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The emergence of large language models (LLMs) offers great promise for building domain-specific agents,

but adapting them for network management remains challenging. To understand why, we conduct a case

study on network management tasks and find that state-of-the-art specialization techniques rely heavily on

extensive, high-quality task-specific data to produce precise solutions. However, real-world network queries

are often diverse and unpredictable, making such techniques difficult to scale. Motivated by this gap, we

propose MeshAgent
1
, a new workflow that improves precision by extracting domain-specific invariants from

sample queries and encoding them as constraints. These constraints guide LLM’s generation and validation

process, narrowing the search space and enabling low-effort adaptation. We evaluate our method across three

network management applications and a user study involving industrial network professionals, showing

that it complements existing techniques and consistently improves accuracy. We also introduce reliability

metrics and demonstrate that our system is more dependable, with the ability to abstain when confidence

is low. Overall, our results show that MeshAgent achieves over 95% accuracy, reaching 100% when paired

with fine-tuned agents, and improves accuracy by up to 26% compared to baseline methods. The extraction of

reusable invariants provides a practical and scalable alternative to traditional LLM specialization, enabling the

development of more reliable agents for real-world network management.

CCS Concepts: • Networks→ Network management; Cloud computing; Network manageability; Topol-
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Computing methodologies→ Reasoning about belief and knowledge.
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1 Introduction
Large language models (LLMs) have recently sparked interest in automating network management

tasks using natural language interfaces [28, 43, 45, 72]. Analogous to intent-based networking

(IBN) [30, 35, 57, 59, 62], LLM agents could improve productivity by allowing operators to specify

1
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high-level goals in natural language. Figure 1 shows an example of using natural language to

manage datacenter networks. Despite the potential, their real-world adoption remains limited [26],

especially in networking and systems [84]. The core reason is not just accuracy, but the lack of

reliable and adaptable LLM agents that can handle complex, safety-critical networking tasks like

configuration generation [72], fault diagnosis [12, 60], and resource planning [45].

A key barrier to building such agents is the need to specialize LLMs with task-specific knowledge,

including network designs, topologies, hardware configurations, and telemetry systems. Most

existing specialization techniques, such as retrieval-augmented generation (RAG) [19, 56], prompt

engineering [55], and fine-tuning with LoRA [27, 76], require large volumes of curated input-output

examples. Unfortunately, in networking, such data is often proprietary, difficult to collect, and

rarely generalizes to the diversity of real-world queries. This raises a critical open question: How
much task-specific data is truly needed to build deployable LLM agents for networking?

To investigate this, we conduct a case study using current LLM specialization techniques, along

with a user study involving network professionals focused on traffic analysis. Two consistent

insights emerge from our study results: (1) the effectiveness of an LLM agent depends greatly on

how closely its prompts or fine-tuning examples match real-world queries, and (2) user queries are

highly diverse and difficult to enumerate in advance. Although creating input-output examples

by experts improves performance, our study finds that this process is both error-prone and time-

consuming. Even experienced network professionals often require hours to craft accurate solutions

for their own queries. These findings reveal a fundamental bottleneck: expert-driven data curation

does not scale to the diversity of real-world queries, limiting the practicality of current LLM

specialization methods for network management.

User Input Query

Decide the placement for a 
new Packet Switch so that 
the capacity is balanced
between Chassis in this 
datacenter.

LLMs Output Solution

def add_switch(original_graph):
# implementation logic

……
return updated_graph

Fig. 1. Example input and output for a datacenter
capacity planning query.

Another significant challenge in adopting

LLM agents for networking tasks is the relia-

bility required for operations such as planning,

monitoring, configuration, and troubleshoot-

ing. Unlike general question-answering, er-

rors in these domains can lead to serious con-

sequences, including service outages [65] or

critical security vulnerabilities. For example, a

recent incident involving a simple misconfig-

uration caused a major network outage across

Facebook services, impacting 2.9 billion users

for over six hours [18]. For these high-stakes

environments, it is essential for LLM agents to

recognize their limitations and abstain from

unsafe actions when confidence is low.

In this paper, we introduce MeshAgent, a new framework for building specialized and reliable

LLM agents for network management tasks. We focus on graph-structure applications such as

capacity planning [50], traffic analysis [23, 29, 85], and cloud resource configuration [48]. In these

applications, the system translates a user’s goals into specific commands (using a domain-specific

language, or DSL) to analyze and manipulate a network graph. While user queries are diverse, we

observe that they often share consistent structural invariants. MeshAgent uses these invariants

to guide DSL generation, improve correctness, and indicate the reliability of the solution. Our

contributions are as follows:

• Constraint Guided Optimization for Reliable Code Generation. We introduce a method to

encode application-specific invariants (e.g., safety conditions, dependency rules) as constraints.
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These constraints are applied both during generation (to guide the LLM via the prompt) and

after generation (to validate the LLM’s output), ensuring the results meet application-specific

requirements. If a constraint is violated, the system enters an error reduction loop that iteratively

refines the output. MeshAgent also introduces an abstention mechanism, enabling the agent to

withhold output when its confidence is low. Confidence scores are computed dynamically using

task-specific signals such as output consistency and error frequency, and low-confidence queries

trigger a semi-automated review process to update the constraints.

• Semi-automated Constraint Creation via Failure Driven Learning. To reduce adaptation

cost, MeshAgent provides a constraint synthesis pipeline. It extracts structural constraints (e.g.,

node and edge types, graph schemas) from the network topology and derives higher-level

behavioral constraints by analyzing failures in a small set of sample and abstained queries.

Constraints are stored in a database with auto-validation support for continuous refinement.

New constraints are compared against existing ones using similarity between embeddings. If

similarity falls below a threshold, the new entry is added directly; otherwise, it is reconciled with

similar entries to avoid duplication. This enables generalization across diverse networking tasks

with minimal expert review.

• Evaluation on Diverse Benchmark Queries and Real-world Use Case. We evaluate Me-

shAgent on three network management applications using a benchmark of 240 curated queries

across five agent types and three state-of-the-art LLMs (GPT-4o, Gemini-2, and DeepSeek-v3).

MeshAgent consistently improves both reliability and generalization: it achieves 98% accuracy

(excluding abstention) and 91% overall using only 14 constraints, compared to 85% and 74% with-

out constraints, respectively. In a real-world user study with 200 open ended queries collected

from industry professionals, MeshAgent generalizes to unseen tasks with 96% accuracy using

constraints built from just 15 seed input/output examples. We release code, data, and benchmarks

to support future research on building and evaluating LLM agents in the networking domain.

2 Motivation
Large language models (LLMs) [1, 7, 13, 52, 68, 70] offer a compelling opportunity to bring natural

language interfaces to network management. These models excel at understanding human intent

and have achieved remarkable success across diverse domains [37, 66, 71]. Their application

in networking is gaining momentum, with early efforts exploring tasks such as configuration

generation [3, 72], root cause analysis [12, 25, 60], and broader operator workflows [31, 61, 77].

Despite this promise, LLM-based agents often struggle in real world deployments [12, 25, 60, 72].

Two challenges stand out: accuracy and adaptability. First, even the most advanced models are

prone to hallucinations [46] and reasoning errors [8, 14], which can lead to critical misdiagnoses

or unsafe network configurations. Second, adapting these agents is a major obstacle because the

immense diversity of user objectives, network topologies, and organizational requirements makes

it unclear how much task-specific data is sufficient.

To better understand the challenges, we conduct a case study of state-of-the-art LLM agents

across three network management tasks. This serves as a concrete lens to evaluate their reliability

and adaptability in practical settings.

2.1 Graph Analysis and Manipulation in Network Management
Many network management and control tasks can be framed as graph analysis and manipulation
over network topologies or communication graphs. In this work, we focus on three representative

applications. Table 1 shows example queries from each task.
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Apps Query details

TA

Calculate the byte weight of edges incident per node, cluster into 5 groups using k-means, and color the nodes by cluster.

How many unique nodes have edges to nodes with label app:prod and don’t contain the label app:prod?

What is the average byte weight and connection weight of edges incident on nodes with labels app:user?

MALT

Optimize topology by identifying removable PACKET_SWITCH nodes that won’t affect CONTROL_DOMAIN connectivity.

Determine optimal placement of new PACKET_SWITCH ju1.a1.m1.s2c9 with 5 PORTs to balance AGG_BLOCK capacity.

Remove packet switch ju1.a1.m1.s2c4 from Chassis c4. How to balance the capacity between Chassis?

CRG

Cut the graph into two parts such that the number of virtual networks nodes between the cuts is the same.

For all network security groups nodes with name AllowVnetInBound, list all ports and rank them based on priority.

Identify all paths from the network interfaces nodes to virtual networks node with name Subnet-1.

Table 1. Representative query examples per application. See Appendix A, Table 7 for more.

• Traffic Analysis (TA). Network operators analyze traffic to identify bottlenecks, congestion, and

underused resources, as well as for traffic classification. A valuable representation in traffic

analysis is traffic dispersion graphs (TDGs) [29] or communication graphs [20], in which nodes

represent network components such as routers, switches, or devices, and edges symbolize con-

nections or paths between components. These graphs offer a visual representation of data packet

paths, facilitating a comprehensive understanding of traffic patterns. Network operators typically

utilize these graphs in two ways: (1) examining these graphs to understand the current state of

the network for performance optimization [29], traffic classification [67], and anomaly detection

[33], and (2) manipulating the nodes and edges to simulate the impact of their actions on network

performance and reliability [34].

