
Protocol Compliance in Popular RTC Applications
Peiqing Chen*

University of Maryland
College Park, Maryland, USA

pqchen99@umd.edu

Peng Qiu*
University of Pennsylvania

Philadelphia, Pennsylvania, USA
qiupeng@seas.upenn.edu

Lambda†
Lambda

Lambda, USA
Lambda@gmail.com

Zaoxing Liu
University of Maryland

College Park, Maryland, USA
zaoxing@umd.edu

Abstract
Real-time communication (RTC) has been prevalent since COVID-
19, supporting billions of video calls and voice chat interactions.
Protocols such as STUN, TURN, RTP, RTCP, and QUIC play a criti-
cal role in transmitting RTC media in various applications. Based
on standardized protocol specifications, in this paper, we investi-
gate the extent of protocol compliance by analyzing the network
traffic in real-world one-on-one calls. We capture and filter RTC
traffic, design a Deep Packet Inspection framework to identify all
messages for RTC media transmission, and systematically evaluate
each message’s compliance against protocol specifications. Our
analysis of six popular RTC applications—Zoom, FaceTime, What-
sApp, Facebook Messenger (i.e., Messenger), Discord and Google
Meet—reveals that: 1) None of the studied applications strictly
follow all RTC protocol specifications, and existing protocol imple-
mentations, except for QUIC, have some level of non-compliance;
2) Existing applications either implement proprietary protocols
or modify existing message types to achieve the desired protocol
functionality.

CCS Concepts
• Networks → Network protocol; Network measurement;
Peer-to-peer protocols.

Keywords
Real-time Communication (RTC), Network Protocols, NetworkMea-
surement

ACM Reference Format:
Peiqing Chen*, Peng Qiu*, Lambda†, and Zaoxing Liu. 2025. Protocol Com-
pliance in Popular RTC Applications. In Proceedings of the 2025 ACM Internet
Measurement Conference (IMC ’25), October 28–31, 2025, Madison, WI, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3730567.3764438

∗The two authors contributed equally in this work.
† We anonymize the author to protect the author’s identity.

This work is licensed under a Creative Commons Attribution 4.0 International License.
IMC ’25, Madison, WI, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1860-1/2025/10
https://doi.org/10.1145/3730567.3764438

1 Introduction
Real-Time Communication (RTC) has been a cornerstone technol-
ogy, shaping the way we connect and interact on the internet. RTC
applications, such as Zoom, FaceTime, WhatsApp, Facebook Mes-
senger (i.e., Messenger), Discord, and Google Meet, build upon a
stack of media transmission protocols to ensure low-latency, secure,
and reliable transmission of audio and video between clients. Key
components include RTP [35] for media delivery, RTCP [15] for per-
formance feedback, STUN [34] and TURN [31] protocols for NAT
traversal. These protocols are integrated into widely adopted RTC
frameworks such as WebRTC [13, 16, 22], which provide unified
APIs and reference implementations to simplify and standardize
RTC application development.

In this paper, we focus on an important but underexplored aspect
of RTC protocol behavior: protocol compliance. We define protocol
compliance as if observed protocol messages strictly follows their
corresponding protocol specifications (e.g., RFC 3550 for RTP [35],
RFC 5389 for STUN [23], RFC 5766 for TURN [31], and RFC 9000
for QUIC [14]), including correct use of message types, attributes,
header fields, and semantic structure. Today, many RTC applica-
tions diverge from protocol specifications in both structure and
semantics. Some introduce proprietary protocols that encapsulate
or obfuscate standard messages; others redefine message types,
overload standard attributes, or use RTC protocols for non-standard
purposes such as bandwidth probing or session signaling [4, 25].

Studying protocol compliance is not merely a theoretical con-
cern; it has direct practical implications. At its core, compliance
is a prerequisite for RTC interoperability—the ability of different
applications to understand and exchange real-time media without
bespoke adaptation layers. This principle has been formally recog-
nized by regulatory efforts such as the European Union’s Digital
Markets Act (DMA) [1, 24], which mandates that by 2028, major
RTC applications must support cross-platform voice and video
calls between individual users. While the current RTC ecosystem
lacks interoperable applications, we argue that adherence to com-
mon protocol specifications lowers this barrier. When applications
implement RTC protocols consistently, they inherently improve
their ability to parse and process packets from other implementa-
tions. Conversely, by measuring the degree of non-compliance, we
can also estimate the technical challenges involved in achieving
such interoperability. Beyond regulatory requirements, protocol
compliance is fundamental to the RTC ecosystem itself. For de-
velopers, it fosters code modularity, reusability, and compatibility

https://doi.org/10.1145/3730567.3764438
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3730567.3764438

IMC ’25, October 28–31, 2025, Madison, WI, USA Peiqing Chen, Peng Qiu, Lambda, and Zaoxing Liu

across applications and vendors. For network operators, it enables
effective traffic classification, monitoring, and policy enforcement
through protocol-aware network devices. For researchers and proto-
col designers, compliance measurements reveal how well protocol
specifications are followed in practice, highlighting discrepancies
between specification and real-world deployment, and informing
future protocol evolution.

Despite its significance, protocol compliance in RTC applications
has not been quantified. Prior work has examined traffic volume,
quality metrics (e.g., latency, jitter), and codec performance [6, 21],
but avoids message-level structural analysis due to several key chal-
lenges: 1) RTC applications are closed-sourced, preventing direct
inspection of protocol logic; 2) messages are often encapsulated in
application-specific proprietary formats, which confound standard
DPI tools; and 3) protocol usage varies across platforms, complicat-
ing unified analysis.

This paper presents the first cross-application, protocol
compliance study of real-world RTC traffic. To address the
above challenges, we design a measurement framework to capture,
extract, classify, and evaluate messages for RTC media transmis-
sion against their protocol specifications, and use it to evaluate six
prevalent applications under 1-on-1 call experiments with varying
network conditions. We develop a two-stage filtering pipeline to
isolate RTC traffic from unrelated traffic generated by background
activities and define a five-criterion compliance model to check
the compliance of each message according to message types, fields,
attributes, and semantics.

Summary of Findings. Using this framework, we reveal several
protocol implementation strategies and widespread deviations from
protocol specifications:

(1) RTC applications use different subsets of protocols. Zoom
uses STUN, RTP, and RTCP. Messenger, WhatsApp, and Google
Meet use STUN, TURN, RTP, and RTCP. FaceTime uses STUN,
TURN, RTP, and QUIC. Discord uses only RTP and RTCP.

(2) No application fully follows all the protocol specifications.
Zoom has a non-compliant implementation in STUN while com-
pliant in RTP and RTCP. WhatsApp and Messenger both imple-
ment STUN and RTCP without following protocol specifications.
FaceTime has non-compliance with STUN, TURN, and RTP. Dis-
cord has non-compliance in RTP and RTCP. Google Meet imple-
ments RTP compliantly but does not completely follow STUN
and RTCP.

(3) Two common modification strategies: Zoom and FaceTime
prepend proprietary headers to RTC protocol messages; What-
sApp, Messenger, and Discord introduce undefined message or
attribute types, particularly in STUN and RTCP.

(4) STUN and RTCP have the highest level of non-compliance
in implementation, with around half of their observed mes-
sage types exhibiting compliance violations across multiple ap-
plications.

(5) Among all the RTC applications, Google Meet, Messenger,
and WhatsApp are more compliant, while Zoom, Discord,
and FaceTime are less compliant comparatively. Above
95% of messages in Google Meet, Messenger, and WhatsApp are
compliant. Over 99.9% datagrams in Zoom traffic and over 72%

datagrams in FaceTime traffic contain non-standard protocol
headers. All 11 message types used in Discord are non-compliant.

(6) We uncover several application-specific network behav-
iorswhich have not been reported before. For example, Zoom al-
ways uses filler datagrams in RTC traffic; Discord applies SSRC=0
in RTCP messages; FaceTime transmits a high volume of propri-
etary datagrams in cellular-based calls only.
Together, our findings demonstrate that protocol non-

compliance is both widespread and application-specific. To support
future research, we publicly release our dataset and compliance
analysis framework.1 These resources enable reproducible
evaluation and provide a foundation for new studies on RTC
protocol behavior, fuzz testing, and deployment diagnostics.

2 Background and Motivation
A typical RTC application supports two types of calls: one-on-
one (1-on-1) and group calls (with more than two participants). In
this paper, we focus on 1-on-1 calls for two main reasons. First,
1-on-1 calls account for the majority of RTC traffic. It has been
reported that over 80% of calls are 1-on-1 since the COVID-19
pandemic [5, 17]. Second, most well-known RTC frameworks and
protocols, including ICE [18] and TURN [30], are primarily designed
for 1-on-1 calls. Due to space limitations, we plan the study of group
calls as future work. Next, we will discuss the 1-on-1 call procedure
and related media transmission protocols.

2.1 1-on-1 RTC Call
1-on-1 RTC call involves two processes, signaling and media trans-
mission, working as the control plane and the data plane, respec-
tively. Signaling is essential in control tasks such as connection
setup, session management, and call termination. It helps the de-
vices discover each other’s network presence and exchange session
metadata necessary for media transmission. These changes are ne-
gotiated and propagated through the signaling server to ensure
both peers remain synchronized. For example, when a client de-
vice toggles its microphone or camera, the signaling server would
add or remove a media session [26]. Overall, the signaling phase
does not transmit any media data; it only coordinates connection
setup/termination. While there is no standardized signaling pro-
tocol, applications need to implement their own signaling mech-
anisms, commonly using HTTPS or WebSocket to relay session
descriptions and connectivity candidates.

In the media transmission phase, the two devices exchange audio
and video in a real-time manner. In this process, many network
protocols will be used, including STUN, TURN, RTP, RTCP, and
QUIC.

The first step in media transmission is to determine whether
a direct connection can be established between the two clients.
To do this, each client uses STUN (Session Traversal Utilities for
NAT) [28] to discover its own public-facing IP address and port
by sending Binding Requests to external STUN servers. Once both
endpoints obtain their public addresses, they exchange this infor-
mation and then use STUN messages again to probe each other’s
reachability to find a direct path. Besides, STUN also serves as the
connectivity check between the peers during the call.
1https://anonymous.4open.science/r/rtc_code-631F/README.md

https://anonymous.4open.science/r/rtc_code-631F/README.md

Protocol Compliance in Popular RTC Applications IMC ’25, October 28–31, 2025, Madison, WI, USA

Caller Callee

Direct P2P
connection

NAT traversal success
Caller Callee

Relay
connection

NAT traversal failure

Relay server

Relay
connection

Figure 1: RTC transmission modes: P2P vs Relays. Whether a
call uses P2P or Relay is determined byNAT traversal success.

