N MACs at the end of each epoch per direction
(assuming that the NIC has N threads in total). In contrast, the
enclave checker processes the entire packet stream and would
generate one MAC per direction, assuming that the enclave
runs in one thread4. Then, there would be a MAC mismatch
(1 vs. N) between the enclave and the NIC.

Second, there will be a mismatch between the order in which
the checkers will calculate the MAC, thus a false alert. Indeed,
since packets have different lengths and NIC threads share
resources (e.g., CPU, memory), packets might be processed
out-of-order by different threads. Note that the NIC has a GRO
(global reorder module) to ensure that the packets leave the
NIC in the same order as they enter, but the NIC does not
provide a guarantee about the packet processing order. This
would also result in a MAC mismatch (packet order in MAC
input), if the NIC-Checker processed packets in a different
order than the enclave checker. Also, since we use the MAC

4The problem still exists even if the enclave is running with multi-threads.

packet as an in-band synchronization to signal the end of an
epoch, if the NIC-Checker processes the MAC packet early
or late, there would be a MAC mismatch due to the incorrect
MAC input length.

Strawman solutions Before we describe our solution, we
consider two strawman solutions and show why they would
not work. First, we could use only one thread on the NIC
to process all packets and calculate one MAC. This would
address the problem but would greatly degrade performance.
We show in §VIII that using one thread would only achieve
0.1 Gbps throughput. Second, we could divide the original
packet stream into N packet substreams at the NIC and the
enclave. We could map a packet to a substream in a round-
robin way: the first packet goes to the first substream, the
second packet goes to the second substream, and so on. Then,
each NIC thread would process one packet substream, resulting
in N MACs in the NIC. Since packets mapped to the same
thread would be processed in order, we would have solved
the out-of-order problem. The Enclave-Checker would also
calculate one MAC per packet substream. Both the NIC and the
enclave would calculate N MACs each epoch. Unfortunately,
this is not always a viable solution. Our Netronome NIC, for
instance, hides the NIC-specific packet steering logic from the
programmer, so we cannot control which packet is processed
by which NIC thread.

Our approach We build on the second strawman solution by
explicitly appending a tag to the packets and using the reorder
buffer to reconstruct consistent packet substreams between
the enclave and the NIC. Both the Enclave-Checker and the
NIC-Checker maintain a global packet sequence counter and
2M buffers (they maintain M substreams for each direction
where M is a configurable parameter, independent of the total
number of NIC threads N). The NIC counter and buffers are
protected by locks to prevent race conditions between threads.
We optimize the buffer size by using streaming MAC (§VII-A)
to achieve a small memory footprint.

When an outgoing packet arrives at the enclave, the Enclave-
Checker updates the counter, uses the packet sequence number
to decide which substream the packet belongs to, copies the
packet header to that buffer (as mentioned in §III-A, TRUSTS-
KETCH only needs to protect the packet header for sketch-
input-integrity), tags the packet with the sequence number, and
forwards the packet to the NIC-Checker. Upon arrival of the
packet to the NIC-Checker, the latter uses the number in the
packet tag as the packet’s sequence number to decide which
substream the packet belongs to, copies the packet header to
that buffer, removes the tag, and sends the packet out (to the
virtual switch or the network). The procedure for incoming
packets is symmetrical: NIC-Checker would update the counter
in the NIC, and use it as the packet sequence number.

Our solution also solves the out-of-order processing prob-
lem. Fig. 9 shows an example: incoming packets P1, P2 are
processed out of order. P2 is processed first and gets a tag
1, and P1 gets a tag 2. When the Enclave-Checker receives
P1, P2, it uses the tag to reconstruct the same substreams
as the substreams in the NIC. Note that due to out-of-order
processing, the packets belong to different substreams in two
directions (h1, h2 are copied to different buffer positions). In
case the MAC packet is processed out-of-order, we include in
the MAC packet the total number of packets in that epoch, so

7

VM

Enclave

NetworkVirtual
Switch

P0 P1 P2 P3

P0P1P3 P2 P0P1P3 P2

0123h0 h2

Buffer MAC
M00

h1 h3 M11

h0 h1

Buffer MAC
M00

h2 h3 M11

cnt
NIC

h0 h2

Buffer MAC
M00

h1 h3 M11

h0 h1

Buffer MAC
M00

h2 h3 M11

cnt
P0 P1 P2 P3

P0P1P3 P2

P0 P1 P2 P3

3120
Out-of-order
processing

1 Tag (seq)

Fig. 9: TRUSTSKETCH appends a tag (in pink) to the packets to explicitly declare the order at which they were processed (may be different
from the order they arrived). These tags are used by reorder buffers to reconstruct consistent packet substreams between the enclave and the
NIC. The incoming packets, P1, P2, are processed by the NIC threads out-of-order and have tags 2, 1. The Enclave-Checker reconstructs the
same packet substreams based on the tags.

that the NIC-Checker could wait until it receives all packets
in that epoch before it computes the MAC.

VI. SECURITY ANALYSIS
Using a case-based qualitative analysis and a model-driven

analysis, we show that the design of TRUSTSKETCH achieves
the correctness requirements mentioned in §III-A in contrast
to other solutions, such as using an unmodified telemetry
architecture or naively using enclaves (e.g., Safebricks [78]).

A. Qualitative Analysis
First, we qualitatively explain why TRUSTSKETCH protects

against attack strategies in §II-C and attacks towards TRUSTS-
KETCH design (e.g., DoS attack toward the enclave).

We observe that, by construction, TRUSTSKETCH prevents
sketch-compute-attack and sketch-memory-attack by placing
the entire sketch (code and data) in the enclave. This builds
directly on the integrity properties that enclaves provide against
software stack attacks [71]. Note that side-channel attacks on
enclaves [35], [50], [63], [86] and SmartNIC [81], [92] are
not relevant in our context, since our goal is only the integrity
and not the confidentiality of the telemetry results. Second,
TRUSTSKETCH can detect the sketch-input-attack thanks to
input validation. If an attacker injects, drops, modifies, or
reorders the packet sequence between the enclave and the NIC,
the MACs calculated by the enclave and the NIC would show
inconsistency.