• Network Lifecycle Management (MALT). Managing a network’s lifecycle involves phases like

capacity planning, topology design, deployment, and diagnostics. Most operations require precise

topology representations at various abstraction levels and the manipulation of topology to achieve

the desired network state [50]. For example, network operators may employ a high-level topology

to plan the network’s capacity and explore alternatives to increase bandwidth between two data

centers. Similarly, network engineers may use a low-level topology to determine the location of

a specific network device and its connections to other devices.

• Cloud Resource Configuration Analysis (CRG). Cloud resource management involves providing

efficient resource exploration and allocation across the cloud. A common approach is to use

graph representations and DSLs [48] to facilitate querying of resources and cloud subscription

information. Network operators rely on complex query operations (e.g., filtering, grouping, and

sorting by resource properties) to manage cloud environments and to assess the effect of applying

policies. For instance, users can identify the ports that allow inbound traffic with a specific

network security group and rank the network policy by priority.

2.2 Case Study: Specializing LLMs for Network Management
To evaluate state-of-the-art LLM specialization techniques for network management tasks, we

collect 30 diverse queries per application from public documents and reports [44, 47, 50], using

the applications described in Section 2.1. We use LLM-based agents to generate Python code for

natural language queries, verifying its output against the ground truth to ensure it aligns with the

query’s intent. The accuracy of the techniques is reported based on all 90 queries as the test set.

Each query is run five times to determine the average accuracy against the ground truth for the

predominant specialization techniques discussed below.

• Context Injection and Prompt Engineering. A common way to specialize LLMs is to provide

domain-specific context via Retrieval-Augmented Generation (RAG) [19, 36, 56] and few-shot
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Prompt: CoT+RAG
+ ReAct

Fine-tuned:CoT+RAG
(tune w.10 <q,a>)

Fine-tuned:CoT+RAG
(tune w.20 <q,a>)

TA
GPT-o1-mini/4o 0.76 0.55 0.71

Gemini-2/1.5 0.68 0.60 0.65

MALT
GPT-o1-mini/4o 0.71 0.50 0.69

Gemini-2/1.5 0.67 0.52 0.63

CRG
GPT-o1-mini/4o 0.69 0.64 0.75

Gemini-2/1.5 0.68 0.57 0.72

Table 2. Existing LLM specialization approaches show limited effectiveness, with low accuracy and
generalization on a set of 90 representative networking tasks.

prompting [55]. In RAG, the system retrieves relevant information (e.g., documents, specifica-

tions) and prepends it to the prompt. Few-shot prompting provides a small set of query-response

examples, sometimes with comments or reasoning steps, to guide the LLM’s output. In network-

ing, few-shot examples typically pair user queries with configurations or operational procedures.

Furthermore, recent LLM-based code generation introduce more sophisticated prompting meth-

ods to improve reasoning, such as ReAct [82] and feedback-driven refinement [9, 11, 63]. These

approaches aim to improve output quality by encouraging step-by-step reasoning, incorporating

environment feedback, or selecting among multiple candidate solutions.

Evaluation. We test Gemini-2 [69] and GPT-o1-mini [51] using prompting techniques including

chain-of-thought (CoT) [75], ReAct [82], and RAG via LlamaIndex [42]. As shown in Table 2,

these agents achieve only 67% to 76% accuracy across applications. We find that complex, multi-

step requirements in networking queries pose major difficulties. For example, even with ReAct

reasoning, GPT-4o places a new packet switch in parallel with a chassis, instead of following

the required hierarchy where it should be added as a child node of the chassis. Additionally,

it ignores the required capacity attribute on the Port of the new packet switch. These results

indicate that supplying more context alone does not ensure reliable execution, especially for

network tasks with structural dependencies and latent constraints.

Insight 1:More context is NOT always better. Injecting network domain knowledge via prompt-
ing can degrade LLM performance when structural and latent dependencies are not explicitly
modeled. Even advanced prompting fails on networking queries that require precise multi-step
reasoning.

• Model Fine-Tuning. Another strategy is to fine-tune LLMs on domain-specific data by adapting

model weights using example input-output (query-answer) pairs [24, 38, 74]. However, this

approach faces generalization challenges similar to traditional machine learning: models often

overfit to training patterns and perform poorly on unseen queries. This places a heavy burden

on network experts to curate broad and diverse training data, which is time-consuming and

difficult to scale. Some recent methods apply reinforcement learning (RL) after fine-tuning to

improve robustness [9, 32, 54], but these approaches rely on designing reward signals to provide

consistent feedback, which are difficult to obtain in complex network systems.

Evaluation. To assess this, we fine-tune two LLMs (GPT-4o-mini and Gemini-1.5), combining

them with prompting techniques for complementarity. Each model is fine-tuned on 10 query-

answer pairs for each application. While both models correctly answer all 10 training queries,

they frequently fail on unseen ones, often generating code that mimics the structure of training

solutions even when logically incorrect. For example, after fine-tuning Gemini-1.5 on a query
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• Add a new packet switch with 
5 ports, balance the current 
capacity on all chassis.

Sample query used for 
fine-tuning

• Add a new packet switch with 
10 ports, balance the current 
capacity on all aggregation 
blocks.

Similar testing 
query example

• Optimize the network by 
identifying packet switches 
that can be removed without 
affecting the connectivity 
between all control domain.

Dissimilar testing
query example

(a) Green highlights denote queries with high
semantic similarity.

(b) Higher semantic similarity to training
data leads to better testing accuracy.

Fig. 2. Fine-tuned models perform poorly on dissimilar queries in the MALT application, revealing
limited generalization beyond training examples.

(a) Histogram of semantic similarity
scores

(b) CDF of semantic similarity scores

Fig. 3. Semantic similarity between 200 user-submitted and 30 pre-sampled traffic analysis queries
shows a long tail of dissimilar cases, highlighting the unpredictability of real-world tasks.

such as “Add a new packet switch so that the capacity is balanced among chassis,” along with

its corresponding solution, the model learns to apply capacity balancing as a default behavior.

As a result, when queried with any request to add a new node to the datacenter, it attempts to

balance capacity among chassis at the final step, even in cases where this action is unnecessary

or incorrect. (Figure 2a compares a similar testing query with a dissimilar query). As shown in

Table 2, this setup performs even worse than prompting alone. We further expand the training set

to 20 queries and observe the same overfitting behavior. We also compute the cosine similarity

between query embeddings and find a strong correlation between similarity to training examples

and test accuracy (Figure 2b).

Insight 2: Fine-tuned LLM agents tend to overfit to training queries and fail to generalize.
Without diverse, task-specific data, fine-tuning degrades reliability and mimics solution patterns
without understanding the logic.

2.3 User Study with Network Professionals
Our case study above highlights that the effectiveness of LLM agents strongly depends on the

similarity between task-specific examples and real-world queries. However, real users often pose

diverse and unpredictable questions that are difficult for domain experts to anticipate. To further

investigate this, we conduct a user study at a major cloud provider focused on traffic analysis (§6).
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Constraints Creation

Sample 
query ExecutionCode

Failure 
analysis 
by LLM

Feature 
extractor LLM Graph Structure 

Constraints
Graph 

Topology

node & 
edge 

features

App-Specific
ConstraintsLLM

Query
Calculate the total 

capacity of Chassis A.

Execute & 
Validate

LLM

Code

Failure info
Fail to find the correct 
capacity attribute in the graph, 
returning total capacity as 0.Invariants

Validation 
test: 𝑓!(𝑥) Confidence 

check

fail

pass

Abstain

high

low

User

Evolve updating

Human Review Automatic

Low confidence
Output are inconsistent; 
Validation failed 10 times.

Constraints

- Id: 1
- Label: add, capacity
- Invariants: 
Chassis contains 
Packet switch then 
contains Port. Each 
Port has the capacity
attribute.
- Validation test:

𝑑𝑒𝑓	𝑓!(𝑥)

Sample query

Query: Calculate the 
capacity on each Chassis.
Ground truth:

𝑑𝑒𝑓	𝑐𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦()

Failure analysis

Error: Chassis lacks the 
capacity attribute; only Port 
has it, and it's not directly 
connected to Chassis.

Fig. 4. Instead of relying on prompting or fine-tuning with numerous examples, our framework
specializes LLM agents using reusable constraints. This approach offers greater generalization,
improved reliability, and reduced human effort for real-world network management tasks.

Network engineers submit 200 open-ended queries. While some resemble our benchmark queries

(e.g., calculating total bytes, clustering nodes), many exhibit substantial variation.

Figure 3 shows the semantic similarity distribution across these queries. Over 70% shows high

sematic similarity, but a long tail of highly diverse queries accounts for nearly 25% of the dataset.

Notably, participants were asked to write ground-truth solutions for their own queries and log the

time required. The average answer creation time per query exceeds 1.5 hours. This reinforces a key

insight: manually curating representative examples is not only error-prone and labor-intensive,

but fundamentally unscalable. The core challenge is thus to go beyond surface-level examples

and enable principled generalization. Our user study further underscores the potential need for

structured, reusable knowledge representations that can help LLMs generalize across the long tail of

real-world tasks.