If no direct path is found—due to symmetric NATs or fire-
walls—the call falls back to relay-based communication using
TURN (Traversal Using Relays around NAT) [30]. In this case,
each client sends media through a TURN server (i.e., relay server),
which forwards packets to the other endpoint. TURN uses the same
message format as STUN; thus, we discuss STUN/TURN jointly
throughout the paper . This process results in two possible trans-
mission modes (Figure 1):

• Peer-to-peer (P2P) mode: If a direct path between the two de-
vices is available, the application can establish a P2P connection
to transmit media directly.
• Server relay mode: If P2P connectivity is not feasible, due
to NATs or firewalls, the application relies on relay servers to
traverse NAT. In this case, the media is forwarded through relay
servers.

Once a session is established, the clients begin exchanging media
using RTP (Real-time Transport Protocol) [35]. RTP carries the
actual audio and video frames, enriched with sequence numbers
and timestamps for proper playback synchronization. Each RTP
stream is taggedwith a unique SSRC identifier, allowing the receiver
to distinguish concurrent streams (e.g., audio vs. video).

Alongside RTP, the clients periodically exchange RTCP (Real-
Time Transport Control Protocol) [35] packets. These reports pro-
vide end-to-end performance metrics, including jitter, packet loss,
and round-trip time. Applications use this feedback to perform
congestion control, detect degradation, and adapt the bitrate or
resolution dynamically. When security is required, the same con-
trol messages are protected with SRTCP (Secure RTCP) [40], which
adds encryption and message-authentication tags to preserve con-
fidentiality and integrity in transit.

In addition to these four protocols, QUIC (Quick UDP Inter-
net Connections) [14] is increasingly adopted in RTC applications
as an alternative transport protocol to UDP, encapsulating RTP
media streams over its datagram extension to provide encrypted,
multiplexed, and congestion-controlled delivery, while preserving
real-time performance [3, 20, 39].

2.2 Protocol Compliance
In practice, these protocols are often implemented with deviations
from protocol specifications in the RFCs, motivating a systematic
study of protocol compliance: If the implementations of these media
transmission protocols strictly follow the RFC protocol specifications.

Specifically, a compliant protocol implementation instance is a mes-
sage2 that strictly follows the RFC protocol specifications in both
structure and intended usage. For example, RTP compliance is de-
fined according to RFC 3550 [35], while STUN compliance refers
to RFC 3489 [33], RFC 5389 [23], and RFC 8489 [28].3 A compli-
ant message uses defined message types and attributes, preserves
valid field values, and conforms to expected protocol behavior. Any
violation will result in a non-compliant implementation.

Although these protocols are formally specified in RFCs, real-
world implementations frequently diverge from those standards.
We observe applications introducing undefined STUN message or
attribute types, repurposing RTP header fields, or prepending pro-
prietary headers before RTC messages. Such deviations—whether
motivated by legacy constraints, optimization attempts, or engi-
neering oversight—carry three critical consequences. First, they
erode interoperability: when two endpoints interpret the same pro-
tocol message differently, or when one endpoint transmits a non-
compliant message, end-to-end media exchange between otherwise
compatible RTC systems can break, undermining recent regulatory
pushes (e.g., the EU Digital Markets Act [1, 42]) for cross-vendor
interoperability. Second, they can degrade performance: oversized
attributes, redundant headers, and extra encapsulation increase
bandwidth and processing overhead, harming the quality of expe-
rience on constrained networks. Third, they blind measurement
and security tools: DPI engines, traffic classifiers, and network
debuggers depend on standard header layouts; proprietary modifi-
cations obscure message semantics and make automated analysis
error-prone.

These challenges call for a systematic study of protocol com-
pliance in RTC applications. In this work, we develop a message-
level compliance framework and apply it to six widely-used RTC
platforms—Zoom, FaceTime, WhatsApp, Messenger, Discord, and
GoogleMeet—evaluatingwhether their protocolmessages adhere to
the structural and semantic requirements defined in STUN, TURN,
RTP, RTCP, and QUIC. Our goal is to quantify the extent and nature
of protocol compliance.

2.3 Overview of Measurement Framework
Studying message-level compliance in production RTC applications
is challenging: these systems are closed-source, lack debugging in-
terfaces, and do not expose internal protocol logs. We treat these ap-
plications as black boxes and infer compliance solely from observed
network traffic and behaviors. We focus on media transmission
protocols rather than signaling protocols, because the former are
specified by public RFCs, while signaling protocols are application-
specific and lack universal specifications. Our study has four key
steps:
Application selection. To ensure that our analysis captures the
most representative instances of RTC protocol implementations,
we aim to perform measurements over applications with both the
largest user bases and the most diverse user populations. Study-
ing such applications both allows us to learn about 1) what the
current market needs and how they implement features to satisfy
2A message is one complete application protocol data unit, consisting of a header and
payload. For protocols with multiple specification versions (e.g., STUN), we consider
an implementation compliant if it adheres to any of the officially published RFCs.
3STUN has multiple versions.

IMC ’25, October 28–31, 2025, Madison, WI, USA Peiqing Chen, Peng Qiu, Lambda, and Zaoxing Liu

them, and 2) the versatility and adaptability of RTC designs to dif-
ferent scenarios, covering both consumer solutions and business
communications. Based on this motivation, we select six popular
RTC applications: Zoom, FaceTime, WhatsApp, Messenger, Dis-
cord, and Google Meet. These applications are representative in
today’s RTC market [29, 41]. In this paper, we focus on the mo-
bile applications only. It’s worth noting that most of these mobile
apps are WebRTC-based [22]. For example, there are explicit docu-
mentations on WhatsApp, Messenger, and Google Meet built using
WebRTC components [8–12]. Comparing the compliance differ-
ences between mobile apps and their web browser versions is also
an important research topic and will be left as future work.
Traffic collection and filtering (Section 3). To evaluate protocol
compliance, we require RTC traffic that is diverse, realistic, and
clean. The traffic must span different network conditions to capture
representative protocol behaviors, last long enough to expose full
message patterns, and be free from unrelated traffic that could
distort compliance measurement. We meet these requirements by
conducting 1-on-1 call experiments via both cellular and Wi-Fi
connections, and extracting clean RTC traffic using timespan filters
and stream-specific heuristics.
Evaluate compliance for each message (Section 4). To deter-
mine whether each message in the RTC call traffic is compliant,
we need 2 steps: 1) identify all the RTC messages from the RTC
call traffic using our own DPI, 2) determine the compliance of each
RTC message according to a set of rules by checking their message
type, header and attribute validity, and syntax integrity.
Compliance summary across protocols and applications (Sec-
tion 5). Once the compliance results for each message are obtained,
two natural questions arise: 1)Across various protocols, whose imple-
mentation complies most closely with its protocol specification? 2)
Across six applications, which one implements their protocols most
closely with their respective protocol specification? We answer
these two questions by the message compliance result.

3 Traffic Collection and Filtering
To analyze the compliance of protocol implementations in vari-
ous RTC applications, we collect their traffic that is representative
of real-world use. To achieve this goal, we conduct 1-on-1 RTC
calls of 5 applications across both cellular and Wi-Fi network con-
ditions, and in both relay and P2P transmission modes. We use
Wireshark [43] to record traffic from both client devices. Then, to
extract RTC media traffic, we group packets into transport streams
and apply a two-stage filtering process that removes background
activities based on stream timespans and protocol-specific heuris-
tics. The resulting dataset is over 17GB, containing 20 million UDP
datagrams from 75 call sessions. As summarized in Table 1, these
traffic are noise-filtered and grouped into streams. We will apply
our deep packet inspection on it for protocol compliance analysis.

3.1 Call Experiment Setup
3.1.1 Device and Network Setup. We conduct 1-on-1 call experi-
ments using two iPhone 11 devices. 4 Our setup covers two network

4We select iPhone devices for our study because FaceTime is only available on iOS and
macOS platforms. Although FaceTime recently introduced web-based participation
for non-Apple devices, the feature lacks native protocol support.

conditions: Wi-Fi and 4G cellular. For Wi-Fi, we use a TP-LINK
Archer A7 router running OpenWRT, configured with 400 Mbps
download and 100 Mbps upload bandwidth to emulate a stable
home network. For cellular, we use Verizon as our ISP.

To study P2P and relay mode communication, we control the
NAT traversal behavior under Wi-Fi. By modifying local firewall
rules on the router, we selectively enable or disable UDP hole punch-
ing. When P2P is allowed, media flows directly between devices;
when blocked, applications are forced to route media through their
designated relay infrastructure (e.g., TURN or SFU servers).

However, under cellular networks, we cannot manipulate NAT or
firewall behavior. Whether media is transmitted via P2P or relay is
entirely determined by the application’s logic and its compatibility
with the mobile carrier’s network infrastructure. In our measure-
ments, we observed application-dependent behaviors: Zoom and
Discord consistently used relay mode; FaceTime consistently used
P2P; while WhatsApp, Messenger, and Google Meet initially used
relay mode and switched to P2P after 30 seconds. These findings
reflect the application’s design choices under the tested network
and carrier conditions. It is important to note that our observations
may not generalize to all cellular environments. P2P feasibility on
mobile networks can vary significantly across regions, carriers, and
infrastructure.

As a result, our experiments cover three network configurations:
Wi-Fi with P2P enabled, Wi-Fi with P2P disabled (relay mode),
and cellular connections with application-determined transmission
modes.

3.1.2 Experiment Procedure and Trace Capture. Our experiment
matrix spans six RTC applications and three network configura-
tions, resulting in 15 unique experiments. Each experiment is re-
peated six times with 5-minute calls, totaling 90 calls and over 8
hours of captured traffic.

To capture network traffic from the iPhone devices, we use Ap-
ple’s Remote Virtual Interface (RVI) technology. We connect both
iPhones to a Mac via USB and use the rvictl command to create
virtual network interfaces that expose the iPhone’s network traffic,
then run Wireshark [43] on the Mac to capture packets through
these interfaces. The traffic is divided into the following three an-
notated phases:

• Pre-call phase (60 seconds):We begin capturing traffic 60 sec-
onds before initiating the call. During this period, we perform
standard app startup actions, such as opening the RTC appli-
cation, logging in (if not already authenticated), and ensuring
the app is brought to the foreground from background state.
This phase is used to capture startup-related and other unre-
lated traffic, which later serves as a reference for filtering out
non-RTC activities from the intra-call phase (period between
call initiation and termination).
• Call phase (5 minutes): Starting from call initiation to termi-
nation, we capture all bidirectional traffic while the two devices
exchange real-time audio and video. This phase aligns with the
active RTC session between the caller and the callee.
• Post-call phase (60 seconds): After ending the call, we con-
tinue capturing traffic for 60 seconds. This phase helps us iden-
tify flows that persist beyond the call window.