A potential concern is that an attacker can attack the input
validation mechanism itself by injecting, dropping, modifying,
or replaying the MAC packet. Also, the attacker could reorder
the MAC packet with datapath packets. However, injecting,
modifying, or replaying a MAC packet would be detected
because the MAC would show inconsistency. Dropping the
MAC packet would cause the checker not to receive the
MAC packet on time, resulting in an alert due to a timeout.
Reordering the MAC packet with datapath packets would mess
up synchronization and lead to an inconsistency between the
MACs calculated by the enclave and the NIC.

Another potential concern is a DoS attack against the
enclave. The attacker could send many packets from a VM
to the virtual switch to overwhelm the enclave. This might
lead to some packet drops at the virtual switch if the enclave
processing rate is lower than the DoS packet rate. Even in this
case, though, the telemetry result reported by the sketch would
still be correct because the NIC would only send packets that
have been processed (tagged) by the enclave.

B. Model Driven Analysis
We use Alloy [58], a declarative language used for system

modeling to define system components and their expected
behaviors for our model-driven analysis. Alloy implements
an analyzer based on first-order logic that provides automatic
correctness verification or provides counterexamples if the
correctness is not satisfied. Next, we discuss how we model
the system components in a cloud server, various designs from
the design space, and our end-to-end design.
Model Description First, we model three basic elements of
the servers in the cloud: code, memory, and packet. For exam-
ple, in our model, all Memory objects have two attributes:
memoryPosition and security , which indicates where the
piece of memory is and whether it is compromised by the
attacker. Then, we model three key entities in the telemetry
system: a Sketch, a NIC, and a packet buffer between the
Sketch and the NIC. seq is provided by Alloy to model a
sequence of objects. We use seq to model the packet sequence.
We also model the security constraints of each component. We
only show two security constraints here for brevity: (1) if the
attacker does not have root access, we assume that all programs
and memory are secure. (2) if the packet buffer between the
sketch and the NIC is secure, we assume that the sketch would
get the same packet sequence as the NIC for both the incoming
and outgoing directions. Since the Alloy model cannot model
the time, for Input Validation, we model the packet sequence
on a per-epoch basis. That is, if the sketch-input-integrity is
correct for the packet stream in each epoch, we can inductively
conclude that this property would hold for the entire packet
stream.
Design Refinement We used our Alloy model as an integral
part of our design workflow to identify potential blind spots in
addition to validating that our design is robust against a broad
spectrum of integrity attacks. For instance, an early version of
our design used a packet-number-based epoch instead of the
time-based epoch to synchronize the MAC exchange (§V-A).
Using our Alloy model, we identified a subtle but important
counterexample (as we illustrate in Fig. 7): the packet-number-
based epoch would not detect input integrity violation if the
attacker drops all packets between the enclave and the NIC.
Design Validation First, we verify that TRUSTSKETCH meets
the three security requirements defined in §III-A. To that end,
we set a check scope of 10. Therefore, the Alloy Analyzer will
enumerate up to 10 instances of each sig to see if there is a
counterexample that violates security requirements. Alloy does
not find any counterexamples; thus TRUSTSKETCH meets our

8

Attack Type Example Attack Vanilla Safebricks TRUSTSKETCH

Compute Modify runtime library × ×

Memory Modify the counter × ×
Modify the heap × ×

Input
Inject packets ×
Drop packets ×

Modify packet header ×
TABLE II: Alloy model attack result: among the six attacks we model, some attacks
are effective against Vanilla and Safebricks; none is effective against TRUSTSKETCH.

VM
Enclave
Sketch NICVirtual

Switch Network

Strawman: Run in one thread

VM
Enclave
Sketch NICVirtual

Switch Network

TrustSketch: Run in three threads

Pointer
Buf

Pointer
Buf

I/O Module
Pkt Buf

I/O Module
Pkt Buf

Fig. 10: TRUSTSKETCH (lower) leverages that the
three components can run in parallel and assigns them
in different threads. This parallelism saves costly tran-
sitions between the enclave and host memory which
would occur if only one thread is used (upper).

security requirements.

Second, we model six attacks and check if those attacks
could escape detection by three sketch systems5:(i) Vanilla:
existing unsecure sketch system; (ii) Safebricks [78]: a pre-
vious work uses enclave to protect critical functions (in our
case, the sketch); and (iii) TRUSTSKETCH. Table II shows the
attack results: Vanilla and Safebricks are vulnerable to some
attacks, while TRUSTSKETCH prevents those attacks.

VII. IMPLEMENTATION
In this section, we discuss two implementation optimizations

and our end-to-end prototype.

A. Optimizations
Reducing enclave transition overhead. As shown in Fig. 10,
a strawman solution is to run packet processing logic (virtual
switch, Sketch and I/O Module) in one thread. However, this
would involve transitions between host memory (virtual switch
and I/O Module) and enclave memory (sketch), which would
incur a high overhead due to the cost of saving and restoring
the enclave state.

To reduce the overhead of the enclave transition, previous
work [60], [78] runs the host and enclave logic in separate
threads so that there will be no transitions between host mem-
ory and enclave memory. We take a similar approach: running
virtual switch, Sketch, and I/O Module in three threads. Note
that our solution uses two more cores than strawman solutions.
However, this cost could be amortized by running multiple
enclave (sketch) threads. All packet data is stored in a packet
buffer managed by the I/O Module and threads pass packet
pointers through pointer buffers to avoid packet copying.

Reducing memory usage. A naive way to implement MAC
is to concatenate all packet headers in one epoch as input to
generate the output hash . However, this requires all packet
headers buffered in the checkers, wasting a large amount
of memory resources. To reduce memory usage, we use a
streaming MAC, which maintains an internal state S and
keeps updating it S′ = F (X,S, k) when the input string X
(i.e., packet headers) arrives. At exchange time, the streaming
MAC would generate a final hash based on the internal state
hash = G(S).

Note that this is not a conflict with the reorder buffer
mechanism mentioned in §V-B. If using a naive MAC, the
reorder buffer needs to be large enough to store all the packet
headers used to compute the MAC. By using a streaming

5Since Alloy does not support modeling the alert mechanism of our system,
we use the analyzer to check if there is an attack without triggering the alert.

MAC, we can use a smaller buffer size and hence save memory
usage.