Insight 3: Queries collected from real-world network professionals are diverse. LLM agents relying
on pre-defined examples cannot scale to the unpredictable, long-tail nature of production queries.

3 Design

Overview. We introduce MeshAgent, an end-to-end workflow for specializing LLM agents to net-

work management tasks by extracting reusable knowledge representations, which we call constraints.
Unlike data input-output examples that are unbounded and hard to enumerate, constraints offer

a more compact and generalizable way to guide LLM behavior. Intuitively, there may be many

different queries, but only a limited number of underlying rules and invariants. However, it remains

unclear how many constraints are needed, how reliable they are, and what is the best way to extract

them when adapting LLMs to a new application. MeshAgent addresses these questions with a

practical framework designed to (1) reduce adaptation overhead, and (2) ensure high reliability by

abstaining when uncertain. It is also designed to be dynamic and continually improve through

constraint refinement (Figure 4).

1 Adaptation-time. Traditional LLM specialization techniques, such as RAG and fine-tuning,

rely heavily on manual data collection and expert curation. These processes are difficult to scale

and lack standardization. MeshAgent addresses these challenges by introducing constraints as
a unifying abstraction to reduce human intervention. Each constraint consists of an invariant,
which is a natural language rule that define fundamental properties that must always hold, and a
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"id": 1,
"label": node, hierarchy,
"invariant": Nodes must follow the hierarchy: CHASSIS contains PACKET_SWITCH, JUPITER contains 
SUPERBLOCK, SUPERBLOCK contains AGG_BLOCK, AGG_BLOCK contains PACKET_SWITCH, PACKET_SWITCH contains PORT,
"validation_test": 

def verify_node_hierarchy (self):
hierarchy = {

"JUPITER": ["SUPERBLOCK"],
"SUPERBLOCK": ["AGG_BLOCK"],
"AGG_BLOCK": ["PACKET_SWITCH"],
"CHASSIS": ["PACKET_SWITCH"],
"PACKET_SWITCH": ["PORT"],

}

for edge in self.graph.edges(data=True):
if 'CONTAINS' in edge[2]['type']:

source_node_types = self.graph.nodes[edge[0]]['type']
target_node_types = self.graph.nodes[edge[1]]['type']
for source_type in source_node_types:

if source_type in hierarchy and any(target_type in hierarchy[source_type] for
target_type in target_node_types):

return True, ""

raise Exception("verify_node_hierarchy failed at edge: " + str(edge))

Fig. 5. Each Constraint includes a label describing the keyword, a natural language invariant
defining the application-specific condition, and a validation function to check if the generated
result satisfies it.

corresponding validation test that verifieswhether LLMoutputs satisfy the rule.MeshAgent prepares

these constraints using a hybrid process. First, it automatically extracts structural features from

the network graph (such as nodes, edges, and metadata) and uses LLMs to generate corresponding

invariants and validation code. Second, MeshAgent analyzes LLM failures on abstained queries,

identifies recurring error patterns, and infers updated constraints. Engineers only need to review,

edit and approve the constraint suggestions, which significantly reduces manual effort.

2 Run-time. After constraints are built, MeshAgent integrates with the LLM agent by retrieving

relevant entries from the constraint database. The invariants are included in the prompt, and

the LLM-generated output is executed in a sandbox environment before being checked against

validation tests. If it fails, MeshAgent enters an error-reduction loop: the original query, constraints,

and error context are provided to the LLM to generate a corrected response. Only validated

outputs are returned to the user. To further improve reliability, MeshAgent includes a heuristic
abstention mechanism that suppresses low-confidence answers. Confidence scores are computed

using task-specific signals, such as output consistency and error rates. If confidence remains low

after refinement, the query is routed back to the adaptation-time workflow for constraint update.

This design reduces the need for manual debugging and helps prevent the deployment of incorrect

responses.

3.1 Building Constraints for Specific Network Applications
To improve LLMperformance on domain-specific queries, prior work [19] uses Retrieval-Augmented

Generation (RAG), where an external database provides contextual information for prompt con-

struction. This typically includes past user queries with answers (few-shot learning) or domain

handbooks (e.g., tool instructions or library guides). However, applying this approach directly to

networking tasks introduces two key challenges: (1) Exhaustively enumerating user queries is

impractical and risks introducing low-quality examples; (2) Injecting excessive or irrelevant context

can mislead the LLM. For instance, in datacenter capacity planning, if attributes like ‘switch_loc‘

(location) are unnecessarily included in the prompt, a simple query like “Calculate capacity?” may

result in incorrect logic that focuses on location-level aggregation rather than port-level summation.
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𝑮! for 
application 

(.json)

Valid Graph Constraints

- Id: 1
- Label: node, type
- Invariants: Node in the graph can only 
be following types: Chassis, Switch, Port.
- Validation test:

𝑑𝑒𝑓	𝑐ℎ𝑒𝑐𝑘_𝑛𝑜𝑑𝑒_𝑡𝑦𝑝𝑒	(𝐺):
... …

Graph Parser (Python)

Input: 𝑮!

Output:
• Node type:  Chassis; Switch; Port
• Node attributes:  capacity; location
• Node hierarchy: Chassis contains 

Switch; Switch contains Port
• Edge Type: contains; link
• Edge attributes: None
• Edge hierarchy: None

Constraint Translation (LLM) 

Input: See prompt details in Appendix B Prompt #1

Output:
• Invariants: Node in the graph can only be following types: 

Chassis, Switch, Port.
• Validation test:

𝑑𝑒𝑓 check_node_type (G):
TYPES = {"Chassis", "Switch", "Port"}
for node in G.nodes:

if node not in TYPES:
raise Error(f"Invalid type at {node_id}")

return True, "All node types are valid"

Fig. 6. Graph structure constraints are directly extracted from the graph data and translated into
code by an LLM. Their explicit structure makes them easy for LLMs to process accurately.

Constraint Definition. To address these issues, we propose focusing on a small set of critical,

reusable invariants instead of injecting verbose domain context. The key insight is that while user
queries are diverse and long-tailed, the correctness conditions governing their answers (i.e., invariants)
are limited and stable across tasks. By guiding the LLM with these invariants, we avoid the overhead

of exhaustive enumeration and reduce prompt noise, leading to more accurate and reliable outputs.

We define a structured ‘Constraint’ format that supports both runtime prompting and post-

generation validation (example in Figure 5):

• Label: A keyword-based summary describing the constraint’s abstraction. It supports fuzzy

matching between user queries and relevant constraints.

• Invariant: A natural language rule specifying the application-specific condition that must hold

(e.g., valid node types, required field formats).

• Validation test: A test function that checks whether the generated output satisfies the constraint.

This is used in the error-reduction module (§3.2).

Constraint Generalization. At first glance, building Constraints for each new application may

appear labor-intensive. A natural approach is to either (1) rely on domain experts to manually

define them, or (2) use LLMs to generate them automatically. However, both have limitations:

Manual creation is time-consuming, error-prone, and bounded by the expert’s prior knowledge,

which may miss critical cases. Automated generation with LLMs is faster but often unreliable, since

LLMs can produce plausible but incorrect or inconsistent constraints. Furthermore, generating

accurate constraints often requires giving LLM the full access to the network graph data, which

may be restricted in industrial settings due to privacy concerns.

To address these issues, we introduce a semi-automated constraint creation workflow that

balances efficiency with reliability. Instead of relying entirely on manual effort or LLMs, we leverage

LLMs to only translate structured inputs into constraint formats, while engineers review and refine

the results rather than creating them from scratch. We categorize constraints in graph-based

network management into two types:

(1) Graph-Structure Constraints: These constraints define the attributes and relationships of nodes

and edges within network graphs. (i) We first implement a feature extractor in Python. Given a

graph as input, it extracts structural features such as all node and edge types, attribute fields, and

hierarchical relationships. (ii) Each extracted feature is then sent to an LLM-based constraint

translator, which generates a constraint invariant and a corresponding validation test using

structured prompting (See full prompt in Appendix B). (iii) The validation test is executed

directly on the graph data to verify the correctness and functionality of the generated constraint.

Because the input is structured and unambiguous, this automated process produces high-quality

constraints without requiring manual review (Figure 6).
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(2) Application-Specific Constraints: These constraints encode logical rules specific to an application,

such as valid actions, dependencies, or invariants that are inexplicit from the graph data. (i)

Engineers begin by providing a small set of sample queries and their ground truth answers

(we use 10 in our evaluation). (ii) For each sample query, the LLM agent attempts to generate a

solution using the existing graph constraints. (iii) The output is executed and compared to the

ground truth. If the execution results of the generated solution, under current constraints, is

numerically equivalent to the ground truth known by operators, no new constraint is needed.

If they differ, the failure information and ground truth are sent to the LLM-based constraint

translator to produce a new constraint based on the observed failure (See full prompt in

Appendix B). (iv) Newly generated constraints are manually reviewed for correctness before

being incorporated into the constraint database. The LLM agent is then re-run on the same query

using the updated constraint set. If it passes, the constraint is validated and retained. Although

this process involves human-provided sample queries, our evaluation shows it produces more

generalizable constraints with significantly less effort compared to traditional fine-tuning or

prompt engineering approaches (Figure 4).