Protocol Compliance in Popular RTC Applications IMC ’25, October 28–31, 2025, Madison, WI, USA

Application Raw Traffic Unrelated Traffic (Filtered) RTC Traffic

Volume
(MB)

UDP
Strms |Dgrams

TCP
Strms | Segs

Stage 1 UDP
Strms |Dgrams

Stage 2 UDP
Strms |Dgrams

Stage 1 TCP
Strms | Segs

Stage 2 TCP
Strms | Segs

UDP
Strms |Dgrams

TCP
Strms | Segs

Zoom 2975.9 2.2k | 3.2m 2.3k | 469k 323 | 4.6k 1371 | 7.3k 919 | 252k 583 | 43.8k 476 | 3.2m 333 | 72.4k
FaceTime 4179.6 1.1k | 4.4m 1.6k | 284k 259 | 3.6k 664 | 2.7k 534 | 251k 434 | 14.9k 204 | 4.4m 124 | 1.2k
WhatsApp 2625.1 1.1k | 2.9m 1.6k | 273k 256 | 3.7k 575 | 9.5k 559 | 242k 500 | 18.6k 310 | 2.9m 79 | 601
Messenger 3884.1 2.6k | 4.1m 1.6k | 338k 518 | 21.1k 1182 | 9.3k 546 | 278k 397 | 41.8k 896 | 4.1m 239 | 3.3k
Discord 3546.2 1.1k | 4.0m 2.1k | 286k 502 | 4.3k 647 | 3.0k 501 | 253k 324 | 12.4k 292 | 4.0m 147 | 3.0k

Google Meet 5362.8 2.8k | 5.824m 2.6k | 720k 1287 | 20.0k 1154 | 13.6k 1390 | 663k 518 | 23.5k 329 | 5.79m 716 | 33.4k

Table 1: Summary of traffic traces and filtering progress across all applications. The highlighted UDP streams (strms) and
datagrams (dgrms) are RTC traffic for protocol-compliance analysis.

During the experiment, we manually log timestamps for key
events, including call initiation and callee join, to facilitate semantic
alignment in post-analysis. We also record each device’s private
and public IP addresses before and after the call, which assists in
determining whether the session used P2P or relay-based transport
paths. After each experiment configuration, we collected 30minutes
of background activities to build a dataset for filtering unrelated
traffic.

3.2 Unrelated Traffic Filtering
To study the protocol compliance in RTC traffic, we first filter out
unrelated traffic generated by background activities from our cap-
tured traces. These background activities include OS updates, push
notifications, online ad trackers, and LAN network management
services. Otherwise, they interfere with our protocol analysis and
are misclassified as non-compliant protocols.

One effective way to filter unrelated traffic is to group IP pack-
ets into streams based on their 5-tuple identifiers on the transport
layer, i.e., source IP, source port, destination IP, destination port,
and transport protocol. This grouping serves two purposes. First,
many protocol behaviors span multiple packets in a single stream,
such as periodic keepalives or multi-packet media delivery. Second,
unrelated traffic also manifests as independent streams that can
be distinguished by their timing, destination, or protocol features.
Organizing packets into streams enables us to apply filtering heuris-
tics at the stream level, making the removal of non-RTC traffic both
more accurate and more scalable.

Once all packets are grouped, we apply a two-stage filtering
(illustrated in Figure 2). The first stage filters streams whose active
timespan does not fully align with the call window. The second
stage targets intra-call background activities using protocol-aware
heuristics, including TLS SNI matching, local IP exclusion, and port-
based filtering. This process yields a high-fidelity RTC-only traffic
dataset suitable for downstream compliance analysis.

3.2.1 Filter Streams by Timespans. Wefirst classify unrelated traffic
based on temporal alignment with the call session. We consider
three types of unrelated traffic: 1) streams that begin before the call
starts, 2) streams that end after the call ends, and 3) streams that
span both. These flows are unlikely to be RTC-related, as legitimate
sessions typically start and end in synchrony with user-initiated
calls.

Call periodPre-call period Post-call period

RTC streams Background streams

Raw traffic

Stage 1: Filter streams
by timespans (Sec 3.4.1)

Get RTC traffic

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇:

Stage 2: Filter streams
by heuristics (Sec 3.4.2)

Figure 2: Two-stage filtering to extract RTC traffic.

To detect such flows, we compare each stream’s active timespan
to the call window. We leverage the pre-call and post-call capture
periods described in Section 3.1.2. Specifically, we expand the call
window slightly, by 2 seconds before and after the call, allowing for
minor timing offsets or delayed packet delivery. Any stream not
fully enclosed within this extended window is removed as unrelated
traffic.

3.2.2 Filter Intra-call Unrelated Traffic by Heuristics. Despite
stream-level filtering by timespan, we still observe some unrelated
traffic within the call window. These include push notifications, app
store polling, local service discovery, etc. Such activities may initiate
short-lived connections that overlap with the call window, making
them harder to distinguish. To address this challenge, we design a
second-stage filtering process based on four protocol-aware heuris-
tics. These heuristics aim to detect and remove intra-call unrelated
traffic that evades the first-stage timing-based filter by exploiting
additional side signals: IP/port reuse patterns, TLS metadata, IP
address scope, and known non-RTC services.

3-tuple timing filter. Some background services, such as Ap-
ple Push Notification Service (APNS) on iOS, maintain persistent
connections to remote servers throughout the experiment. These
services use a fixed 3-tuple (destination IP, port, and protocol) while
frequently varying the source IP or port due to NAT rebinding
or OS-level socket reuse. These packets, although fulfilling the
same background activity functionality, are grouped into different
streams and thus evade the first-stage timespan filtering. To address
this, we analyze the temporal behavior of each destination-side 3-
tuple (i.e., destination IP, destination port, and transport protocol).
If a 3-tuple appears outside the call window, we remove all packets
in the call window that match it. This excludes consistent 3-tuple
connections unrelated to the call.

IMC ’25, October 28–31, 2025, Madison, WI, USA Peiqing Chen, Peng Qiu, Lambda, and Zaoxing Liu

TLS SNI-based filtering. For the remaining TCP traffic, 51.4%
is encrypted using TLS. The encryption makes it difficult to in-
fer their purpose based on payload content alone. To determine
whether these streams are related to the RTC call, we inspect the
Server Name Indication (SNI) field in the TLS Client Hello message,
which reveals the intended destination domain before encryption
begins. We construct a blocklist of known non-RTC domains (e.g.,
oauth2.googleapis.com, web.facebook.com) by analyzing 7.5 hours of
idle-phone traffic. Any stream whose SNI matches a domain in this
list is excluded as unrelated traffic.

Local IP filtering. Local network management services, such
as LAN discovery, can introduce unrelated traffic during RTC calls.
This is common when multiple devices are connected to the same
LAN. To address this, we remove any stream where either endpoint
falls within IPv6 link-local (fe80::/10), unique-local (fd00::/8), or IPv4
private address ranges, and whose IP pair also appears in the pre-
call background capture. This ensures that we filter persistent local
activity while preserving legitimate P2P traffic between the two
call participants.

Port-based exclusion. Some background services communicate
using well-known UDP ports unrelated to RTC, such as DNS (53),
DHCP (67/547), and SSDP (1900). These streams can introduce
unrelated traffic into the call window and confuse protocol analysis.
To address this, we exclude any stream that uses a transport-layer
port number reserved for non-RTC services, based on the IANA
Service Name and Port Number Registry [2].

Together, these intra-call filters further extract RTC traffic from
a variety of unrelated traffic, complementing the earlier stream-
level filtering and enhancing the fidelity of our protocol compliance
analysis.

3.3 Traffic Summary
We summarize the final dataset obtained after filtering in Table 1.
In total, we capture 20.4 GB of raw traffic, consisting of over 26
million IP packets from 90 1-on-1 calls across six applications. After
applying our two-stage filtering, the remaining dataset contains 2.9–
5.8 million UDP datagrams per application, grouped into 200–900
active UDP streams.

In this paper, we focus our protocol compliance analysis solely
on UDP traffic, because the TCP traffic volume is negligible. For
instance, the proportion of TCP segments in WhatsApp and Face-
Time is below 0.4% of total packets. Manual inspection confirms
that these TCP sessions carry only signaling or periodic heartbeat
messages, without media content. While this design choice may
exclude a small portion of RTC messages in TCP segment payloads,
we acknowledge this as a limitation of our study.

To evaluate the quality of our filtering process, we analyze the
protocol composition of the remaining datagrams. We find that
over 99% of these datagrams either contain recognizable messages
or include identifiable application-specific headers. For any other
datagrams, they appear in transport streams that also contain valid
RTC messages, suggesting they are indeed part of the call session
rather than background activities. These observations validate the
effectiveness of our filtering process in isolating RTC-relevant traffic
from background activities.

4 Evaluating Compliance for Protocol Messages
In this section, we evaluate whether the messages observed in RTC
traffic conform to the RFC protocol specifications. These messages
refer to protocol messages used in RTC communication, such as
STUN, TURN, RTP, RTCP, and QUIC. We begin by using a custom
DPI built upon Peaflow [37] to identify all such messages with their
byte segments in the datagrams (Section 4.1). Then we assess their
compliance using a structured methodology based on whether the
message strictly follows the RFC protocol specifications in both
structure and intended usage. We systematically check the message
and attribute types, field values, and syntax (Section 4.2).

4.1 Extract RTC Messages
Deep Packet Inspection (DPI) tools are widely used to extract mes-
sages from traffic traces, such as nDPI [27], L7-filter [19], and
PACE [32]. These tools typically identify protocols by matching a
fixed protocol header pattern at the beginning of transport-layer
payloads. They assume that standard message headers appear at off-
set zero and rely on deterministic parsers built strictly on protocol
specifications.