B. Prototype
NIC. We use the Netronome Agilio® CX 1x40GbE SmartNIC
[15] and implement the NIC-Checker in P4 [34] and Micro-C
(a subset of C code supported by the Netronome SmartNIC).
The SmartNIC has 54 cores in total and 8 threads on each
core. We use all threads available on the NIC (N = 54 × 8)
to process packets and run NIC-Checker. The choice of M
(the total number of packet substreams) is a trade-off between
throughput and memory usage. A smaller M would consume
fewer memory resources in the enclave and the NIC, but each
NIC thread will have to process more packets than it can
handle, resulting in lower throughput. In our implementation,
we use M = 64.

Sketch implementation in the software. We use Open
vSwitch [77] to manage virtual network and use DPDK [41]
as the fast I/O Module, which is a popular kernel bypassing
packet processing library used by many prior works [66], [78].
To allow the sketch (in the enclave) to access the packets stored
in host memory, we follow the paradigm of SEC-IDS [60] and
patch some glue I/O code (i.e., DPDK Mbuf module) in the
enclave.

Zero copy. We achieve zero packet copy by passing pointers
between modules. Take incoming packets as an example. When
the NIC receives a packet, it writes the packet to a region of
untrusted host memory managed by the I/O module. Pointers
are passed to the checker, the sketch, and the virtual switch
so that they can access the packets. Note that the monitored
data (i.e., packet headers) is copied to the enclave before the
hashing and sketching operations. Thus, the adversary cannot
change the headers between the time the enclave computes the
hash and when it computes the sketch.

MAC. We use SipHash as the stream-MAC and adopt an
open source implementation of SipHash [18]. We compute the
hash over 5 tuples (source IP address, destination IP address,
source port, destination port, protocol). Thus, we guarantee
the integrity of those five fields, but the sketch could use any
subset of those for flow keys.

Tag. We put tag between the ethernet header and the IP
header. We use a one bit in tag to distinguish the MAC packets
from regular datapath packets so that the NIC can invoke
different processing functions for them correspondingly. We
do not explicitly protect the flag bit from an attacker as she
has no incentive to change it. If an attacker sets this bit on a
regular datapath packet, the checker would take it as a MAC
packet, check the MAC and find a mismatch. If an attacker

9

unsets this bit for a MAC packet, then the MAC packet would
be processed as a datapath packet by the checker. Since the
original MAC packet would be missing afterward, the checker
will eventually raise an alert.

Timer. TRUSTSKETCH runs two timers at the enclave and the
NIC to signal the MAC exchanges for integrity checking. We
require the timer to provide accurate timing differences, but do
not need absolute timestamps or synchronization between the
two timers. For the enclave part, we implement the counting
thread from prior work [82] that provides a cycle count. The
counting thread is running in the enclave so it is also secure.

For the NIC part, the SmartNIC we use does not provide
a timing API [83]. So we simulate the timer based on packet
number: the timer would fire out when the number of packets
received by the NIC reaches a threshold. As we mentioned
in §V-A, a packet number-based epoch could be attacked.
Here, we only use it as a simulated timer to verify the
epoch synchronization mechanism. For TRUSTSKETCH to be
deployed in the real world, a real timer is needed. For example,
there are other SmartNICs [7] that provide a timing API.

We set the epoch length to 1s, so there would be a MAC
exchange every second. We have evaluated that performance
is not sensitive to the epoch length (not shown). We use two
counters (Cpass and Cfail) in the enclave and in the NIC to
track how many MAC checks have passed and failed.

Reactions for MAC mismatch. Upon detection of a MAC
mismatch indicating the presence of an attacker, TRUSTS-
KETCH must operate in a timely manner to limit the impact of
the attack. Here, we consider two natural alternatives. First, we
can use a secure channel between the NIC or the enclave to no-
tify the cloud operator and defer policy actions to the operator.
We assume that this channel is set up during bootstrap, which
is typical in many modern software-defined data centers. In
addition, we also provide hooks for a faster response in the data
path, i.e., in the enclave or NIC. For example, TRUSTSKETCH
can react to MAC mismatch immediately by stopping further
damage; e.g.,, to isolate a compromised server from inflicting
further damage.

Key management. There is the risk of integrity violations
if we reuse the same key for a long time. To avoid this, we
envision periodically refreshing the key (say every 10 million
packets) by using a stronger cryptographic key generation
algorithm (e.g., HOTP [87]). Note that this does not require
additional synchronization between the enclave and the NIC.

TCB size. TRUSTSKETCH in the enclave part consists of
5K LoC. In comparison, OVS consists of ~364K LoC, and
the DPDK library consists of ~131K LoC. Therefore, placing
OVS and DPDK in host memory greatly reduces the TCB size
by 99x.

VIII. EVALUATION
We perform a wide range of experiments to evaluate the

effectiveness of TRUSTSKETCH and demonstrate that:

• Security: Today’s systems are vulnerable to simple attacks.
TRUSTSKETCH detects the attacks in less than one second.
• Performance: Compared to existing unsecure systems,
TRUSTSKETCH incurs low overhead in terms of throughput
(7%) and latency (6µs).

Server 1 Server 2

Ethernet Cable

SmartNIC

Enclave
Sketch

Host
OVS/DPDK

Container
Sender

DumbNIC

Receiver

Fig. 11: Evaluation Testbed6

Task Sketch Memory (KB)

Heavy Hitters
Count-Min Sketch [40] 200

Count Sketch [36] 200
CocoSketch [91] 500

Cardinality HyperLogLog [48] 5
Flow size distribution MRAC [59] 250

Heavy change FlowRadar [64] 600

General UnivMon Sketch [68] 800
Elastic Sketch [88] 750

TABLE III: Sketch parameters for evaluation

• Generality: We implement 8 state-of-the-art sketches and
demonstrate that TRUSTSKETCH is applicable to different
sketches without accuracy degradation.