Query-specific Constraint Extraction. Once constraints for an application are created, the

challenge becomes selecting the most relevant subset for each query. Simply appending all con-

straints degrades accuracy (“All constraints” in Table 3), as excessive context make LLMs lost in the

middle [41]. Instead, we dynamically extract query-specific constraints to form focused prompts.

To retrieve the most relevant constraints, MeshAgent uses a hybrid search method that combines

keyword and vector-based similarities. This approach is especially effective for network queries,

which often involve technical terms and domain-specific synonyms. For instance, “port” and “switch”

are semantically related but may not always co-occur. Hybrid search captures such relations by

combining two perspectives: exact matches (via keyword search) and semantic proximity (via

vector embeddings). For each user query, we compute the hybrid match score using Reciprocal

Rank Fusion (RRF) [15], which integrates ranked results from both search methods, where 𝑘 is a

smoothing constant, and 𝑟 (𝑐) is the rank of constraint 𝑐 in each individual search:

𝑅𝑅𝐹𝑠𝑐𝑜𝑟𝑒 (𝑐 ∈ 𝐶) =
∑︁ [

1

𝑘 + 𝑟 (𝑐)

]
(1)

MeshAgent applies this fusion process between the query and constraint representations (including

their labels) to select those with a similarity score above 0.7 (tunable threshold) for inclusion in the

prompt. When queries contain specific terms (e.g., “packet switch”), keyword rankings tend to domi-

nate; whereas in cases with differing surface terms (e.g., “capacity” vs. “bandwidth”), vector similari-

ties play a greater role. MeshAgent empirically adopts RRF as a common and effective fusion method

for combining keyword and vector search results. While our focus is not on optimizing the fusion

strategy itself, more advanced algorithms could further improve constraint retrieval performance.

All Con-
straints

Keyword
Search

Vector
Search

Hybrid
Search

Precision 0.56 0.81 0.90 0.91

Recall 1.00 0.89 0.88 0.94

F1 0.72 0.85 0.89 0.93

Table 3. Hybrid search consistently outperforms keyword
and vector methods, achieving higher constraint match-
ing accuracy across diverse network queries.

Dynamic Constraint Evolution.Net-
work management queries often follow

predictable patterns but also include a

long-tail of rare or complex cases (Fig-

ure 3b). To handle these edge cases, Me-

shAgent dynamically evolves its con-

straint set based on system interactions.

When the LLM abstains from answer-

ing a query due to low confidence, the associated failure log is used to identify gaps in the constraint
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database. If a network engineer requests, “Cluster all nodes in the communication graph into five

groups,” and the LLM abstains, the logs may reveal that the agent attempted various clustering algo-

rithms, but some were incompatible with the structure or semantics of communication graphs. In

such cases, engineers can refine the constraint set by adding new invariants to exclude inappropriate

algorithm choices, enabling the agent to avoid similar failures in future requests.

To maintain consistency and avoid redundancy, each new invariant is compared against existing

entries using cosine similarity between their embeddings. If the similarity falls below a set threshold,

the invariant is added directly; otherwise, it is reconciled with overlapping entries. This keeps the

constraint database concise and relevant. Validation tests are also revised as network structures or

safety policies evolve. While human oversight may still be required, this semi-automated pipeline

substantially reduces manual workload and improves adaptability. We evaluate this mechanism

using abstained queries collected from the real-world user study in Section 6.

3.2 Contextual Error Reduction
Even with constraint guidance to narrow the LLM’s search space, models still struggle with complex

network management queries. For example, a query like “Cluster the graph nodes based on bytes

transmitted” requires multi-step reasoning and execution, which LLMs often fail to handle in a

single pass. To address this, we incorporate the existing Chain-of-Thought (CoT) principle [75] to

explicitly decompose such queries into sub-steps, reducing complexity per step.

Once decomposed, the next challenge is to minimize errors before executing these steps in a

real environment. Prior approaches use reinforcement learning [11] or generate unit tests to select

valid outputs [10, 64, 83], but as the case study (Table 2) shows, these methods are ineffective for

network management. LLMs often produce syntactically correct code that violates domain-specific

constraints, or fail to generate valid test cases due to inconsistent formats across applications.

To address this, we introduce a bi-level error detection and reduction mechanism with contextual

support at each step of execution (Algorithm 1):

• Execution error check: Detects failures in the sandbox environment caused by hallucinated

attributes, invalid API calls, or syntax errors.

• Constraint error check: Uses validation functions from the constraint database to verify that the

generated output satisfies application-specific rules.

If an error is detected, the system feeds the query, execution step, relevant constraint, and error trace

back to the LLM to regenerate a corrected version. If the model continues to fail after 𝑁 iterations,

the system generates a structured summary of the failure, including error types, affected steps, and

violated constraints. This summary enables a network engineer to intervene with minimal effort.

This error-reducer is especially effective for abstract or optimization queries where a one-shot

response is unlikely to be correct. For instance, the prompt “Optimize the current network topology

by removing redundant nodes” typically requires multiple iterations. As shown in Fig. 14, both

execution and constraint errors become more frequent with increasing query complexity, requiring

more correction rounds.

Pipelined Execution to Reduce Latency. The sequential nature of multi-step debugging intro-

duces latency. To mitigate this, we pipeline error checks across steps. As soon as code for one step

is generated, the next step begins while the current one is being validated. Final output is returned

only when all steps pass. If an error is detected, downstream steps are paused until the issue is

resolved. In practice, most errors occur in later steps, allowing early pipelining to reduce latency.

This technique yields a 76% latency improvement on CoT method (Fig. 16b).
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3.3 Enhancing Agent Reliability
Even with the use of constraints and contextual error reduction, we cannot fully guarantee that

an LLM will always produce correct outputs. This limitation poses a critical challenge in network

management tasks, where reliability is essential. LLMs generate text by predicting the next token

rather than through true semantic understanding [46, 58, 79]. As a result, they may produce

confident-sounding but incorrect responses—an issue that becomes especially risky in networking

for two key reasons. First, incorrect outputs can directly compromise system integrity. For example,

in response to the query “Split the graph into two parts such that the number of virtual networks

is the same,” an LLM may mishandle the configuration of security groups, inadvertently assigning

overly permissive access rules and exposing critical cloud resources. Second, relying on human

engineers to manually verify and debug LLM responses is impractical. Network queries often

involve platform-specific syntax and large outputs, making error detection labor-intensive and

inconsistent—ultimately hindering the usability of LLMs for high-stakes operational tasks.

To address this, we define reliability as the agent’s ability to either produce a correct answer or

abstain when uncertainty is high. Many prior methods estimate confidence using model-generated

scores. One approach asks the LLM to report its own confidence [78], but these scores are often

biased. Another uses log probability or perplexity as a proxy, but this is known to correlate poorly

with correctness [6].

Heuristic-Based Confidence Scoring.We propose a heuristic confidence scoring mechanism

tailored to our constraint-guided workflow. If an output fails error-checking after debugging, the

agent abstains with zero confidence. Otherwise, the confidence score 𝑆confidence is computed based

on two key factors: (1) the semantic consistency of the LLM’s output across iterations (denoted as

𝐶semantic), and (2) the number of iterations needed in the debugging loop to reach a valid response

(denoted as 𝐼debug). This formulation prioritizes outputs that require fewer corrections and exhibit

higher consistency:

𝑆confidence =

{
0, if 𝐸check = 0

𝑤 ·𝐶semantic + (1 −𝑤) ·
(
1 − 𝐼debug

𝑁

)
, if 𝐸check = 1

(2)

Here, 𝐸check indicates whether the output passes the error-checking stage. 𝑁 is the maximum

number of allowed debugging iterations. The weight𝑤 ∈ [0, 1] controls the relative importance of

semantic consistency versus the number of correction iterations. In our evaluation, we use 𝑁 = 5

and𝑤 = 0.5, which can be tuned based on application-specific reliability requirements.

Mitigating Uncertainty with Abstention. Unlike prior methods that rely on internal estimates

from LLM, our approach bases confidence on observable external signals tailored to the specific

network application. This design ensures the system avoids high-confidence errors and abstains

when needed. We evaluate this in graph-based network management scenarios where correctness is

critical. As shown in Figure 5, our method significantly improves the agent’s reliability by correctly

abstaining from uncertain answers and reducing the likelihood of incorrect outputs.

4 Implementation and Benchmark
We implement MeshAgent in Python with approximately 1,200 lines of code. For each application,

we build a graph manipulation simulator to execute and validate LLM-generated solutions. To sys-

tematically assess LLM agent performance in network management, we introduce a comprehensive

benchmark including three components:

• Ground Truth Selector. This component defines a “ground truth” for each user query, repre-

senting the expected functionality or correct output. Creating and validating these ground truths
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can be labor-intensive, requiring human expert review (e.g., with an average of 1.5 hours per

input-output pair based on our experience). The validated results reference dictionary used to

assess the accuracy of LLM-generated outputs.