However, such DPI systems are insufficient in our study due to
two key limitations. First, they fail to handle proprietary protocol
headers present in the datagrams. If a standard RTC protocol mes-
sage is encapsulated in a proprietary protocol header, these DPIs
will fail to recognize it. Second, existing tools are designed to detect
only messages that strictly comply with protocol definitions. For
example, if an RTC protocol message uses an unknown message
type but fits all other protocol patterns, these DPIs will still not
parse it as such a protocol. As a result, non-compliant messages may
be missed. To overcome these limitations, we design a custom two-
stage DPI, which is capable of identifying both standard protocol
messages regardless of the presence of proprietary headers.

4.1.1 Deep Packet Inspection. As illustrated in Algorithm 1, our
custom DPI consists of two steps: candidate extraction and protocol-
specific validation. First, it attempts to find all possible messages in
the datagrams: any contiguous byte sequence in the UDP payload
that matches the structural pattern of an RTC protocol is marked as
a candidate message. Second, it leverages protocol-specific heuris-
tics to eliminate false positives in these candidates. After that, only
structurally meaningful messages will be kept. This helps us extract
all the protocol messages and also reveal the proprietary protocol
headers implemented in the datagrams.

The first step is candidate extraction. Here we iteratively exam-
ine each UDP datagram’s payload by shifting the starting position
from byte offset 𝑖 . At each offset, we apply the header patterns
of the target protocol and check whether any of them match the
byte string starting at that position. We use the header pattern
as described in an existing framework Peafowl [37], but removed
the header field restriction in Peafowl. For example, Peafowl only
allows 30 valid payload type values for RTP [36], while we removed
this restriction and allowed all values. If a match is found, we treat
the matched segment as a candidate for the corresponding protocol.
This offset-shifting pattern matching helps uncover protocol mes-
sages that may be embedded behind proprietary protocol headers.

Protocol Compliance in Popular RTC Applications IMC ’25, October 28–31, 2025, Madison, WI, USA

Algorithm 1 DPI-based Detection of RTC Protocol Messages

1: Input: UDP datagram set 𝐷 = {𝑑 |𝑑 ∈ one RTC call}
2: Proto pattern 𝑝 ∈ {STUN, TURN, RTP, RTCP, QUIC}
3: Init: Candidate message set C← ∅
4: Validated message set O← ∅
5: Step 1: Candidate Extraction
6: for each UDP datagram ∈ 𝐷 do
7: for 𝑖 = 0 to 𝑘 do
8: if match(𝑝 , payload[i:]) then
9: Extract matched message𝑚 from payload[i:]
10: C← C ∪𝑚
11: end if
12: end for
13: end for
14: Step 2: protocol-specific Validation
15: for each𝑚 ∈ C do
16: if protocol_validate(𝑚) then
17: O← O ∪𝑚
18: end if
19: end for
20: Output: O, message set belonging to target protocol 𝑝

The candidate extraction step may yield false positives: two
extracted candidate messages may claim to own several bytes si-
multaneously in the UDP datagram payload. For example, suppose
two candidate messages are extracted at byte offsets 10 and 12 of
the same UDP payload. If the first message declares a length of 40
bytes, it would span bytes 10 to 50; the second candidate message,
starting at byte 12, would overlap with this range. Since a byte in
the payload can belong to at most one well-formed protocol mes-
sage, such an overlap indicates that at least one of the candidates
must be invalid. To resolve such ambiguities, we apply protocol-
specific validation as a second step, which checks for structural
consistency and filters out semantically invalid candidates.

To address this, we design some heuristics for each target proto-
col, checking for field integrity, structural constraints, and internal
consistency:
• STUN/TURN: valid magic cookie; valid length field; consistent
transaction ID between request and response pair.
• RTP: valid SSRC, CSRC, and payload type; continuous sequence
number within the same stream.
• RTCP: valid version field in the header, valid SSRC identifier;
cross validated sender SSRC with known RTP streams.
• QUIC: valid version field in the header; consistent DCID and
SCID across messages.
For example, to extract a STUN message candidate at UDP pay-

load offset position 𝑖 , our DPI will unpack the 20-byte header to
extract the message type, length, magic cookie, and transaction ID.
It verifies that the magic cookie matches the expected constant
(0x2112A442), and then parses each STUN attribute by walking
through the remaining payload as a sequence of TLV-encoded fields
(2-byte type, 2-byte length, followed by a value). Parsing stops ei-
ther when the payload ends or when the parsing logic exceeds the
declared message length. In the validation step, we check whether
the actual number of bytes following the header is sufficient to

Figure 3: Breakdown of datagrams: standard vs proprietary.

Application/
Protocols STUN/TURN RTP RTCP QUIC Fully Proprietary
Zoom 0.0% 78.9% 1.1% N/A 20.0%

FaceTime 0.3% 97.6% N/A 0.1% 2.0%
WhatsApp 1.2% 97.4% 1.0% N/A 0.4%
Messenger 1.4% 87.4% 9.9% N/A 1.3%
Discord N/A 91.4% 7.9% N/A 0.7%

Google Meet 19.8% 71.1% 7.8% N/A 1.3%

Table 2: Message distribution by protocols and applications.

satisfy the declared message length. If not, the message is discarded
as a false positive. Otherwise, we truncate the payload to exactly
match the message length field.

To reduce processing overhead, we impose a maximum offset
limit of 𝑘 bytes (to iterator 𝑖) when extracting candidate messages.
A larger 𝑘 increases the recall rate in message detection, as mes-
sages that appear deeper within the payload can still be identified.
However, higher values also incur substantial computational cost,
especially for the streams carrying high-bitrate media streams.

Empirically, we found that 𝑘 = 200 is sufficient. Across one rep-
resentative trace from each application, extraction with 𝑘 = 200
yielded the same set of validated messages as full-payload extrac-
tion. This confirms that our offset limit achieves a practical balance
between accuracy and runtime efficiency. That said, a higher value
of𝑘 may improve coverage in applications with RTCmessages more
deeply nested behind proprietary headers. Although our dataset
did not contain any validated messages beyond offset 200, future
work could explore adaptive offset bounds or application-specific
heuristics to capture such edge cases when necessary.

4.1.2 Proprietary Header Detection. Our DPI framework enables
us to detect datagram payloads that deviate from standard RTC
protocol (i.e., STUN, TURN, RTP, RTCP, QUIC) structures. In partic-
ular, we identify two types of proprietary protocol implementations
based on the presence and position of standard RTC protocol mes-
sages.

• Proprietary headers: If a valid STUN, TURN, RTP, RTCP, or
QUIC message is detected starting at a non-zero offset within
the UDP payload, we treat the preceding bytes as a proprietary
header. These headers are not part of any known protocol. This
case is common in Zoom and FaceTime.
• Fully proprietary messages: If no recognizable standard pro-
tocol message can be extracted from the entire payload, we
classify the entire datagram as a fully proprietary message. This

IMC ’25, October 28–31, 2025, Madison, WI, USA Peiqing Chen, Peng Qiu, Lambda, and Zaoxing Liu

suggests that the application is using a custom, non-standard
protocol format for that datagram.

4.1.3 Message Extraction Results. We now present the results of
our message identification, including the composition of these data-
grams and the types of protocol messages extracted from them.

Figure 3 categorizes the datagrams into three types: (1) datagrams
that consist entirely of standard protocol messages, (2) datagrams
that contain a proprietary header and at least one standard pro-
tocol message, and (3) datagrams that do not match any known
protocol pattern. We observe that WhatsApp, Messenger, Discord,
and Google Meet rely almost entirely on standard protocol mes-
sages, indicating minimal proprietary protocol customization in
their protocol implementations. In contrast, Zoom and FaceTime
heavily rely on proprietary protocols. For Zoom, all of its datagrams
contain a proprietary header, and 21% of them are fully proprietary.
We provide a detailed analysis of Zoom’s proprietary protocol im-
plementations in Section 5.3. FaceTime follows a similar pattern,
with 72.3% of datagrams containing a proprietary protocol header,
which we also analyze in Section 5.3.

Table 2 shows that these RTC applications use different
combinations of network protocols. Among the 5 applications,
Messenger, WhatsApp, and Google Meet have the same set of proto-
cols. FaceTime does not use RTCP but uses QUIC, whereas the other
applications follow the conventional RTP/RTCP pairing. Discord
does not use STUN at all. This may be because it always transmits its
media through relay servers and never relies on P2P under any net-
work condition. As a result, the NAT traversal function provided by
STUN may be irrelevant to Discord. For Zoom, we observed it send
out STUNmessages while launching the app, which happens before
any call is started. Additionally, STUN messages in the middle of
calls only occur in P2P mode with Wi-Fi networks (Section 5.2). All
the differences highlight that RTC application developers employ
different strategies to solve the same set of challenges in RTC.

How well are false positives being eliminated: Because the
baseline traffic composition is unknown for these closed-source
applications, we cannot determine the exact number of false positive
RTC-related messages. However, the extracted messages exhibit
strong internal consistency after our protocol-specific validation
(e.g., consecutive sequence numbers within an RTP stream, multiple
RTP packets sharing the same SSRC, valid STUN/TURN transaction
identifiers). We are therefore highly confident that the identified
messages are genuine rather than false positives.

4.2 Compliance Assessment Methodology
For each identified message, we evaluate its compliance against
the corresponding protocol specification. Protocol specifications
considered include public WebRTC documentations and RFCs pub-
lished by the IETF [14, 18, 28, 30, 35]. More specifically, we define
five criteria and check the message in question against them in a
sequential manner. A message must satisfy all five criteria to be
deemed compliant; failure at any criterion will result in classifica-
tion as non-compliant.
(1) Message Type Definition. For each message, we first identify

the header field that categorizes the message, noted as message
type, and we verify whether the type is explicitly defined in the
target protocol specifications. For example, a STUN message

with message type 0x0001 is compliant as it matches the Binding
Request defined in the STUN RFC. In contrast, a STUN message
with type 0x0800 is considered non-compliant, as it does not
match any defined type.

(2) Header Field Validity. We then check whether all the rest
of the header fields conform to the syntax and semantics de-
fined in the corresponding protocol specification. Any deviation,
such as a STUN message containing a Transaction ID that ap-
pears sequential rather than randomly generated, constitutes a
compliance violation.

(3) Attribute Type Validity. Next, we examine fields in the mes-
sage payload, where each set of TLV-encoded fields5 is consid-
ered as an attribute. For each attribute, we check if its type is
publicly defined in specifications. Any proprietary or undefined
attribute leads to classification as non-compliant. For instance,
a STUN attribute with type 0x4007, absent from any protocol
specifications, would fail this criterion.