A. Experimental Methodology
Testbed. As shown in Fig. 11, our testbed has two commodity
servers: both have 24-core 3.00GHz Intel Xeon Gold 5317
CPU with 512 GB RAM and a Netronome SmartNIC. Server
1 enables Intel SGXv2 [43] and runs TRUSTSKETCH. We
run Docker [73] on Server 1 to create containers. We run
MoonGen [44] in a container to generate realistic packets
packets i.e., according to a packet trace. Server 2 runs a
DPDK receiver and the SmartNIC on Server 2 is configured
as a dumbNIC. The two servers are directly connected via
a 40Gbps link. We enable jumbo frames in Open vSwitch to
allow the tag to be added to large packets (making them larger
than the default MTU of 1500 bytes).

Workloads. We use four types of workload to represent
various network conditions: (1) Data Center: data center packet
traces UNI1 and UNI2 from [32]. (2) CAIDA: Anonymous
Internet traces [6] collected from a commercial backbone link.
(3) Min-sized: synthetic traffic with min-sized packets (64B).
This workload represents high line-rate stress tests (4) Max-
sized: synthetic traffic with max-sized packets (1500B).

Sketches and Parameters. We implement 8 state-of-the-art
sketches for a variety of telemetry tasks as shown in Table III.

Metrics. We use 5-tuple as the flow key. For telemetry metrics,
we report relative_error = |t−treal |

treal
, where treal is the ground

truth of a metric and t is the measured value. For throughput
and latency, we report median and use the error bar to show
a 95% confidence interval.

Systems in Comparison. We compare the following system
designs: (1) Vanilla: Existing sketch-based implementation

6TRUSTSKETCH monitors bidirectional traffic (incoming and outgoing of the
server). We also switch the sender and receiver to test traffic in the other
direction. For brevity, we only report the results of the outgoing traffic (the
numbers of the incoming traffic are similar).

10

0 1 2 3 4 5 6
Time (s)

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

traffic sent into the network
traffic monitored

(a) Vanilla: fails to report the attack
traffic volume

0 1 2 3 4 5 6
Time (s)

0

5

10

15

20

No
rm

al
ize

d
Th

ro
ug

hp
ut

traffic sent into the network
traffic monitored

(b) TRUSTSKETCH: detects the at-
tack in less than 1s and shuts off all
traffic

Fig. 12: Inject-Packet-Attack

0 5 10 15 20 25
Time (s)

0
20
40
60
80

100

Re
la

tiv
e

Er
ro

r (
%

)

Modify
Attack

w/ attack
w/o attack

(a) Vanilla: the accuracy of teleme-
try metrics degrades after the attack
is launched.

0 2 4 6 8 10 12
Time (s)

0
1
2
3
4
5
6
7
8

Co
un

te
r (

C f
ai

l) Modify
Attack

(b) TRUSTSKETCH: the increase of
counter value shows that TRUSTS-
KETCH detects the attack in less
than 1s.

Fig. 13: Modify-Packet-Header-Attack

without any security mechanisms; (2) Safebricks: we reim-
plement Safebricks [78] with running sketches in the enclave;
and (3) TRUSTSKETCH: End-to-end TRUSTSKETCH design
and implementation.

B. End-to-End Validation With Real Attacks
We examine the security of our design by testing our end-to-

end prototype against real attacks. The compute and memory
integrity is guaranteed by the enclave by construction. Thus,
in the interest of brevity, we do not explicitly test against
Sketch-Compute-Attack and Sketch-Memory-Attack. Instead,
we focus on testing Sketch-Input-Attack which depends on our
input validation. We implement two Sketch-Input-Attacks and
check if TRUSTSKETCH can preserve Sketch-input-integrity
under the corresponding attacks.

Inject-Packet-Attack. We run a separate MoonGen [44]
pktgen application on Server 1 to send malicious traffic. In
this case, the pktgen bypasses the sketch in the enclave and
creates unmonitored outgoing traffic. As shown in Fig. 12,
the self-generated traffic is forwarded without being monitored
by Vanilla. On the other hand, TRUSTSKETCH detects the
unmonitored traffic and raises an alert in one second. The
operator can make control decisions on how to handle this
traffic, e.g., dropping all packets to minimize the risk of attack.

Modify-Packet-Header-Attack. We launch a modify-packet-
header attack by modifying the outgoing packet headers when
the packets are buffered in the virtual switch buffer (those
packets have already been processed by the sketch and waited
to be sent out by the NIC). By modifying the packet headers,
the sketch would monitor incorrect packet stream and hence
generate incorrect telemetry results. We calculate the accuracy
of three telemetry metrics (L2 Norm, Entropy, Cardinality)
every five seconds. As shown in Fig. 13(a), the telemetry accu-
racy of Vanilla degrades greatly after the attack is launched. On
the other hand, TRUSTSKETCH could immediately detect the

attack (Fig. 13(b)): after only one second, Cfail (the counter
tracking how many MAC checks have failed) on the NIC
starts to increase7, indicating that the NIC correctly detects
this attack.

C. Performance
Next, we show the overall performance of TRUSTSKETCH.

Throughput. To measure the throughput of TRUSTSKETCH,
we use MoonGen [44] to generate high-speed packet streams
based on traces via a VM in Server 1 and send packets to a
DPDK receiver in Server 2. Fig. 14 shows that compared to
Vanilla, TRUSTSKETCH incurs 7% overhead.

Latency. We use chrony [38] to synchronize the system clocks
between two servers and measure the one-way delay. When
MoonGen packet generator sends packets from a VM in Server
1, the sending rate is limited to 80% of the maximum system
throughput (as shown in Fig. 14). For each packet, a timestamp
is added to the packet header before it leaves the VM. When
the DPDK receiver on Server 2 receives the packet, it extracts
the sending timestamp from the packet and calculates the
elapsed time. As shown in Fig. 15, TRUSTSKETCH incurs
6µs latency compared to Vanilla. Compared to Vanilla, even
Safebricks adds about 4µs to the overall latency due to the cost
of context switches between the host memory and the enclave
memory.

Accuracy. We calculate the accuracy of the telemetry metrics
and demonstrate that TRUSTSKETCH could achieve the same
accuracy as Vanilla as shown in Fig. 16 (we only show the
accuracy result for UnivMon Sketch for brevity).

Optimization. When implement TRUSTSKETCH, we use two
optimization techniques. Fig. 17 shows the throughput gain
of using multiple NIC threads(§V-B), and removing enclave
transition(§VII-A).