• Results Evaluator. This component executes LLM agent generated code in an isolated envi-

ronment using real network data. It compares the outputs, such as modified graph structures or

extracted information, against the predefined ground truth. Outputs matching the ground truth

are classified as correct, while mismatches are flagged for further analysis of errors.

• Results Logger. This component records all evaluation details, including LLM-generated code,

ground truth answers, and comparison results. Additionally, it logs execution errors and discrep-

ancies, enabling iterative refinement of the benchmark by expanding its constraints database to

support more robust testing scenarios.

5 Evaluation
To evaluate the effectiveness of MeshAgent in building domain-specific LLM agents, we conduct a

comprehensive study across six existing specialization techniques as baselines. Our evaluation is

guided by the following research questions:

• Q1: To what extent can LLM agents deliver accurate and reliable results across a wide range of

network management tasks?

• Q2: Can a small set of structured constraints effectively adapt LLM agents to new applications?

How much effort does their creation require?

• Q3: What are the dominant failure modes of LLM agents in network management?

• Q4: How do LLM agents perform in real-world usage by network engineers, both in terms of

accuracy and user experience?

5.1 Experimental Setup

LLMs. We study two leading proprietary LLMs: GPT-4o [53] and Gemini-2 [69], as well as one

latest open-source model: DeepSeek-V3 [39]. At the time of this writing, reasoning-focused models

such as GPT-o1 and DeepSeek-R1 exhibit prohibitively high latency at inference time. For example,

evaluating a single query on GPT-4o typically takes under 30 seconds, while DeepSeek-R1 requires

over 30 minutes per query, more than 60 times slower. Such latency becomes a major bottleneck

for high volume query evaluation (although we test GPT-o1-mini on smaller set of queries in §2.2).

For each query with one LLM agent, it is run five times to reduce variance.

Applications and Queries.We implement a network graph manipulation simulator in Python

and evaluate three applications as described in Section 2.1. A total of 240 distinct queries with

corresponding ground truth are constructed based on prior research and publicly available exam-

ples [21, 44, 47, 50]. Additionally, evaluation using 200 open-ended queries is included in the user

study results presented in Section 6.

Baseline Agents. Based on their adoption in prior work, we select representative optimization

techniques for domain-specific LLM agents. These methods, which are complementary in nature,

serve as strong baselines for accuracy evaluation. Specifically, we define two primary baselines for

accuracy comparison: CoT+Few-shot and CoT+Fine-tuned. In addition, we evaluate several other

techniques to provide a more comprehensive analysis:

• Chain-of-Thought prompting (CoT) [75] prompts LLMs to decompose questions into reasoning

steps. For each application, we use standard CoT prompts that encourage step-by-step reasoning,

enhancing output accuracy.
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User Input Query

Add a new
Packet Switch so 
that the capacity 

is balanced 
between Chassis 
in this datacenter.

Correct Answer from LLM

def add_switch(graph):
# Calculate current capacity
# Find Chassis with lower

capacity
# Add new Switch with Ports
# Check if capacity is balanced
return updated_graph

Packet
Switch

Datacenter topology

Chassis

Port

…

Chassis

Packet
Switch

Port

…

User Input Query

Remove an 
existing Packet 

Switch so that the 
capacity is 

balanced between 
Chassis in this 

datacenter.

Incorrect Answer from LLM

def remove_switch(graph):
# Calculate current capacity
# Find Chassis with higher 

capacity
# Remove a Switch on it
# Check if capacity is balanced

return updated_graph

Chassis

Packet
Switch

Port

…

Correct Reason:
✓ Accurately 

implement the query 
intent
✓ Satisfies all system 

constraints

Failure Reason:
✗ Failed to remove 

Ports associated with the 
deleted Switch
✗ Violates constraint: 

No isolated nodes are 
allowed in the datacenter

Fig. 7. LLM-generated examples from MALT: one correct output and one failure case.

• Few-shot Retrieval-Augmented Generation (Few-shot) [42] integrates agents with domain-specific

knowledge. We upload input-output pairs identical to those used in MeshAgent ’s adaptation.

Few-shot examples guide the model’s responses through retrieval-based techniques.

• Reinforcement learning with ReAct (RL) [82] combines reasoning with real-time decision-making

by adjusting responses based on immediate feedback. We evaluated this method using official

prompts tailored to adapt reasoning steps dynamically based on action outcomes.

• Fine-tuned model (Fine-tuned) [74].We fine-tune GPT-4o-mini[53] via Azure OpenAI [49] and

Gemini-1.5 [69] using the Gemini API [22] on the same input/output pairs as MeshAgent’s adap-

tation. Platform-specific auto-optimization refine training parameters for improved performance.

• Language Agent Tree Search (LATS) [83] integrates Monte Carlo Tree Search with model-based

reinforcement learning to improve decision-making in code generation. By leveraging external

feedback, it surpasses prompting methods like Tree-of-Thought[81] in reasoning accuracy.

5.2 Code Accuracy and Reliability

Result Examples. To clarify how accuracy is measured in our evaluation, we present representative

examples of both successful and failed LLM agent outputs. Figure 7 shows a correct response and

an incorrect one, along with their respective execution results. In the successful case, the LLM

correctly interprets the intent to add a new switch: it inserts the switch node, attaches new ports

to it, and assigns the appropriate capacity attribute to maintain balanced total capacity across all

Chassis nodes. In contrast, the failed example involves a query requesting the removal of a packet

switch to rebalance capacity. The LLM-generated code removes only the switch node but neglects

to remove its connected ports, resulting in orphaned nodes. This violates a key structural constraint:

“No isolated nodes are allowed in the datacenter.”

From our user study observations, we find that users (e.g., operators under time constraints)

do not always specify all implicit requirements in their queries (e.g., “remove the switch” should

implicitly include removing its connected ports). This highlights the importance of leveraging

system constraints both to enrich the prompt fed to the LLM and to validate the output post-

generation. Further analysis of failure types and statistics is provided in §5.4.

Reliable Accuracy. This metric measures correctness for queries that receive a response from

the LLM agent, excluding those where the agent abstains. It reflects performance conditional on

agent confidence. To ensure fairness, we apply the same confidence scoring mechanism across all

methods, including the two primary baselines.
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CoT+Few-shot with MeshAgent CoT+Fine-tuned with MeshAgent

TA

GPT-4o 0.821 0.987 (↑ 0.17) 0.829 0.991 (↑ 0.16)
Gemini-2/1.5 0.805 0.956 (↑ 0.15) 0.809 0.967 (↑ 0.16)
DeepSeek-v3 0.835 0.962 (↑ 0.13) - -

MALT

GPT-4o 0.842 0.986 (↑ 0.14) 0.910 0.986 (↑ 0.08)
Gemini-2/1.5 0.898 0.958 (↑ 0.06) 0.923 0.979 (↑ 0.06)
DeepSeek-v3 0.810 0.964 (↑ 0.15) - -

CRG

GPT-4o 0.742 1.000 (↑ 0.26) 0.835 1.000 (↑ 0.17)
Gemini-2/1.5 0.793 0.957 (↑ 0.16) 0.832 0.981 (↑ 0.15)
DeepSeek-v3 0.803 0.989 (↑ 0.19) - -

Table 4. With an average of just 12 sample queries per application, MeshAgent boosts correctness
on answered queries by enabling abstention, and consistently enhances all agent types across
models and applications.

Results in Table 4 highlight two key takeaways. First, MeshAgent consistently improves accuracy

across all models, agents, and applications. This broad improvement demonstrates the effectiveness

and generality of MeshAgent ’s workflow in building specific LLM agents for networking tasks.

Second, when applied to CoT+Fine-tuned, MeshAgent achieves higher reliable accuracy than with

CoT+Few-shot. This stems from how confidence scores reward output consistency, and fine-tuned

models tend to generate more stable code due to their exposure to structured training data. These

findings emphasize that, when powered by MeshAgent, fine-tuning holds strong potential for

improving LLM reliability in complex, domain-specific scenarios.

Total Accuracy. Unlike reliable accuracy, which measures correctness only when the agent chooses

to respond, total accuracy evaluates correctness across all queries regardless of abstentions. This

provides a direct assessment of raw end-to-end performance. We compute average accuracy and

variance across three applications and LLMs to evaluate different baseline combinations.

Fig. 8. Average total accuracy across three apps.

Figure 8 shows that MeshAgent con-

sistently improves accuracy across all

agents, aligning with trends in Table

4. However, not all agent types are

equally suited for network applica-

tions. First, incorporating RL does not

always enhance performance, likely

due to the complexity of network tasks.

ReAct, the RL-based approach, relies

on the model to autonomously exe-

cute reasoning steps. While effective

in structured environments like text-

based games [82], its effectiveness declines in network management due to the lack of reliable

execution feedback and the inability to guarantee correct reward signals for complex queries. Sec-

ond, LATS, the code generation framework, does not outperform simpler methods. This indicates

that in network management, mechanism sophistication alone does not guarantee better accuracy.