(4) Attribute Value Validity. For each defined attribute, we verify
that its value and structure adhere to protocol rules. As exam-
ples, a TURN Allocate Request carrying a RESERVATION-TOKEN
attribute of incorrect length, or a STUN Binding Success Response
incorrectly including a PRIORITY attribute, both constitute vio-
lations.

(5) Syntax and Semantic Integrity. Finally, we check the overall
message consistency and its contextual behavior. This includes
verifying structural dependencies between fields, attributes, and
message types. Additionally, we consider behavioral context:
for example, while a TURN Allocate Request may individually
appear compliant, a repeated sequence of such requests forming
a periodic ping-pong pattern would be flagged as non-compliant,
since Allocate Requests are intended for session setup, not con-
tinuous connectivity checking.

The assessment process is strictly sequential: once a message
fails any criterion, it is immediately classified as non-compliant
without further checks. This ensures reliability by avoiding cascad-
ing evaluation errors based on already-invalid messages.

5 Compliance across Protocols and Applications
Having extracted all messages and evaluated them from a proto-
col compliance perspective, we now aim to answer the two key
questions:

Q1: Across various protocols, which implementation complies
most closely with its standard? QUIC is most (100%) compli-
ant, while the compliance of other protocols follows RTP >
RTCP > STUN. This pattern is consistent across traffic volume
and protocol message types.

Q2: Across five applications, which one implements their protocols
most closely with their respective protocol specification? FaceTime
is the least compliant by traffic volume.Malformed RTP headers
and undefined STUN/TURN attributes render more than 99% of
FaceTime’s observed bytes non-conformant, giving it the highest
share of non-compliant traffic. Discord is the least compliant by
message type. Every distinct message type we captured in Discord

5TLV (Type-Length-Value) is a flexible data encoding format where each data item is
represented by its type identifier, the length of its value, and the actual value itself.

Protocol Compliance in Popular RTC Applications IMC ’25, October 28–31, 2025, Madison, WI, USA

contains at least one structural or semantic violation in one of its
messages.

5.1 Compliance Results
With all messages extracted and labeled as either compliant or
non-compliant, a natural way to quantify protocol compliance is
to compute the proportion of compliant messages over the total
messages. For example, for each application, we aggregate all its
messages and count the number of compliant messages within.
Or, for each protocol, we aggregate all its messages across the 5
applications and count the number of compliant messages. We refer
to this as volume-based compliancemetric. Since RTP dominates
traffic (e.g., >97% of messages in FaceTime and WhatsApp are RTP),
this metric mainly reflects RTP compliance.

However, this volume-based compliance metric tends to statisti-
cally dilute protocols like STUN or RTCP. For example, even if all
QUIC implementations in FaceTime are fully compliant, the over-
all compliance under this metric would remain low due to RTP’s
overwhelming volume. To complement this view, we introduce a
second metric: message-type-based compliance metric. Rather
than weighting by traffic volume, this metric treats each unique
message type as a unit of analysis and marks it compliant only if all
observed instances conform to the relevant protocol specification.
This approach highlights systematic deviations in protocol usage,
such as the introduction of undefined types or the overloaded use
of standard attributes, regardless of traffic frequency. It is particu-
larly useful for reasoning about engineering complexity and imple-
mentation design, as even rarely used message types often reflect
deliberate customizations, development effort, or feature-specific
optimizations.

5.1.1 Compliance by traffic volume. Figure 4 presents the compli-
ance results using the volume-based metric. We found that Zoom
and WhatsApp have near-perfect compliance across all transmitted
messages, followed by Messenger, Google Meet, and Discord, which
still maintain over 90% compliance. FaceTime exhibits the lowest
compliance rate at around 1.4%, due to all its RTP messages being
non-compliant.

From the protocol perspective, QUIC shows full compliance,
followed by STUN at around 92%. RTP and RTCP have lower com-
pliance ratios, at approximately 79% and 61% respectively, driven
by widespread use of invalid headers and undefined attributes in
several applications.

5.1.2 Compliance by Message Type. Table 3 summarizes the
message-type-based compliance results across all applications and
protocols. For each application, we report the number of compliant
message types over the total number of observed types for each
protocol. The final column aggregates these values across all sup-
ported protocols within the application. The bottom row aggregates
results from a protocol-centric perspective. If multiple applications
use the same message type, it is counted multiple times. This is
because the same protocol element may be interpreted or modified
differently by different vendors. To provide additional details, we
list the specific message types observed for each application and
protocol in three separate tables: Table 4 for STUN/TURN, Table 5
for RTP, and Table 6 for RTCP. QUIC is only observed in FaceTime

Per-application Per-protocol

Figure 4: Compliance ratio by traffic volume.

Applications/
Protocols

STUN/
TURN RTP RTCP QUIC

All
Protocols

Zoom 0/2 50/50 2/2 N/A 52/54
FaceTime 0/4 0/5 N/A 4/4 4/13
WhatsApp 1/10 5/5 4/4 N/A 10/19
Messenger 11/18 5/5 4/4 N/A 20/27
Discord N/A 0/4 0/5 N/A 0/9

Google Meet 15/16 11/11 0/7 N/A 26/34
All Apps 27/50 71/80 10/22 4/4
Table 3: Protocol compliance ratio by message type.

traffic, where we witness long-header packets (types 0, 1, and 2)
and short-header packets. All the observed QUIC messages are
compliant.

From a protocol-centric view (Figures 5), STUN/TURN and RTCP
exhibit the highest rates of non-compliant message types, while
QUIC is fully compliant, and RTP shows strong consistency with
71 out of 80 message types compliant.

From the application-centric perspective (Figures 5), Zoom is
the most compliant, with 52 out of 54 message types passing vali-
dation. In contrast, Discord is the least compliant, with none of its
9 observed message types conforming to the standard. FaceTime,
Messenger, WhatsApp, and Google Meet show mixed results, with
varying levels of non-compliance across different protocols.

5.2 Non-compliance Case Studies
Throughout our study, we conducted a thorough examination of
most non-compliance cases. Here, we present a selection of themost
representative cases, each carefully chosen to illustrate a unique
pattern of non-compliance that deviates from the corresponding
protocol specification. These cases provide valuable insights into
the specific ways in which non-compliance occurs.

5.2.1 Non-compliant cases in STUN/TURN. WhatsApp intro-
duces several undefined STUN message pairs. WhatsApp uses
a pair of STUN message types, 0x0801 and 0x0802, which are not
defined in the STUN protocol specification RFC 8489 [28]. This
pattern is observed in both network conditions and transmission

IMC ’25, October 28–31, 2025, Madison, WI, USA Peiqing Chen, Peng Qiu, Lambda, and Zaoxing Liu

Application Compliant Types Non-compliant Types
Google Meet 0x0001, 0x0004, 0x0008,

0x0009, 0x0016, 0x0017,
0x0101, 0x0103, 0x0104,
0x0108, 0x0109, 0x0113,
0x0200, 0x0300, Chan-
nelData

0x0003

WhatsApp 0x0001 0x0800–0x0805, 0x0003,
0x0101, 0x0103

Messenger 0x0004, 0x0008, 0x0009,
0x0016, 0x0017, 0x0104,
0x0108, 0x0109, 0x0113,
0x0118, ChannelData

0x0800–0x0802, 0x0001,
0x0003, 0x0101, 0x0103

Zoom – 0x0002
FaceTime – 0x0001, 0x0017, 0x0101,

ChannelData

Table 4: Observed STUN/ TURNmessage types across all RTC
applications.

Application Compliant Types Non-compliant Types
Google Meet 100, 103, 104, 109,

111, 114, 35, 36, 63,
96, 97

–

WhatsApp 97, 103, 105, 106, 120 –
Zoom 0, 3, 4, 5, 10, 12, 13,

19, 20, 25, 33, 35, 38,
41, 45, 46, 49, 59, 68,
69, 74, 75, 82, 83, 89,
92, 93, 95, 98, 99, 102–
121, 123, 126, 127

–

Messenger 97, 98, 101, 126, 127 –
FaceTime – 100, 104, 108, 13, 20
Discord – 101, 102, 120, 96

Table 5: Observed RTP message types across all RTC applica-
tions.

Application Compliant Types Non-compliant Types
Google Meet – 200, 201, 202, 204, 205,

206, 207
WhatsApp 200, 202, 205, 206 –
Zoom 200, 202 –
Messenger 200, 201, 205, 206 –
Discord – 200, 201, 204, 205, 206

Table 6: Observed RTCP message types across all RTC appli-
cations.

modes. Before the callee joins a call, the client sends/receives 16
consecutive 0x0801/0x0802 pairs within a burst lasting approxi-
mately 2.2 milliseconds. The 0x0801 messages are notably large,
each 500 bytes in size, and include a custom attribute 0x4004 whose
value consists of long zero-filled sequences. Conversely, the 0x0802

Per-application Per-protocol

Figure 5: Compliance ratio by message type.

replies are compact 40-byte messages. Both message types carry
an attribute 0x4003 with a fixed value of 0xFF. Neither 0x4003 nor
0x4004 attribute type is defined in the STUN specification. Each
0x0801 and 0x0802 pair shares the same transaction ID. In the mean-
time, no standard Binding Request and Binding Response messages
are observed. Therefore, these 0x0801 and 0x0802 may serve as
request-response pairs.

Zoom applies undefined attributes in STUN Binding Requests.
In P2P calls under Wi-Fi, Zoom employs the legacy version of
STUN defined in RFC 3489 [33], which predates the introduction of
the magic cookie field defined in RFC 8489 [28]. Despite the age of
this protocol version, Zoom introduces additional non-compliant
behaviors. Specifically, in Binding Request (0x0001) messages sent
from client to server, Zoom consistently includes an undefined
attribute (0x0101). Its attribute value is always a 20-byte ASCII
string, which is composed of two identical numeric sequences:
1234567890. Conversely, in Shared Secret Request (0x0002) STUN
message sent from Zoom’s server to the client, a different undefined
attribute (0x0103) is present. The length of this attribute value is
always 8 bytes. Neither attribute 0x0101 nor 0x0103 is documented
in STUN protocol specifications (RFC 3489 [33], RFC 5389 [23], or
RFC 8489 [28]).