NIC Resource Usage. We calculate the NIC CPU usage based
on how many cores it takes to achieve 40Gbps. It takes 9 cores
without running input validating and 10 cores with running
input validating. Given that the NIC has 54 cores in total, the
CPU utilization overhead is around 1.9%. We compute the NIC
memory usage based on the size of all variables we use for
the input validation mechanism. We use 104KB, only 0.53%
of the total NIC on-chip memory (19.2MB).

IX. RELATED WORK
Sketch-based telemetry. A number of techniques have been
proposed to improve the accuracy, generality and performance
of sketch-based telemetry [54], [67], [68], [88], [91]. For
example, UnivMon adopts universal sketching theory to build
a general sketch to estimate a wide range of traffic statistics.
CocoSketch extends the canonical SpaceSaving algorithm [74]
to support unbiased estimation over all flows. Our telemetry
framework with CPU and SmartNIC can adapt to different
kinds of sketches for different telemetry tasks.

Other aspects of secure telemetry. OblivSketch [61] uses
oblivious data structures and algorithms in the control plane to
ensure the privacy of the telemetry statistics during query time.
However, it only improves the security of the telemetry tool in
the control plane and assumes that the data plane is trustworthy.
Our work focuses on the data plane and the integrity of the

7Netronome provides a tool to read NIC variable values from command line.

11

CAIDA Data
Center

Min
sized

Max
sized

Traces

0

10

20

30
Th

ro
ug

hp
ut

(G
bp

s) Elastic Sketch

CAIDA Data
Center

Min
sized

Max
sized

Traces

0

10

20

30 UnivMon Sketch

CAIDA Data
Center

Min
sized

Max
sized

Traces

0

10

20

30 Count Sketch

Vanilla
Safebricks
TrustSketch

Fig. 14: Throughput comparison: compared to Vanilla, TRUSTSKETCH incurs 7% overhead.

CAIDA Data center Min-sized Max-sized
Traces

0

10

20

30

40

La
te

nc
y

(u
s)

Fig. 15: Latency comparison: com-
pared to Vanilla, TRUSTSKETCH
incurs 6µs latency.

L2 Norm Entropy L1 Norm Cardinality
0
2
4
6
8

10

Re
la

tiv
e

Er
ro

r (
%

)

Vanilla
TrustSketch

Fig. 16: TRUSTSKETCH
achieves the same accuracy as
Vanilla.

CAIDA Data
Center

Min
sized

Max
sized

Traces

0

10

20
Th

ro
ug

hp
ut

(G
bp

s)

0.11 0.06 0.01 0.15

Unoptimized
+NIC Parallel Processing
+Reduce Enclave Transition

Fig. 17: Throughput with differ-
ent TRUSTSKETCH optimizations
applied.

measurements (i.e., not confidentiality) and is complementary
to their work.

Secure Enclaves for Network Functions. LightBox [42],
Safebricks [78], S-NFV [84], SGX-Box [51] are frameworks
that improve security for general virtualized network functions.
However, they could not guarantee Sketch-input-integrity. An
attacker could insert, drop, or modify packets between the
telemetry tool and the NIC and remain undetected.

Verifiable fault localization and measurements. Dy-
naFL [90] could identify compromised and misconfigured
routers in the data plane. Other work on trustworthy mea-
surements [26] focuses on verifying the performance measure-
ments reported by each network domain. However, these works
focus on wide-area setting with router-specific constraints. In
contrast, our work focuses on providing a trustworthy software
telemetry tool in the cloud.

X. DISCUSSION
Before we conclude, we discuss limitations and alternative

usage model for TRUSTSKETCH.

Limitations of TRUSTSKETCH First, we note that for sketch-
input-integrity, we only protect the path between the enclave
and the SmartNIC, so we only protect the packets that access
the network. An attacker could still corrupt the traffic between
the sketch and a VM. For instance, the attacker could send
packets from one VM and spoof the source IP address to
pretend that the packets are sent by another VM. Second, an
attacker could also corrupt the traffic between VMs (e.g., using
one VM to send traffic to another VM on the same physical
machine to launch a DoS attack). We cannot guarantee the
correctness of the telemetry result for traffic between VMs on
the same physical machine because those packets do not go
through the NIC.

Alternative cloud usage model Some cloud customers rent
clusters of bare metal servers [1] from cloud providers and
build their own virtual private cloud. In this scenario, the cloud
provider still manages the datacenter network between the
servers, but cloud customers will manage the whole software
stack on the bare metal, including VM, telemetry tool, virtual
switch, and hypervisor. In this case, cloud customers can
use TRUSTSKETCH to run trustworthy telemetry to better
manage their virtual private clouds, but the scope of threats of

interest in these deployments may be different (e.g., to detect
compromised components rather than to account per se).

Deployability concerns with enclaves. There have been con-
cerns about the long-term viability of SGX. For example, SGX
is deprecated on “desktop” or “client” machines in the 11th and
12th generations of Intel Core processors [10]. However, on
server platforms, SGX is currently supported and is expected
to have ongoing support in the foreseeable future [21]. More
generally, the enclave-specific requirements of TRUSTSKETCH
are minimal and can potentially be supported in other enclave
technology as well; e.g., Intel TDX [12]). As such, we believe
that our architecture and design which combine an enclave and
a SmartNIC to ensure trustworthy telemetry will also apply to
future server technologies.

XI. CONCLUSIONS
Our work is motivated by the observation that existing

software sketch telemetry frameworks can be circumvented by
cloud attackers, effectively deceiving downstream management
tasks. To address this, we take a first-principles approach
and formally define correctness properties for trustworthy
sketch-based telemetry. We present a practical design called
TRUSTSKETCH, which achieves correctness, high performance
and is also general i.e., supports many classes of sketches.
Therefore, TRUSTSKETCH can serve as a basis for future
trustworthy software sketch telemetry deployment.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feed-

back. This work was supported in part by NSF grants CNS-
2107086, CNS-2106214, and CPS-2111751.

REFERENCES

[1] Amazon ec2 bare metal. https://aws.amazon.com/about-aws/whats-n
ew/2019/02/introducing-five-new-amazon-ec2-bare-metal-instances/.

[2] Amazon Web Services (AWS). https://aws.amazon.com/.

[3] AMD Secure Memory Encryption (SME). https://developer.amd.com/
sev/.