Instead, effectiveness depends on selecting approaches that align with network tasks in terms of

execution reliability, and adaptability to complex queries.
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Abstain-Accu Abstain-Precision Abstain-Recall Abstain-Rate

TA

MeshAgent 0.99 0.83 1.00 0.08
LLM-gen 0.66 0.23 0.78 0.40

Perplexity 0.78 0.30 0.67 0.25

MALT

MeshAgent 0.97 0.75 1.00 0.10
LLM-gen 0.65 0.21 0.77 0.41

Perplexity 0.77 0.26 0.56 0.24

CRG

MeshAgent 0.99 0.87 1.00 0.10
LLM-gen 0.69 0.23 0.78 0.37

Perplexity 0.71 0.25 0.78 0.35

Table 5. MeshAgent’s confidence score achieves higher abstention accuracy than existing confi-
dence score generation methods.

𝑏𝑎
𝑑𝑐

Correct 
Results

Wrong
Results

Output

Abstain

Fig. 9. Abstention metric.

Abstention Accuracy. Inspired by [17], we evaluate the agent’s

abstention performance using four metrics as follow. See Figure 9 for

the meaning of a, b, c, d.

• Abstention Accuracy =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
• Abstention Precision =

𝑑

𝑐 + 𝑑
• Abstention Recall =

𝑑

𝑏 + 𝑑
• Abstention Rate =

𝑐 + 𝑑
𝑎 + 𝑏 + 𝑐 + 𝑑

Abstain-Accu measures the overall correctness of both answering and abstention decisions. Abstain-

Precision quantifies how often abstention successfully avoided incorrect answers. Abstain-Recall

represents the proportion of incorrect responses that were correctly abstained from. Abstain-Rate

indicates the overall frequency of abstentions.

We compare MeshAgent’s confidence score design with two prior methods: LLM-generated

confidence scores [78] and perplexity-based confidence estimation [6]. Table 5 summarizes the

abstention performance of the MeshAgent (CoT+Few-shot) agent with GPT-4o across all applica-

tions, using a confidence score threshold of 0.7. Among the three abstention methods, MeshAgent

demonstrates the most stable performance, achieving higher abstain precision and recall while

maintaining a lower abstain rate. An abstain recall of 1.0 ensures the agent abstains only when

necessary. However, lower precision indicates occasional over-cautiousness, abstaining despite

correct answers due to output inconsistencies, reflecting the trade-off between reliability and

unnecessary abstentions. These findings provide valuable insights for network operators selecting

the most effective model.

In practice, operators can evaluate different agents on a set of queries and choose the one with

the lowest abstain rate while maintaining high recall and precision. While the confidence score

threshold can be adjusted for specific applications, exploring optimal threshold tuning is left for

future work.

Takeaway for Q1: MeshAgent consistently boosts solution accuracy and reliability across all
agent types, regardless of specialization method. Surprisingly, when paired with MeshAgent,
simple baselines like few-shot prompting outperform more complex approaches, highlighting that
using explicit constraints matters more than model complexity in network tasks.
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(a) App-TA (b) App-MALT (c) App-CRG

Fig. 10. MeshAgent adapts to applications with fewer input samples compared to baseline agents.

5.3 Constraints Adaptation Efficiency & Effort Analysis

Constraints Adaptation Efficiency. To evaluate the adaptation data efficiency of MeshAgent

approach compared to traditional methods, we measure total accuracy on testing query using

the same number of sample queries. We also compare three constraint-generation methods in

MeshAgent. Figure 10 illustrates how adaptation accuracy evolves with the number of sample

queries. While all methods improve with more samples, their convergence rates differ. MeshAgent

converges significantly faster, suggesting that underlying invariants within each application remain

consistent and can effectively guide LLMs. In contrast, the Few-shot and Fine-tuned approaches

show gradual improvement. However, the accuracy of Few-shot declines as more examples are

added, likely due to increased noise in the prompt. This highlights a key limitation of traditional

external knowledge augmentation, where maintaining concise prompts is critical for accuracy in

complex tasks.

Among the constraint-generation methods, MeshAgent (semi-auto, constraints generated by

LLMs and then human-reviewed) and MeshAgent (manual, fully handcrafted constraints) yield the

most stable and consistent improvements in adaptation accuracy. In contrast, MeshAgent (auto,

fully LLM-generated constraints) exhibits lower stability, as the absence of human oversight can

lead to erroneous constraints. A single incorrect constraint can degrade performance significantly

because it affects multiple test queries. This finding underscores the importance of human oversight

in constraint creation, balancing automation with reliability to maximize accuracy and efficiency.

Constraint Number and Quality. The quality of generated constraints is closely tied to the

diversity and relevance of sampled queries used during adaptation time. Since there is no uni-

versally principled method for generating such queries, we collect real-world examples from

publicly available documentation and query sets for each application domain [47, 50]. The most

critical factor determining constraint usefulness is their specificity to application-level details.

Fig. 11. Constraint # Effect

To produce such domain-specific constraints, we employ a few-shot

prompting strategy where the LLM is asked to translate observed

failure cases into precise, actionable constraints (see Prompt B). Fur-

thermore, application-specific constraints are manually reviewed by

human to ensure their correctness.

To evaluate whether LLMs are sensitive to prompt length and con-

straint ordering, we shuffle the full constraint set three times and

plot the average accuracy under different numbers of constraints in

App-TA. As shown in Figure 11, contrary to the common assumption

that more information improves performance, we find that after a
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(a) MeshAgent generalization (b) Few-shot generalization
Fig. 12. Constraints enable stronger generalization, even for testing queries with low similarity.

Avg.#
of iters

Avg.time
(mins)

Human creation (Manual) 1 20.5

LLM creation (Auto) 1 0.2

MeshAgent (Semi-auto) 2 1.3

better

Fig. 13. MeshAgent’s constraints creation offers an effective balance between accuracy and effort.

certain threshold, adding more constraints in a static prompt setting reduces accuracy, as exces-
sive and irrelevant context distracts the LLM’s attention. On the other hand, since MeshAgent

uses hybrid-search to dynamically extracts the most related constraints per query, adding more

constraints can still improve accuracy. We provide the constraint sets for each application in the

Appendix D.

Generalization to Testing Queries. To evaluate MeshAgent’s effectiveness across diverse queries,

we analyze its accuracy relative to the cosine semantic similarity of testing queries in the MALT

application using 14 sampled queries. As shown in Figure 12a, MeshAgent maintains consistently

high accuracy across a broad similarity range, leveraging common failure modes to improve

generalization. Accuracy only declines at very low similarity levels (around 0.1), which can be

mitigated by incorporating new constraints to address observed failures, enhancing adaptability. In

contrast, Figure 12b highlights Few-shot’s strong dependence on query similarity. While effective

for queries closely matching its samples, its accuracy declines sharply below a similarity threshold

of 0.78, exhibiting a near-linear drop. This occurs because Few-shot relies on memorizing examples

rather than identifying underlying patterns, limiting its scalability and adaptability, particularly

with limited data samples. These findings highlight MeshAgent’s scalability and generalization

capabilities. By capturing failure modes rather than memorizing individual examples, MeshAgent

reduces the need for extensive human intervention, ensuring long-term efficiency and adaptability,

even for dissimilar testing queries.

Constraint Creation Effort Estimation.We assess the effort required to create constraints in

MeshAgent by comparing three methods and measuring the average time taken. While the time

measurements are inherently subjective, they offer meaningful insights into efficiency trends. The

left side of Figure 13 presents the average constraint creation time and variance across three appli-

cations. The right side of Figure 13 examines the trade-off between time spent and resulting query

accuracy. MeshAgent (semi-auto) consistently achieves the best balance, significantly reducing
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effort while maintaining high accuracy. Both semi-auto and manual approaches show varying time

requirements depending on application complexity. For example, the MALT application requires

more time due to its intricate graph structures and hierarchical relationships. In such cases, verify-

ing constraints is more involved, often requiring engineers to write and execute validation scripts,

as correctness cannot always be determined from raw data alone.

This study highlights the strengths of MeshAgent as an end-to-end framework that streamlines

constraint creation while ensuring accuracy across diverse network applications. Our findings

also reveal opportunities for further optimization, particularly in handling complex applications

with intricate data structures. One direction is developing a specialized LLM agent for constraint

verification, potentially integrating formal verification techniques to enhance validation and further

reduce human intervention while maintaining constraint correctness. Exploring this optimization

presents a valuable opportunity for future research.

Takeaway for Q2: MeshAgent achieves over 80% accuracy with just 12 sample queries, while
Few-shot requires more than 20 queries to reach 60% accuracy. Its constraint creation method
also offers the best tradeoff between accuracy and effort. Notably, MeshAgent generalizes well to
testing queries, even when they differ significantly from the sample queries, making it well-suited
for real-world deployment.

5.4 Detailed Error Analysis

Failure Patterns and Examples. To understand agent failures, we analyze error types in MeshA-

gent (CoT+Few-shot) using GPT-4o. Table 6 shows that errors vary by application. In traffic analysis,

most failures stem from incorrect aggregation logic in multi-condition queries. For example, in

the query “What is the average byte weight and connection weight of edges incident on nodes

with labels app:prod and app:test?”, the agent may incorrectly include outbound edges when only

inbound edges should be considered. It sometimes calculates average across all edges instead of

grouping by label, leading to inaccurate results. In MALT, failures arise when the generated code

violates structural constraints. For instance, in the query “Remove packet switch ‘ju1.a1.m1.s2c4’

from Chassis c4. How should capacity be balanced?”, the agent fails to redistribute links properly,

resulting in disconnected spine-leaf segments or isolated nodes that break the datacenter’s routing

fabric. Similar issues appear in CRG, where structural constraints are not always maintained.