FaceTime repeatedly transmits modified STUN Binding Re-
quests without receiving any Binding Responses. FaceTime
repeatedly sends out STUN Binding Request messages (0x0001) aug-
mented with an unknown attribute (0x8007). Three distinct 4-byte
values are observed for this attribute: 0x00000009 (present across all
network configurations), 0x00000005, and 0x00000000. The latter two
are related to the P2P mode only. Specifically, 0x00000000 is used on
Wi-Fi networks, and 0x00000005 on Cellular networks. The client
keeps transmitting Binding Requests, with the same Transaction ID,
exactly once per second over one minute, yet no corresponding
Binding Response with the same Transaction ID is ever observed.
This interaction diverges from normal STUN semantics, where suc-
cess responses or exponential-backoff retransmissions are expected.
This suggests that FaceTime may repurpose these Binding Requests
for other purposes.

Protocol Compliance in Popular RTC Applications IMC ’25, October 28–31, 2025, Madison, WI, USA

FaceTime includes unexpected CHANNEL-NUMBER attribute
in TURN Data Indication messages. RFC 8656 [30] speci-
fies that a Data Indication (0x0017) must contain exactly two
attributes—XOR-PEER-ADDRESS and DATA—and nothing else. The
CHANNEL-NUMBER attribute (0x000C) is reserved for Channel-
Bind Request (0x0009), where it maps a peer address to a 2-byte
channel ID in the range 0x4000–0x4FFF. In FaceTime traffic, how-
ever, every observed Data Indicationmessage carries an unexpected
CHANNEL-NUMBER attribute whose value is a constant four-byte
word 0x00000000. This deviates both the message’s allowed at-
tribute set and the attribute’s prescribed length and value range,
indicating a proprietary extension or overloaded use of TURN se-
mantics.
FaceTime uses non-standard address family in STUN
ALTERNATE-SERVER attribute. In FaceTime, approximately
29.4% of STUN Binding Success Response messages (0x0101) carry an
invalid value in the address family field of the ALTERNATE-SERVER
attribute (0x8023): specifically, the field is set to 0x00, whereas the
RFC mandates 0x01 (IPv4) or 0x02 (IPv6) as the only valid values.
Moreover, these messages all include an undefined attribute 0x8008,
which carries a 16-byte random value. This 0x8008 attribute is also
found in Binding Error Response messages (0x0111).
WhatsApp andMessenger transmit undefined STUNmessage
type 0x0800 at call termination.We observe WhatsApp clients
send four STUNmessages with undefinedmessage type 0x0800 near
the end of calls. These messages are sent to the same set of servers
that had been previously contacted during the call setup phase via
TURN Allocate Request (0x0003). Each 0x0800 message carries both
an undefined attribute 0x4000 and the standard XOR-RELAYED-
ADDRESS attribute (0x0016). Messenger exhibits the same behavior,
sending out six such messages to servers at call termination. Given
the consistent occurrence of these undefined messages at the end
of each call, they may be used for signaling the end of calls to relay
servers.

5.2.2 Non-compliant cases in RTP.

FaceTime introduces undefined RTP header extensions. We
observe that all RTPmessages in FaceTime traffic attach one ormore
header extensions with undefined profile identifiers (e.g., 0x8001,
0x8500, 0x8D00), none of which are documented in RFC 8285 [7]
or related protocol specifications. These extensions appear across
multiple payload types (100, 104, 108, etc.) and are consistently
present in 100% of observed RTP messages. Such pervasive use
of proprietary header extension profiles indicates that FaceTime
may customize its RTP header semantics for application-specific
purposes.
Discord deviates RTP header extension semantics by using
reserved identifiers. Discord frequently uses RTP header exten-
sions with the one-byte header form (profile 0xBEDE), where the
extension local identifier field has a value of zero in 4.91% of RTP
messages. According to RFC 8285 [7]: “An ID of 0 is reserved as
padding and has special semantics. Elements with an ID of 0 MUST
be ignored by receivers.” and “An extension element with an ID
value equal to 0 MUST NOT have an associated length field greater
than 0.” However, in Discord’s traffic, these ID=0 extension elements
all have non-zero length fields and contain non-empty payloads,

violating both the padding semantics and the length constraints
defined in the protocol specifications.

Discord uses undefined header extension profiles in RTP
messages with payload type 120.We also observe that 2.58% of
Discord’s RTP messages use undefined header extension profiles,
with profile values ranging from 0x0084 to 0xFBD2, which fall out-
side the standard profiles 0xBEDE or range 0x1000~0x100F defined
in RFC 8285 [38]. These undefined profiles are exclusively observed
in RTP messages of payload type 120.

Zoom does not randomize SSRC values across multiple calls.
According to RFC 3550 [35], the SSRC identifier in RTP should be
chosen randomly to minimize the probability of collision when
multiple RTP streams are active. Reusing the same SSRC across
calls violates this expectation and may reduce robustness in group
calls. We observe Zoom assigning SSRC values from a fixed and
very limited set, rather than generating random identifiers per call.
For example, in the cellular setting we consistently observed the
SSRC values 0x1001401, 0x1001402, 0x1000401, and 0x1000402; in
the P2P Wi-Fi setting we observed 0x1000801, 0x1000802, 0x1000401,
and 0x1000402; and in the relay mode Wi-Fi setting we observed
0x1000C01, 0x1000C02, 0x1000401, and 0x1000402. Within each net-
work setting, exactly four distinct SSRC values were consistently
present, and repeated experiments under the same setting showed
that these SSRC values never changed across calls. This behav-
ior indicates that Zoom deterministically assigns SSRCs based on
network configuration, rather than generating them randomly.

5.2.3 Non-compliant cases in RTCP.

Google Meet does not include the authentication tag in some
SRTCP messages. Google Meet uses the SRTCP protocol (RFC
3711 [40]) to encrypt its RTCP messages. In P2P Wi-Fi and cellular
network settings, every message ends with a 14-byte authentication
portion: a consistent 1-bit E-flag, a 31-bit SRTCP index increasing
over time from 1, and a 10-byte authentication tag. However, when
the call is being relayed and under Wi-Fi connection, we noticed
that most of the RTCP messages only contain a 4-byte authentica-
tion portion, including the E-flag and the SRTCP index, without
any additional bytes for the authentication tag. According to RFC
3711 [40], an authentication tag is required to be included at the
end of an SRTCP message. Thus, Google Meet behavior presents a
non-compliance with this specification.

Discord adds one extra byte marking transmission direction
in RTCP messages. Each Discord RTCP message of message type
200, 204, 205 and 206 adds one extra byte at the end of the RTCP
message. The value of this alone byte always fits the packet di-
rection: it is always 0x00 when the packet is sent from Discord’s
server to the client device and is always 0x80 in the packet sent in
the reverse path. This byte is undefined in any RTCP specification;
nevertheless, its perfect correlation with packet direction indicates
that Discord likely employs it as a proprietary direction flag.

5.3 Other Findings
Here we list all other application-specific findings other than non-
compliance issues, but still worth discussing.

IMC ’25, October 28–31, 2025, Madison, WI, USA Peiqing Chen, Peng Qiu, Lambda, and Zaoxing Liu

Zoom has datagrams containing multiple RTP messages. In
our measurements, 0.21% of Zoom’s RTP-carrying datagrams con-
tain two RTPmessages, a phenomenon that is consistently observed
across all three tested network settings. Both RTP messages always
appear in RTP payload 110. All datagrams containing two RTP mes-
sages belong to the same stream in one call, and these two messages
share the same SSRC and timestamp but carry different sequence
numbers. The first RTP message always has a fixed short payload of
7 bytes, a behavior observed in every experiment, while the second
RTP message carries a regular large payload (around 1000 bytes).
According to RFC 3550, “typically one packet of the underlying
protocol contains a single RTP packet, but several RTP packets
may be contained if permitted by the encapsulation” [35]. Thus,
while carrying two RTP messages in one datagram is not strictly
disallowed, the expected behavior in practice is to place one RTP
message per datagram. The consistent appearance of a fixed-size
7-byte-payload RTP message preceding a regular one, together with
its non-consecutive sequence numbers, strongly suggests that this
short RTP message is not used for carrying media data, but instead
serves a different, Zoom-specific purpose.
Discord encrypts RTCP messages using a proprietary format
other than SRTCP. While all Discord RTCP messages expose
valid headers and SSRC fields, their payloads appear encrypted
in a non-standard manner, as fields like NTP timestamp in Sender
Report cannot be correctly decoded. They do not match the Secure
RTCP (SRTCP) format: expected fields like the E-flag, SRTCP in-
dex, and authentication tag are missing. Instead, each message ends
with a 3-byte trailer: the first two bytes form a monotonic counter,
and the last byte signals direction (0x80 for client-to-relay server,
0x00 for relay server-to-client). These suggest a proprietary encryp-
tion scheme for RTCP payloads. This behavior is not a compliance
violation, but indicates customized RTCP handling in Discord.
Discord uses zero as sender SSRC inRTCP feedbackmessages.
In approximately 25% of Discord’s RTCP Transport Layer Feedback
(205) messages, the sender SSRC field is set to 0. This value does not
match any SSRC in concurrent RTP streams, making Discord the
only application in our dataset to adopt this usage. While RFC 3550
defines the SSRC as a unique identifier for each RTP participant, it
does not explicitly forbid the value 0. All other header fields in these
messages conform to the RTCP protocol specifications, suggesting
that SSRC=0 is used intentionally. We hypothesize that they may
use this for a special purpose.
FaceTime prepend proprietary headers before standard pro-
tocol messages only on relay mode.We observe that 89.2% of
FaceTime’s datagrams contain proprietary headers preceding RTP
messages when the call is transmitted using relay mode. This propri-
etary header is witnessed in fewer than 50 appearances throughout
any P2P mode call, no matter whether under a cellular or Wi-Fi con-
nection. The length of these headers ranges from 8 to 19 bytes. All
observed headers begin with a fixed 2-byte value 0x6000, followed
by a 2-byte field that indicates the total length of the remaining
header fields plus the embedded standard protocol message.
FaceTime transmits a higher amount of fully proprietary
messages under cellular than under Wi-Fi. We observe around
10% of FaceTime’s RTC traffic belonging to fully proprietary data-
grams under cellular network experiments. On the other hand,