[4] AWS Nitro Enclaves. https://aws.amazon.com/cn/ec2/nitro/nitro-encla
ves/.

[5] Azure announces next generation Intel SGX confidential computing
VMs. https://techcommunity.microsoft.com/t5/azure-confidential
-computing/azure-announces-next-generation-intel-sgx-confidential-c
omputing/ba-p/2839934.

[6] CAIDA Trace. https://www.caida.org/catalog/datasets/monitors/passiv
e-equinix-nyc/.

[7] Cisco Nexus SmartNIC. https://www.cisco.com/c/en/us/products/inter
faces-modules/nexus-smartnic/index.html.

[8] Google Cloud Platform. https://cloud.google.com/.

12

https://aws.amazon.com/about-aws/whats-new/2019/02/introducing-five-new-amazon-ec2-bare-metal-instances/
https://aws.amazon.com/about-aws/whats-new/2019/02/introducing-five-new-amazon-ec2-bare-metal-instances/
https://aws.amazon.com/
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://aws.amazon.com/cn/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/cn/ec2/nitro/nitro-enclaves/
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://www.caida.org/catalog/datasets/monitors/passive-equinix-nyc/
https://www.caida.org/catalog/datasets/monitors/passive-equinix-nyc/
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html
https://cloud.google.com/

[9] Hackers exploiting saltstack vulnerability hit data centers. https://ww
w.datacenterknowledge.com/security/hackers-exploiting-saltstack-vul
nerability-hit-data-centers.

[10] Intel Core Processors 12th Generation. https://cdrdv2.intel.com/v1/dl/g
etContent/655258.

[11] Intel is halting development of the networking chip it got from Barefoot
Networks. https://www.bizjournals.com/sanjose/news/2023/01/26/inte
l-halts-development-of-tofino-switch-chips.html.

[12] Intel Trust Domain Extensions. https://www.intel.com/content/www/us
/en/developer/articles/technical/intel-trust-domain-extensions.html.

[13] Kubernetes. https://kubernetes.io/.

[14] Microsoft Azure. https://azure.microsoft.com/en-us/.

[15] Netronome smartnic. https://www.netronome.com/products/smartnic/
overview/.

[16] openstack. https://www.openstack.org/.

[17] Overview of Data Transfer Costs for Common Architectures. https:
//aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-f
or-common-architectures/.

[18] SipHash. https://github.com/veorq/SipHash.

[19] [v5,1/2] member: implement nitrosketch mode - patchwork. https://pa
tches.dpdk.org/project/dpdk/patch/20220916030317.3111820-2-leyi.ro
ng@intel.com/.

[20] Vmware esxi successful vm escape at geekpwn2018 security patch.
https://www.virtualizationhowto.com/2018/11/vmware-esxi-successfu
l-vm-escape-at-geekpwn2018-security-patch/.

[21] Will SGX be deprecated? https://github.com/intel/linux-sgx/issues/760.

[22] Xen hypervisor patched for privilege escalation and information leak
flaws - the new stack. https://thenewstack.io/privilege-escalation-infor
mation-leak-flaws-patched-xen-hypervisor/.

[23] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa. Firecracker: Lightweight virtualization
for serverless applications. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 419–434, Santa
Clara, CA, Feb. 2020. USENIX Association.

[24] A. Agarwal, Z. Liu, and S. Seshan. Heterosketch: Coordinating
network-wide monitoring in hetero-geneous and dynamic networks. In
19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22), Renton, WA, Apr. 2022. USENIX Association.

[25] M. Apostolaki, A. Singla, and L. Vanbever. Performance-Driven Inter-
net Path Selection, page 41–53. Association for Computing Machinery,
New York, NY, USA, 2021.

[26] K. Argyraki, P. Maniatis, and A. Singla. Verifiable network-performance
measurements. In Proceedings of the 6th International COnference,
Co-NEXT ’10, New York, NY, USA, 2010. Association for Computing
Machinery.

[27] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE: Secure
linux containers with intel SGX. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pages 689–
703, Savannah, GA, Nov. 2016. USENIX Association.

[28] E. Assaf, R. Ben-Basat, G. Einziger, and R. Friedman. Pay for a sliding
bloom filter and get counting, distinct elements, and entropy for free.
In Proc. of IEEE INFOCOM, 2018.

[29] W. Bai, S. S. Abdeen, A. Agrawal, K. K. Attre, P. Bahl, A. Bhagat,
G. Bhaskara, T. Brokhman, L. Cao, A. Cheema, R. Chow, J. Cohen,
M. Elhaddad, V. Ette, I. Figlin, D. Firestone, M. George, I. German,
L. Ghai, E. Green, A. Greenberg, M. Gupta, R. Haagens, M. Hendel,
R. Howlader, N. John, J. Johnstone, T. Jolly, G. Kramer, D. Kruse,
A. Kumar, E. Lan, I. Lee, A. Levy, M. Lipshteyn, X. Liu, C. Liu,
G. Lu, Y. Lu, X. Lu, V. Makhervaks, U. Malashanka, D. A. Maltz,

I. Marinos, R. Mehta, S. Murthi, A. Namdhari, A. Ogus, J. Padhye,
M. Pandya, D. Phillips, A. Power, S. Puri, S. Raindel, J. Rhee, A. Russo,
M. Sah, A. Sheriff, C. Sparacino, A. Srivastava, W. Sun, N. Swanson,
F. Tian, L. Tomczyk, V. Vadlamuri, A. Wolman, Y. Xie, J. Yom, L. Yuan,
Y. Zhang, and B. Zill. Empowering azure storage with RDMA. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 49–67, Boston, MA, Apr. 2023. USENIX Association.

[30] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan.
Counting distinct elements in a data stream. In Proc. of RANDOM,
2002.

[31] R. B. Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard.
Constant time updates in hierarchical heavy hitters. In Proc. of ACM
SIGCOMM and CoRR/1707.06778, 2017.

[32] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’10, pages 267–280, New
York, NY, USA, 2010. ACM.

[33] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine Grained
Traffic Engineering for Data Centers. In Proc. of ACM CoNEXT, 2011.

[34] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 44(3):87–95, jul 2014.