Error Type TA(5) MALT(7) CRG(6)

Operational error 1 2 0

Incorrect logic 4 1 2

Constraints violation 0 4 4

Table 6. Error types of CoT+Few-shot agent with GPT-4o.

While confidence scoring helps abstain

from uncertain responses, analyzing

failure patterns can help operators im-

prove the constraint set for long-term

reliability.

Error Reduction Efficiency.MeshA-

gent incorporates a built-in contextual error reducer to minimize potential errors. We evaluate

its effectiveness by categorizing MALT test queries into five complexity levels based on ground

truth code length
2
. Figure 14a shows that execution errors occur more frequently than constraint

errors, especially in lower-level queries, where issues like syntax errors or invalid attribute calls

are resolved before constraint validation.

Interestingly, self-improving loops do not have a strong correlation with accuracy gains. As

shown in Figure 14b, the most significant accuracy improvements occur in the first iteration of both

execution and constraint error checks, with diminishing returns in subsequent loops. Execution

2
Code length serves as one possible objective proxy for complexity, reducing subjective bias.
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(a) Error appearance count (b) Error reduction efficiency

Fig. 14. Constraint-guided error reduction analysis

errors, such as unsupported package versions or ambiguous function calls, converge quickly since

repeated attempts rarely resolve them. Constraint errors, while less frequent, take longer to stabilize

as they involve more complex logical validation. To improve efficiency, MeshAgent limits self-

improving loops to 𝑁 = 5. If errors persist, agent abstain and escalate the error to human engineers

for updating the constraints with failure analysis.

Takeaway for Q3: LLM for simple queries often fail due to execution issues, while complex ones
fail when constraints are not met. Most failures are fixed in the first round of error reduction
checks.

6 User Study:Quality of User Experience
To evaluate MeshAgent with real-world network management users, we conducted a user study

comparing it against alternative approaches chosen by participants.

Methodology.We recruited 20 participants with backgrounds in computer science and network

management to simulate real-world network traffic analysis engineers. The participants included

17 individuals from a major network service provider company: 15 interns in the networking

research group and 2 full-time professionals, also 3 PhD students from a university. MeshAgent

was deployed via a web-based system that allowed users to visualize network graphs, input queries,

execute MeshAgent, edit code, and review results (Appendix C Figure 17).

Users tested two types of queries: canned and open-ended. The canned queries consisted of three

increasingly complex tasks with predefined ground truth checks. Each user used both MeshAgent

and a freely chosen alternative (e.g., ChatGPT, Gemini) and recorded their preferred method

along with execution time. For open-ended queries, users submitted any network-related question,

reviewed MeshAgent’s generated code, and modified it as needed. We logged the time spent on

each step, both in-system and through surveys.

Results. Users rated overall satisfaction of using MeshAgent at 8.3/10. For canned queries, 95% pre-

ferred MeshAgent over alternatives, with full preference for the most complex queries. MeshAgent

also achieved a 100% success rate, maintaining average latency under 40 seconds, while alternatives

were 13 − 21× slower.

For open-ended queries, we collected 200 unique questions, with each participant submitting

10 queries. While 90% of the questions were similar (e.g., identifying the highest-degree nodes), a

long-tail distribution of diverse topics also emerged (Figure 3). After collection, we asked domain

experts to generate ground truth for each query, and compared these with MeshAgent’s responses.

The results indicate that MeshAgent achieves 85% total accuracy and 96% reliable accuracy, with a
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(a) Accuracy summary (b) Generalization test
Fig. 15. MeshAgent’s workflow and pre-built constraints shows strong generalization on open-
ended user-submitted queries.

better

(a) Token cost

better

Latency 
improved by 
pipeline: 76%

(b)Query latency
Fig. 16. Except for LATS, all are variants of MeshAgent. CoT+Few-shot and CoT+Fine-tuned offer
efficient token usage and latency, with pipeline optimization providing additional speedup.

high abstain recall (Figure 15a). Notably, MeshAgent’s pre-built constraints generalized effectively

even to low-similarity queries (Figure 15b), demonstrating strong adaptability to diverse queries.

To assess dynamic improvement, we fed the abstained queries into our semi-automated constraint

creation pipeline for failure analysis to generate new constraint entries. After integrating these

additional constraints, overall accuracy increased to 99% on open-ended queries (Figure 15a). These

findings underscore that MeshAgent not only efficiently extracts underlying invariants from queries,

eliminating the need for exhaustive example enumeration, but can also evolve over time by learning

from its failures.

Takeaway for Q4: In a user study with 20 network engineers, MeshAgent consistently outperforms
public LLMs in both accuracy and user preference. On user’s open-ended queries, MeshAgent’s
built-in constraints generalize well, achieving 85% accuracy. After incorporating new constraints
learned from abstained cases, accuracy increases to 99%. This shows that updating constraints
based on abstentions significantly improves system accuracy over time in real-world settings.

7 LLM Agents Inference Cost and Latency
To evaluate trade-offs among agents using MeshAgent, we compare token cost, inference latency,

and accuracy. Overall, as agents become more sophisticated, diminishing returns emerge. The basic

CoT approach achieves 90% accuracy at a low cost ($0.04). Few-shot improves accuracy by +2.5%

but increases costs by 28%. Fine-tuning adds additional costs beyond inference, as it requires input

tokens for model training. RL-enhanced variants, despite being 2.5–5.5× more expensive, reduce

accuracy by 5–13%, showing that added complexity does not always improve performance.
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Latency analysis reveals that CoT and fine-tuned models maintain practical response times

(5.4–6.2s), making them viable for real-time use. Importantly, MeshAgent’s pipeline optimization

can reduce CoT agents latency by 76%. However, RL-based approaches see a sharp increase (16–19s),

limiting their practicality. LATS further underscores these challenges, with 69% accuracy, $0.24 cost,

and 20.6s latency. These findings offer insights for network engineers to select the most suitable

LLM agents, balancing cost, latency, and accuracy for new applications as needed.

8 Related Work

General program synthesis with LLMs. Recent LLM-based program synthesis includes (1) code

selections where multiple samples are generated for choosing a best one based on the consistency

of execution results [63] or auto-generated test cases [10]; (2) few-shot examples, which supply

LLMs with several examples of the target program’s input-output behavior [2]; and (3) feedback

and self-reflection, which incorporates feedback or reinforcement learning outer loop to help LLMs

learn from their errors [9, 11, 64]. We have shown that applying general program synthesis methods

is insufficient to answer network management queries correctly.

LLMs for networking. Recent efforts in LLMs for network systems have covered various tasks

such as root cause analysis and troubleshooting [12, 60], reproducing research outcomes [77],

simulating agents for investigating internet incidents [86], extracting protocol specifications [61],

performing data retrieval and analytics on operator logs [31], generating task-specific responses

to handle multimodal networking data [76], generating network configurations [72], and using

chatbots for datacenter network diagnostics [73]. These proposals mainly focus on the feasibility

of specific applications and do not address the challenges faced by network experts in building and

adapting LLM agents for each application.

Constraints used in other LLM applications.Modern generative systems increasingly adopt

constraint-driven mechanisms to steer outputs both ethically and technically. For instance, Dong

et al.[16] introduces systematic pre- and post-generation filters to block unsafe or biased responses.

For policy alignment, Bai et al.[4] formulates explicit rule lists (the “AI constitution”) to constrain

model behavior toward ethical principles. Liu et al. [40] identify low-level (ensures the output

adhere to a structured format) and high-level constraints (requires the output to follow semantic and

stylistic guidelines without hallucination) from a user-centered perspective. Furthermore, constraint

languages and frameworks such as LMQL [5] exemplify broader efforts to codify constraint specifi-

cation and enforcement in generation pipelines. These studies highlight how explicit constraints

form a unifying mechanism for controlling generative models across domains. MeshAgent is the

first framework to formalize and implement constraint generation and enforcement specifically for

network management tasks.

9 Discussions

Limitation of MeshAgent. Network management involves a broad range of applications. MeshA-

gent specifically targets those that can be framed as graph manipulation tasks, where the underlying

system state or topology can be modeled as a graph, and the goal is to use LLMs to generate code

that operates on this graph structure (e.g., capacity planning over datacenter topologies and traffic

engineering based on network graphs). However, it does not support applications that cannot

be efficiently transformed into graph-based representations. One example is flow-level network
performance monitoring, which typically requires statistical analysis over time-series data and

continuous tracking of metrics like latency, jitter, and packet loss tasks that are better suited to

signal processing or time-series models rather than graph manipulation. Another limitation of

MeshAgent is the inherent nondeterminism of LLMs output, which leads to the absence of formal
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correctness guarantees. Moreover, the completeness of the generated constraint sets can only be

evaluated empirically, as it depends on the sample query set.