under Wi-Fi networks, the proportion of fully proprietary data-
grams is always below 1%. These fully proprietary messages come
in the same form of 36 bytes in length, starting with a fixed 6-byte
attribute 0xDEADBEEFCAFE. The last 8 bytes serve as 2 4-byte coun-
ters, whose value constantly increases during the call. These fully
proprietary datagrams have a fixed packet rate of 20 packets per
second with even intervals. These facts indicate that FaceTime may
implement its own proprietary protocol for connectivity checks
during cellular calls.
Zoom prepend media messages with a proprietary protocol
header. Across all Zoom calls we examined, each RTP and RTCP
packet is preceded by a 24 – 39 byte proprietary header. Prior
work [25] splits this header into two sections: an SFU section and a
media section. In the SFU section, a one-byte field indicates packet
direction—0x00 for packets sent to Zoom’s server and 0x04 for
packets received from it. In the media section, another type field
specifies payload function: type 15 for audio RTP, type 16 for video
RTP, and type 33 - 35 for RTCP. Using DPI-based RTC message
detection (Section 4.1.1) on calls under cellular network and P2P-
disabled Wi-Fi settings, we found that 6.9% of RTP/RTCP packets
instead use type 7. In the header, type 7 acts as an additional wrap-
per around the original media types (e.g., 15, 16, 33, etc.), and the
payload content follows the original type definition. When type 7 is
present, the packet-direction byte becomes 0x01 (client→ server)
or 0x05 (server→ client). Within the SFU section of every propri-
etary header, we identified a 4-byte field that remains constant for
each RTP transport stream (defined by 5-tuple) within a call. We
infer that Zoom uses this field as a media ID to identify each media
stream session.
Zoom transmits extra filler messages not carryingmedia dur-
ing the call. Zoom transmits a special class of fully proprietary
messages, each consisting of 1000 identical bytes (e.g., all 0x01, or
all 0x02). These messages account for 53% of all fully proprietary
messages in Zoom RTC traffic. These messages do not contain
any recognizable standard protocol message and are present in all
observed Zoom calls. We refer to them as filler messages. These
messages all share the same 5-tuple with one of the RTP or RTCP
streams, and appear in bursts lasting 10–20 seconds at the start of
each stream. During this burst, the packet rate increases from 0 to
500 packets/sec in relay mode, and from 0 to 180 packets/sec in P2P
mode. Similar bursts occasionally appear intra-call without user-
triggered actions. Furthermore, when the callee exits and rejoins
the call, a new filler burst is immediately triggered. These behaviors
suggest that Zoom may use these filler messages to probe avail-
able bandwidth by intentionally increasing the traffic load. While
this mechanism may improve media adaptation, the use of unde-
tectable, fully proprietary traffic deviates from standard-compliant
RTC behavior.

6 Discussions
Observations from non-compliant implementations: Based
on our study findings, we can speculate several possible motiva-
tions behind these non-compliant implementations: 1) Potential
performance optimization: Examples include Zoom’s propri-
etary filler messages likely serving as bandwidth probes, and Face-
Time’s custom connectivity checks under cellular networks. They

Protocol Compliance in Popular RTC Applications IMC ’25, October 28–31, 2025, Madison, WI, USA

are likely used to support a higher resolution and a more stable
call. 2) Backward compatibility considerations: For instance,
Zoom continues to use an earlier RFC 3489 version of STUN, which
may help preserve compatibility with legacy infrastructure. 3) Dif-
ferent implementations of standard features: For example,
Google Meet does not include the SRTCP authentication tag in
some RTCP messages, and Discord encrypts RTCP messages with
a non-standard format. These applications are likely to implement
their own method for the standardized functions. 4) Possible ex-
tensions of existing protocols: In some cases, applications add
proprietary extensions to achieve functionality not directly sup-
ported by current specifications. Examples include Zoom’s pro-
prietary protocol headers and FaceTime’s undefined RTP header
extensions. We stress that these are informed hypotheses: as a pas-
sive measurement study without access to the application source
code, we cannot determine the exact intent behind these design
choices.

The prevalence of non-compliant implementation in RTC
applications highlights the challenges for interoperability
between them. The interoperability between RTC applications
refers to the ability to establish real-time communication sessions
and exchange media streams directly, without requiring extra adap-
tations. The consistent interpretation and processing of protocol
messages across applications is the most critical to achieve this goal.
The European Union’s Digital Markets Act (DMA) mandates that
by 2028, major platforms must support cross-application voice and
video calls between end-users. Although the DMA does not specify
how such interoperability should be achieved from protocol designs,
protocol compliance is arguably one of the most practical solutions.
However, our findings indicate that this assumption is far from real-
ity. Across five popular applications—Zoom, FaceTime, WhatsApp,
Messenger, and Discord—we observe pervasive non-compliance:
proprietary headers, undefined attributes, and repurposed message
types are widespread. In an interoperable future, each application
would need to implement bespoke parsers to handle the protocol
quirks of every other application, increasing engineering complex-
ity and maintenance overhead. These deviations, therefore, present
substantial barriers to interoperability, and overcoming them will
require concerted efforts from service providers, standard bodies,
and the broader RTC ecosystem.

The pervasive protocol modifications observed in today’s
RTC applications indicate that existing RTC protocol specifi-
cations are insufficient, and we call for community attention
to the improvement and design of next-generation RTC pro-
tocols. Our findings reveal two key reasons that motivate us to call
for this action: 1) There is no widely adopted common set of
RTC protocols. Among the studied applications, each employs a
distinct combination of protocols: Zoom uses STUN, RTP, RTCP,
and proprietary protocols; FaceTime adopts STUN, TURN, RTP,
QUIC, and proprietary protocols; WhatsApp and Messenger use
STUN, TURN, RTP, and RTCP; while Discord relies solely on RTP
and RTCP without using STUN. This diversity implies that the
current RTC protocol ecosystem lacks a unified framework to guide
developers in composing this set of protocols into a coherent ap-
plication stack. As a result, developers are forced to make ad-hoc
decisions on which protocols to adopt, extend, or modify to fulfill

their specific requirements. 2) Current protocols lack sufficient
functionality, forcing developers to introduce modifications
and proprietary protocols as extensions. Our compliance anal-
ysis shows that the majority of non-compliance cases stem from
newly designed behaviors, including implementing proprietary pro-
tocols (Zoom, FaceTime), new attributes (extensively used in STUN,
TURN, RTP, and RTCP), and undefined message types (particularly
in STUN). These extensive modifications suggest that existing pro-
tocols fail to meet the functional needs of modern RTC applications,
or that achieving desired functionalities using existing standards
would incur unacceptable complexity. Together, these observations
call for a systematic effort to evolve or redesign RTC protocols to
better serve the needs of current and future applications, reducing
fragmentation and facilitating interoperability.

7 Conclusions
Our study provides the first message-level measurement of proto-
col compliance in RTC applications. We conducted analysis across
five popular RTC applications—Zoom, FaceTime, Messenger, What-
sApp, and Discord, covering both cellular and Wi-Fi networks.
Our findings reveal that while QUIC implementations remain fully
compliant with their protocol specifications, all other RTC proto-
cols—including STUN, TURN, RTP, and RTCP—are implemented
with varying degrees of non-compliance across all applications.
Also, every RTC application introduces modifications to the proto-
cols it employs, such as proprietary headers, undefined message or
attribute types, and altered message semantics, making their imple-
mentations deviate from the corresponding protocol specifications
in the RFCs. We further discussed the practical implications of these
widespread non-compliances, which not only introduce significant
barriers to achieving RTC interoperability but also undermine the
health and sustainability of the broader RTC ecosystem. These in-
sights motivate our call for community attention towards the design
of next-generation RTC protocols to achieve RTC interoperability.

8 Acknowledgments
We thank the anonymous IMC reviewers for their thorough com-
ments and feedback. Liu and Chen were supported in part by NSF
grants CNS-2431093 and SaTC-2415754. We also thank Jiachen Lu,
Patrick Gough, Wei Wang, Yibo Zhao, Nengneng Yu, David Dong,
and Ankit Penmatcha for their kind help.

A Ethics
This work does not raise any ethical issues.

References
[1] 2022. Digital Markets Act (DMA): Article 7 - Obligations for Gatekeepers Regard-

ing Interoperability. https://www.eu-digital-markets-act.com/Digital_Markets_
Act_Article_7.html. Accessed: May 2025.

[2] Internet Assigned Numbers Authority. 2024. Service Name and Transport Proto-
col Port Number Registry. https://www.iana.org/assignments/service-names-
port-numbers/service-names-port-numbers.xhtml

[3] David Baldassin, Ludovic Roux, Guillaume Urvoy-Keller, and Dino Martin Lopez
Pacheco. 2024. Assessing the Interplay between WebRTC and QUIC congestion
control algorithms. In 2024 International Symposium on Networks, Computers and
Communications (ISNCC). IEEE, 1–6.

[4] Salman A Baset and Henning Schulzrinne. 2004. An analysis of the skype peer-
to-peer internet telephony protocol. arXiv preprint cs/0412017 (2004).

[5] Anastasia Belyh. 2023. Video conferencing statistics for 2024. https://www.
founderjar.com/video-conferencing-statistics/

https://www.eu-digital-markets-act.com/Digital_Markets_Act_Article_7.html
https://www.eu-digital-markets-act.com/Digital_Markets_Act_Article_7.html
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.founderjar.com/video-conferencing-statistics/
https://www.founderjar.com/video-conferencing-statistics/

IMC ’25, October 28–31, 2025, Madison, WI, USA Peiqing Chen, Peng Qiu, Lambda, and Zaoxing Liu

[6] Reed G Coda, Sana G Cheema, Christina A Hermanns, Armin Tarakemeh,
Matthew L Vopat, Meghan Kramer, John Paul Schroeppel, Scott Mullen, and
Bryan G Vopat. 2020. A review of online rehabilitation protocols designated for
rotator cuff repairs. Arthroscopy, sports medicine, and rehabilitation 2, 3 (2020),
e277–e288.

[7] R. Cordeiro, V. Singh, M. Westerlund, and C. Perkins. 2017. A General Mechanism
for RTP Header Extensions. RFC 8285. https://datatracker.ietf.org/doc/html/
rfc8285

[8] Google for Developers. 2023. Get started withMeet Media API. https://developers.
google.com/workspace/meet/media-api/guides/get-started. Google recommends
using libwebrtc for Meet Media API in native/mobile clients. Accessed: 2025-09-
22..

[9] Google for Developers. 2023. Meet Media API concepts. https://developers.google.
com/workspace/meet/media-api/guides/concepts. Google Meet documentation:
clients use WebRTC to communicate with Meet servers. Accessed: 2025-09-22..

[10] Philipp Hancke. 2015. MESSENGER EXPOSED (report). https://webrtchacks.
com/wp-content/uploads/2015/05/messenger-report.pdf. Reverse-engineering
report: Facebook Messenger mobile apps used the WebRTC.org library. Accessed:
2025-09-22..