[35] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi. Software grand exposure: Sgx cache attacks are practical. In
Proceedings of the 11th USENIX Conference on Offensive Technologies,
WOOT’17, page 11, USA, 2017. USENIX Association.

[36] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. In Proc. of ICALP, 2002.

[37] C. che Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A practical
library OS for unmodified applications on SGX. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 645–658, Santa
Clara, CA, July 2017. USENIX Association.

[38] Chrony. https://chrony.tuxfamily.org/.

[39] G. Cormode and S. Muthukrishnan. An Improved Data Stream
Summary: The Count-Min Sketch and Its Applications. J. Algorithms,
2005.

[40] G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005.

[41] Data Plane Develpment Kit. https://www.dpdk.org/.

[42] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren. Light-
box: Full-stack protected stateful middlebox at lightning speed. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 2351–2367, New York, NY,
USA, 2019. Association for Computing Machinery.

[43] M. El-Hindi, T. Ziegler, M. Heinrich, A. Lutsch, Z. Zhao, and C. Binnig.
Benchmarking the second generation of intel sgx hardware. In Proceed-
ings of the 18th International Workshop on Data Management on New
Hardware, DaMoN ’22, New York, NY, USA, 2022. Association for
Computing Machinery.

[44] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
Moongen: A scriptable high-speed packet generator. In Proc. of ACM
IMC, 2015.

[45] FD.io. Vector packet processing, 2018.

[46] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford,
and F. True. Deriving traffic demands for operational ip networks:
Methodology and experience. IEEE/ACM Transactions On Networking,
9(3):265–279, 2001.

13

https://www.datacenterknowledge.com/security/hackers-exploiting-saltstack-vulnerability-hit-data-centers
https://www.datacenterknowledge.com/security/hackers-exploiting-saltstack-vulnerability-hit-data-centers
https://www.datacenterknowledge.com/security/hackers-exploiting-saltstack-vulnerability-hit-data-centers
https://cdrdv2.intel.com/v1/dl/getContent/655258
https://cdrdv2.intel.com/v1/dl/getContent/655258
https://www.bizjournals.com/sanjose/news/2023/01/26/intel-halts-development-of-tofino-switch-chips.html
https://www.bizjournals.com/sanjose/news/2023/01/26/intel-halts-development-of-tofino-switch-chips.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://kubernetes.io/
https://azure.microsoft.com/en-us/
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://www.openstack.org/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://github.com/veorq/SipHash
https://patches.dpdk.org/project/dpdk/patch/20220916030317.3111820-2-leyi.rong@intel.com/
https://patches.dpdk.org/project/dpdk/patch/20220916030317.3111820-2-leyi.rong@intel.com/
https://patches.dpdk.org/project/dpdk/patch/20220916030317.3111820-2-leyi.rong@intel.com/
https://www.virtualizationhowto.com/2018/11/vmware-esxi-successful-vm-escape-at-geekpwn2018-security-patch/
https://www.virtualizationhowto.com/2018/11/vmware-esxi-successful-vm-escape-at-geekpwn2018-security-patch/
https://github.com/intel/linux-sgx/issues/760
https://thenewstack.io/privilege-escalation-information-leak-flaws-patched-xen-hypervisor/
https://thenewstack.io/privilege-escalation-information-leak-flaws-patched-xen-hypervisor/
https://chrony.tuxfamily.org/
https://www.dpdk.org/

[47] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K.
Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg. Azure accelerated
networking: Smartnics in the public cloud. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI’18, page 51–64, USA, 2018. USENIX Association.

[48] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm. 2007.

[49] T. Garfinkel, M. Rosenblum, and D. Boneh. Flexible OS support and
applications for trusted computing. In 9th Workshop on Hot Topics
in Operating Systems (HotOS IX), Lihue, HI, May 2003. USENIX
Association.

[50] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache attacks
on intel sgx. In Proceedings of the 10th European Workshop on
Systems Security, EuroSec’17, New York, NY, USA, 2017. Association
for Computing Machinery.

[51] J. Han, S. Kim, J. Ha, and D. Han. Sgx-box: Enabling visibility on en-
crypted traffic using a secure middlebox module. In Proceedings of the
First Asia-Pacific Workshop on Networking, APNet’17, page 99–105,
New York, NY, USA, 2017. Association for Computing Machinery.

[52] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever. Blink: Fast connectivity recovery entirely in the data
plane. In Proc. of USENIX NSDI, 2019.

[53] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C. Chen, and
G. Zhang. Sketchvisor: Robust network measurement for software
packet processing. In Proc. of ACM SIGCOMM, 2017.

[54] Q. Huang, P. P. Lee, and Y. Bao. Sketchlearn: Relieving user burdens in
approximatemeasurement with automated statistical inference. In Proc.
of ACM SIGCOMM, 2018.

[55] Q. Huang, H. Sun, P. P. C. Lee, W. Bai, F. Zhu, and Y. Bao. Omnimon:
Re-architecting network telemetry with resource efficiency and full
accuracy. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’20, page 404–421, New York, NY, USA, 2020. Association
for Computing Machinery.

[56] IP Security (IPsec) and Internet Key Exchange (IKE) Document
Roadmap. https://datatracker.ietf.org/doc/html/rfc6071.

[57] N. Ivkin, R. B. Basat, Z. Liu, G. Einziger, R. Friedman, and V. Braver-
man. I know what you did last summer: Network monitoring using
interval queries. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 3(3):1–28, 2019.

[58] D. Jackson. Alloy: A new technology for software modelling. In
J.-P. Katoen and P. Stevens, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 20–20, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

[59] A. Kumar, M. Sung, J. J. Xu, and J. Wang. Data streaming algorithms
for efficient and accurate estimation of flow size distribution. In
Proceedings of the Joint International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’04/Performance ’04,
page 177–188, New York, NY, USA, 2004. Association for Computing
Machinery.

[60] D. Kuvaiskii, S. Chakrabarti, and M. Vij. Snort intrusion detection
system with intel software guard extension (intel sgx), 2018.

[61] S. Lai, X. Yuan, J. K. Liu, X. Yi, Q. Li, D. Liu, and S. Nepal.
Oblivsketch: Oblivious network measurement as a cloud service. In
NDSS, 2021.

[62] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang. Data streaming
algorithms for estimating entropy of network traffic. In Proc. of ACM
SIGMETRICS/Performance, 2006.

[63] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring
fine-grained control flow inside sgx enclaves with branch shadowing. In
Proceedings of the 26th USENIX Conference on Security Symposium,
SEC’17, page 557–574, USA, 2017. USENIX Association.

[64] Y. Li, R. Miao, C. Kim, and M. Yu. Flowradar: A better netflow for data
centers. In Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, NSDI, pages 311–324, Berkeley,
CA, USA, 2016. USENIX Association.

[65] Y. Li, R. Miao, C. Kim, and M. Yu. Lossradar: Fast detection of lost
packets in data center networks. In Proceedings of the 12th International
on Conference on Emerging Networking EXperiments and Technologies,
CoNEXT ’16, page 481–495, New York, NY, USA, 2016. Association
for Computing Machinery.

[66] G. Liu, H. Sadok, A. Kohlbrenner, B. Parno, V. Sekar, and J. Sherry.
Don’t yank my chain: Auditable NF service chaining. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), pages 155–173. USENIX Association, Apr. 2021.

[67] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the ACM Special
Interest Group on Data Communication, pages 334–350. ACM, 2019.

[68] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One
sketch to rule them all: Rethinking network flow monitoring with
univmon. In Proc. of ACM SIGCOMM, 2016.

[69] Z. Liu, S. Zhou, O. Rottenstreich, V. Braverman, and J. Rexford.
Memory-efficient performance monitoring on programmable switches
with lean algorithms. CoRR, abs/1911.06951, 2019.

[70] A. Manousis, Z. Cheng, R. B. Basat, Z. Liu, and V. Sekar. Enabling
efficient and general subpopulation analytics in multidimensional data
streams, 2022.

[71] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In Proceedings of the 2nd Inter-
national Workshop on Hardware and Architectural Support for Security
and Privacy, HASP ’13, New York, NY, USA, 2013. Association for
Computing Machinery.

[72] Mellanox BlueField-2 SmartNIC. https://diaway.com/files/PB_BlueFi
eld-2_SmartNIC_ETH.pdf.

[73] D. Merkel. Docker: Lightweight linux containers for consistent devel-
opment and deployment. Linux J., 2014(239), Mar. 2014.

[74] A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient computation of
frequent and top-k elements in data streams. In Proc. of ICDT, 2005.

[75] G. Nychis, V. Sekar, D. G. Andersen, H. Kim, and H. Zhang. An
empirical evaluation of entropy-based traffic anomaly detection. In ACM
IMC, 2008.

[76] H. Oh, A. Ahmad, S. Park, B. Lee, and Y. Paek. Trustore: Side-channel
resistant storage for sgx using intel hybrid cpu-fpga. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’20, page 1903–1918, New York, NY, USA, 2020.
Association for Computing Machinery.

[77] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The Design and Implementation of Open vSwitch. In Proc. of USENIX
NSDI, 2015.

[78] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy. Safebricks: Shielding
network functions in the cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), pages 201–
216, Renton, WA, Apr. 2018. USENIX Association.

[79] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani. Fast
monitoring of traffic subpopulations. In Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, pages 257–270, 2008.

14

https://datatracker.ietf.org/doc/html/rfc6071
https://diaway.com/files/PB_BlueField-2_SmartNIC_ETH.pdf
https://diaway.com/files/PB_BlueField-2_SmartNIC_ETH.pdf

[80] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca. Planck: Millisecond-scale monitoring and
control for commodity networks. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, pages 407–418, New York,
NY, USA, 2014. ACM.

[81] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori. An
inside job: Remote power analysis attacks on fpgas. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1111–1116, 2018.

[82] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard.
Malware guard extension: Using sgx to conceal cache attacks. In
M. Polychronakis and M. Meier, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 3–24, Cham, 2017.
Springer International Publishing.

[83] R. Shashidhara, T. Stamler, A. Kaufmann, and S. Peter. FlexTOE:
Flexible TCP offload with Fine-Grained parallelism. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), pages 87–102, Renton, WA, Apr. 2022. USENIX Association.

[84] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-nfv: Securing
nfv states by using sgx. In Proceedings of the 2016 ACM International
Workshop on Security in Software Defined Networks & Network
Function Virtualization, SDN-NFV Security ’16, page 45–48, New
York, NY, USA, 2016. Association for Computing Machinery.

[85] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford. Heavy-hitter detection entirely in the data plane. In Proc.
of ACM SOSR, 2017.

[86] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution. In Proceedings of the 26th USENIX
Conference on Security Symposium, SEC’17, page 1041–1056, USA,
2017. USENIX Association.

[87] M. View, D. M’Raihi, F. Hoornaert, D. Naccache, M. Bellare, and
O. Ranen. HOTP: An HMAC-Based One-Time Password Algorithm.
RFC 4226, Dec. 2005.

[88] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proc. of ACM SIGCOMM, 2018.

[89] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement
with opensketch. In Proc. of USENIX NSDI, 2013.

[90] X. Zhang, C. Lan, and A. Perrig. Secure and scalable fault localization
under dynamic traffic patterns. In 2012 IEEE Symposium on Security
and Privacy, pages 317–331, 2012.

[91] Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu, R. Zhang, and
J. Jiang. Cocosketch: high-performance sketch-based measurement over
arbitrary partial key query. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 207–222, 2021.

[92] M. Zhao and G. E. Suh. Fpga-based remote power side-channel attacks.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 229–244,
2018.

15

	Introduction
	Background & Motivation
	Setting: Cloud Network Telemetry
	Background on Sketches
	Threat Model and Attacks

	Requirements and Existing Solutions
	Security Requirements
	System Requirements
	Existing Solutions and Limitations

	Design Overview
	 Roots of Trust
	Design Space
	Our Design: TrustSketch

	Ensuring Input Integrity in TrustSketch
	Synchronizing MAC exchanges
	Handling multithreading

	Security Analysis
	Qualitative Analysis
	Model Driven Analysis

	Implementation
	Optimizations
	Prototype

	Evaluation
	Experimental Methodology
	End-to-End Validation With Real Attacks
	Performance

	Related Work
	Discussion
	Conclusions
	References