[11] Philipp Hancke. 2015. What’s up with WhatsApp and WebRTC? https:
//webrtchacks.com/whats-up-with-whatsapp-and-webrtc/. Analysis show-
ing WhatsApp includes pieces of WebRTC code in its mobile app. Accessed:
2025-09-22..

[12] Philipp Hancke. 2015. WHATSAPP EXPOSED (investigative report). https:
//webrtchacks.com/wp-content/uploads/2015/04/WhatsappReport.pdf. Inves-
tigative report examining WhatsApp internals and its use of WebRTC-related
components. Accessed: 2025-09-22..

[13] Christer Holmberg, Stefan Hakansson, and Goran Eriksson. 2015. Web real-time
communication use cases and requirements. Technical Report.

[14] J. Iyengar and M. Thomson. 2021. QUIC: A UDP-Based Multiplexed and Secure
Transport. RFC 9000. https://datatracker.ietf.org/doc/html/rfc9000

[15] J. Chesterfield J. Ott. 2010. RTP Control Protocol (RTCP) Extensions for Single-
Source Multicast Sessions with Unicast Feedback. RFC 5760. https://datatracker.
ietf.org/doc/html/rfc5760

[16] Bart Jansen, TimothyGoodwin, VarunGupta, Fernando Kuipers, andGil Zussman.
2018. Performance evaluation of WebRTC-based video conferencing. ACM
SIGMETRICS performance evaluation review 45, 3 (2018), 56–68.

[17] Sagar Joshi. 2024. 50 VoIP Statistics to Reveal the Future of Phone Systems.
https://learn.g2.com/voip-statistics

[18] A. Keränen, C. Holmberg, and J. Rosenberg. 2020. Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal.
RFC 8445. https://datatracker.ietf.org/doc/html/rfc8445

[19] L7-filter Project. 2009. L7-filter: Application Layer Packet Classifier for Linux.
http://l7-filter.sourceforge.net/. Accessed: 2025-05-04.

[20] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti,
Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi.
2017. The QUIC Transport Protocol: Design and Internet-Scale Deployment. In
Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). Los Angeles, CA, USA, 183–196. https://doi.org/10.1145/3098822.3098842

[21] Insoo Lee, Jinsung Lee, Kyunghan Lee, Dirk Grunwald, and Sangtae Ha. 2021.
Demystifying Commercial Video Conferencing Applications. In Proceedings of
the 29th ACM International Conference on Multimedia (Virtual Event, China) (MM
’21). Association for Computing Machinery, New York, NY, USA, 3583–3591.
https://doi.org/10.1145/3474085.3475523

[22] Google LLC. 2011. WebRTC Source Code. https://webrtc.googlesource.com/src

[23] Philip Matthews, Jonathan Rosenberg, DanWing, and RohanMahy. 2008. Session
Traversal Utilities for NAT (STUN). RFC 5389. https://doi.org/10.17487/RFC5389

[24] Medianama. 2023. EU designates six tech firms as ’gatekeepers’ under the Digital
Markets Act. https://www.medianama.com/2023/09/223-eu-dma-designated-
gatekeepers/ Accessed: 2025-05-09.

[25] Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer
Rexford. 2022. Enabling passive measurement of zoom performance in production
networks. In Proceedings of the 22nd ACM Internet Measurement Conference (Nice,
France) (IMC ’22). Association for Computing Machinery, New York, NY, USA,
244–260. https://doi.org/10.1145/3517745.3561414

[26] Mozilla Developer Network. 2024. Signaling and video calling — We-
bRTC API. https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/
Signaling_and_video_calling. Accessed: 2025-05-16.

[27] ntop. 2023. nDPI: Open Source Deep Packet Inspection Toolkit. https://www.
ntop.org/products/deep-packet-inspection/ndpi/. Accessed: 2025-05-04.

[28] R. Peterson, C. Jennings, and R. Mahy. 2020. Session Traversal Utilities for NAT
(STUN). RFC 8489. https://datatracker.ietf.org/doc/html/rfc8489

[29] Ani Petrosyan. 2022. U.S. video call service usage during COVID-19
2020. https://www.statista.com/statistics/1119981/videoconferencing-services-
us-coronavirus-pandemic/

[30] T. Reddy, A. Johnston, R. Mahy, and M. Petit-Huguenin. 2020. Traversal Using
Relays around NAT (TURN): Relay Extensions to STUN. RFC 8656. https:
//datatracker.ietf.org/doc/html/rfc8656

[31] Tirumaleswar Reddy.K, Alan Johnston, Philip Matthews, and Jonathan Rosenberg.
2020. Traversal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN). RFC 8656. https://doi.org/10.17487/RFC8656

[32] Rohde & Schwarz Cybersecurity GmbH. 2024. PACE: Protocol and Applica-
tion Classification Engine. https://www.ipoque.com/news-media/resources/
brochures/product-brochure-dpi-engine-benefits-amp-key-features. Accessed:
2025-05-04.

[33] Jonathan Rosenberg, Christian Huitema, Rohan Mahy, and Joel Weinberger. 2003.
STUN - Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs). RFC 3489. https://doi.org/10.17487/RFC3489

[34] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. 2008. RFC 5389: Session
Traversal Utilities for NAT (STUN). RFC 5389. https://datatracker.ietf.org/doc/
html/rfc5389.

[35] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 2003. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550. https://datatracker.ietf.org/doc/
html/rfc3550

[36] Daniele De Sensi. 2020. Peafowl: Deep Packet Inspection Library
– RTP Inspector. http://github.com/DanieleDeSensi/peafowl/blob/
89fdf35a18df6d1f13f4449067744999ff37ad85/src/inspectors/rtp.c. Accessed:
2025-09-22.

[37] Daniele De Sensi. 2021. Peafowl: High-Performance Deep Packet Inspection
Library. https://github.com/DanieleDeSensi/peafowl. Accessed: 2025-05-04.

[38] David Singer, HariKishan Desineni, and Roni Even. 2017. A General Mechanism
for RTP Header Extensions. RFC 8285. https://doi.org/10.17487/RFC8285

[39] Varun Singh, Jonathan Lennox, Christian Huitema, Bernard Aboba, and Youenn
Fablet. 2024. RTP over QUIC. Internet-Draft draft-ietf-avtcore-rtp-over-quic-20,
IETF. https://datatracker.ietf.org/doc/draft-ietf-avtcore-rtp-over-quic/ Work in
Progress.

[40] Andreas B. Stokking and Mats Naslund. 2004. The Secure Real-time Transport
Protocol (SRTP). RFC 3711. https://datatracker.ietf.org/doc/html/rfc3711

[41] Kate Sukhanova. 2023. The Latest Discord Statistics & Trends for 2023. https:
//techreport.com/statistics/discord-statistics/

[42] European Union. 2022. EU Digitial Markets Act. European Union (Sept 2022).
[43] Wireshark. 2024. The Wireshark Network Protocol Analyzer. https://www.

wireshark.org

https://datatracker.ietf.org/doc/html/rfc8285
https://datatracker.ietf.org/doc/html/rfc8285
https://developers.google.com/workspace/meet/media-api/guides/get-started
https://developers.google.com/workspace/meet/media-api/guides/get-started
https://developers.google.com/workspace/meet/media-api/guides/concepts
https://developers.google.com/workspace/meet/media-api/guides/concepts
https://webrtchacks.com/wp-content/uploads/2015/05/messenger-report.pdf
https://webrtchacks.com/wp-content/uploads/2015/05/messenger-report.pdf
https://webrtchacks.com/whats-up-with-whatsapp-and-webrtc/
https://webrtchacks.com/whats-up-with-whatsapp-and-webrtc/
https://webrtchacks.com/wp-content/uploads/2015/04/WhatsappReport.pdf
https://webrtchacks.com/wp-content/uploads/2015/04/WhatsappReport.pdf
https://datatracker.ietf.org/doc/html/rfc9000
https://datatracker.ietf.org/doc/html/rfc5760
https://datatracker.ietf.org/doc/html/rfc5760
https://learn.g2.com/voip-statistics
https://datatracker.ietf.org/doc/html/rfc8445
http://l7-filter.sourceforge.net/
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3474085.3475523
https://webrtc.googlesource.com/src
https://doi.org/10.17487/RFC5389
https://www.medianama.com/2023/09/223-eu-dma-designated-gatekeepers/
https://www.medianama.com/2023/09/223-eu-dma-designated-gatekeepers/
https://doi.org/10.1145/3517745.3561414
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://datatracker.ietf.org/doc/html/rfc8489
https://www.statista.com/statistics/1119981/videoconferencing-services-us-coronavirus-pandemic/
https://www.statista.com/statistics/1119981/videoconferencing-services-us-coronavirus-pandemic/
https://datatracker.ietf.org/doc/html/rfc8656
https://datatracker.ietf.org/doc/html/rfc8656
https://doi.org/10.17487/RFC8656
https://www.ipoque.com/news-media/resources/brochures/product-brochure-dpi-engine-benefits-amp-key-features
https://www.ipoque.com/news-media/resources/brochures/product-brochure-dpi-engine-benefits-amp-key-features
https://doi.org/10.17487/RFC3489
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3550
http://github.com/DanieleDeSensi/peafowl/blob/89fdf35a18df6d1f13f4449067744999ff37ad85/src/inspectors/rtp.c
http://github.com/DanieleDeSensi/peafowl/blob/89fdf35a18df6d1f13f4449067744999ff37ad85/src/inspectors/rtp.c
https://github.com/DanieleDeSensi/peafowl
https://doi.org/10.17487/RFC8285
https://datatracker.ietf.org/doc/draft-ietf-avtcore-rtp-over-quic/
https://datatracker.ietf.org/doc/html/rfc3711
https://techreport.com/statistics/discord-statistics/
https://techreport.com/statistics/discord-statistics/
https://www.wireshark.org
https://www.wireshark.org

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 1-on-1 RTC Call
	2.2 Protocol Compliance
	2.3 Overview of Measurement Framework

	3 Traffic Collection and Filtering
	3.1 Call Experiment Setup
	3.2 Unrelated Traffic Filtering
	3.3 Traffic Summary

	4 Evaluating Compliance for Protocol Messages
	4.1 Extract RTC Messages
	4.2 Compliance Assessment Methodology

	5 Compliance across Protocols and Applications
	5.1 Compliance Results
	5.2 Non-compliance Case Studies
	5.3 Other Findings

	6 Discussions
	7 Conclusions
	8 Acknowledgments
	A Ethics
	References