Evaluating MeshAgent on emerging benchmarks Since MeshAgent was developed without

access to domain-specific network benchmarks, we also conducted a real-world user study to

ensure representativeness. As future work, MeshAgent can be evaluated using newly available

public benchmark datasets. For example, NetPress [84] introduces a dynamic benchmark generation

framework tailored to network and system applications. Evaluating MeshAgent’s agent capabil-

ities, specifically in terms of correctness, safety (i.e., constraint violations), and latency, on such

benchmarks would be a valuable next step. This would also enable direct comparison with vanilla

LLMs and other agents on the NetPress leaderboard: netpress.ai.

Augmentation to future, more powerful LLMs.MeshAgent is designed to be model-agnostic,

and it has demonstrated ability to complement existing LLM agents. As more advanced LLMs

with enhanced reasoning and contextual understanding emerge, they present an opportunity to

further improve performance in network management tasks. MeshAgent is designed for seamless

integration with next-generation LLMs and advanced techniques such as continual learning, online

fine-tuning, and‘ reinforcement learning to dynamically adapt constraints, ensuring the framework

evolves alongside rapid AI advancements.

Security vulnerabilities of LLM agents. Deploying network LLM agents exposes them to

jailbreaking attacks, where adversaries craft prompts to bypass safeguards and extract sensitive

information or execute unauthorized commands. Although ML security remains a broad challenge

beyond this paper’s scope, potential mitigations include incorporating multiple layers of protection

within MeshAgent. Techniques like regex-based blacklisting and semantic similarity checks can

filter adversarial queries [80], while reinforcement learning with human feedback (RLHF) [54] can

further refine model behavior. Additionally, input and output validation that cross-checks responses

against known safe outputs can prevent unintended or malicious actions.

10 Conclusions
We introduced MeshAgent, a framework aimed at improving the workflow of building task-specific

LLM agents for network management. By incorporating domain-specific invariants as constraints

and developing a semi-automated workflow to simplify their creation, MeshAgent reduces the

reliance on extensive domain-specific data while improving both accuracy and reliability. Our

evaluation shows that MeshAgent effectively complements existing methods, enhances generated

code accuracy, and provides robust mechanisms for managing uncertainty, facilitating the practical

adoption of LLMs in critical network management tasks.
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institutional review board.
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Algorithm 1 Stepwise Code Execution with Error Reduction

Require: 𝑄 : input network query; C: set of extracted constraints; 𝑁 : maximum number of regen-

eration attempts per step.

1: procedure ExecuteQuery(𝑄, C, 𝑁 )

2: S ← Decompose(𝑄) ⊲ S = {𝑠1, 𝑠2, . . . , 𝑠𝑘 }: sequence of reasoning steps

3: for 𝑖 = 1 to |S| do
4: 𝑠 ← S[𝑖] ⊲ 𝑠: current step

5: 𝑐 ← GetConstraint(𝑠, C) ⊲ 𝑐: constraint relevant to step 𝑠

6: for 𝑡 = 1 to 𝑁 do
7: 𝑐𝑜𝑑𝑒 ← LLM(𝑄, 𝑠, 𝑐) ⊲ Generate code for step 𝑠

8: if ¬PassExec(𝑐𝑜𝑑𝑒) then
9: 𝑒exec ← ExecErr(𝑐𝑜𝑑𝑒) ⊲ Capture execution-error (e.g., syntax)

10: 𝑐𝑜𝑑𝑒 ← LLMFix(𝑄, 𝑠, 𝑐, 𝑒exec) ⊲ Regenerate code using feedback

11: else if ¬PassConstraint(𝑐𝑜𝑑𝑒, 𝑐) then
12: 𝑒cons ← ConstraintErr(𝑐𝑜𝑑𝑒, 𝑐) ⊲ Capture constraint-error

13: 𝑐𝑜𝑑𝑒 ← LLMFix(𝑄, 𝑠, 𝑐, 𝑒cons) ⊲ Regenerate code using feedback

14: else
15: Save(𝑖, 𝑐𝑜𝑑𝑒) ⊲ Store valid code for step 𝑖

16: break
17: end if
18: end for
19: if 𝑡 > 𝑁 then
20: Report(𝑄, 𝑠, 𝑐, 𝑖) ⊲ Escalate to human with detailed failure report

21: return FAIL
22: end if
23: end for
24: return Assemble() ⊲ Combine all step-wise code into a final solution

25: end procedure

A Query examples
We list more queries for each application in Table 7. The full query list and their ground truth will

be released afterward.
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Apps Query examples

TA

What are max degree and min degree in the graph?

Assign a unique color for each /16 IP address prefix and color the nodes accordingly.

Color the size of the node with max degree green and double its size.

Find nodes with top 10 number of degrees, list nodes, labels, and number of degrees.

Color the nodes that can be connected to nodes with labels app:prod with green.

Cut the graph into two parts such that the number of edges between the cuts is the same. Color two parts with red and blue.

Identify the unique labels in the graph and create a new graph with a node for each unique label.

Calculate the total byte weight of edges incident on each node, cluster into 5 groups using k-means, and color nodes by cluster.

How many maximal cliques are in the graph?

Remove the label type:VM from all the nodes. Create a new graph with the same nodes and edges.

Bisect the network such that the number of nodes on either side of the cut is equal.

How many unique nodes have edges to nodes with label app:prod and don’t contain the label app:prod?

Show me the unique IP address prefix and the number of nodes per prefix.

Delete all edges whose byte weight is less than the median byte weight in the graph.

What is the average byte weight and connection weight of edges incident on nodes with labels app:prod?

MALT

Add a new packet_switch ju1.a1.m1.s4c7 on jupiter 1, aggregation block 1, domain 1, with 5 ports.

Update the physical_capacity_bps from 1000 Mbps to 4000 Mbps on node ju1.a1.m1.s2c2.p14.

Identify all CONTROL_POINT nodes that are also PACKET_SWITCH type within the AGG_BLOCK type node ju1.a4.m4.

Display all CONTROL_DOMAIN that contains at least 3 CONTROL_POINT.

What is the bandwidth on packet switch ju1.a2.m1.s2c2 in Mbps?

Find the first and the second largest Chassis by capacity on ju1.a1.m1.

Show the average physical_capacity_bps for all PORT in all PACKET_SWITCH.

For each AGG_BLOCK, list the number of PACKET_SWITCH and PORT it contains.

Identify all PACKET_SWITCH nodes in AGG_BLOCK ju1.a1.m1 and calculate their average physical_capacity_bps.

Find all PACKET_SWITCH nodes that have capacity more than the average.

Remove packet switch ju1.a1.m1.s2c4 out from Chassis c4, how to balance the capacity between Chassis?

Remove five PORT nodes from each PACKET_SWITCH while maintaining balanced capacity.

Identify all paths from CONTROL_DOMAIN ju1.a1.dom to PORT ju1.a1.m1.s2c1.p1, ranked by hop count.

Analyze the redundancy level of each SUPERBLOCK by calculating alternative paths between CHASSIS pairs.

Optimize topology by identifying removable PACKET_SWITCH nodes that won’t affect CONTROL_DOMAIN connectivity.

Determine optimal placement of new PACKET_SWITCH ju1.a1.m1.s2c9 with 5 PORTs to balance AGG_BLOCK capacity.

CRG

Show the most connected five VM nodes by their name and their osType.

Find all nodes that can be connected to virtual networks nodes with addressPrefixes as 10.0.0.1 and port as 26.

Extract all VM nodes with OS type as linux and their connected nodes with links.

Find all network security groups nodes that allow inbound traffic.

With all VM nodes that have name Subnet-2, list the top five node degrees.

How many virtual networks nodes allow port 26?

How many network interfaces nodes have properties virtualnetworks as Subnet-1?

Find the node ID with max degree and min degree.

How many nodes have links to network security groups nodes?

How many isolated nodes without any links exist in the graph?

Show me the unique addressPrefixes for virtual networks nodes and the number of nodes per prefix.

Cut the graph into two parts such that the number of virtual networks nodes between the cuts is the same.

How many nodes, except from type networksecuritygroups, have more than ten links in the graph?

Count network security groups nodes that are related to inbound traffic.

Identify all paths from the network interfaces nodes to virtual networks node with name Subnet-1.

For all network security groups nodes with name AllowVnetInBound, list all ports and rank them based on priority.

Table 7. Sample query lists for each application

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 52. Publication date: December 2025.



MeshAgent: Enabling Reliable Network Management with Large Language Models 52:31

B Prompts.

Prompt #1: Generating Graph Structure Constraints

You are a domain expert tasked with specifying precise and actionable constraints for a

graph-based topology system. Based on provided topology features, generate a structured

JSON file that captures the expected structural and operational rules of the system.

Output Format: Each constraint must be in the following JSON format:

[

{

"id": "<sequential_number >",

"label": "<category >, <subcategory >",

"invariant ": "<constraint_in_natural_language >",

"validation_test ":

def verify_ <constraint_name >(self.graph):

"""

Validation check: <constraint_description >

"""

# Return True , "" if valid

# Raise Exception("<error_message >") if violated

}

]

Constraint Writing Guidelines:
• Include examples when helpful (e.g., "For example, a PORT node name is

ju1.a1.m1.s2c1.p3")

• Specify data types and formats (e.g., "type must be a list")

• Include all unique node and edge type values

• Define hierarchical relationships in graph clearly

• Specify validation rules and checks

Input Feature Information You’ll Receive:
• Node types and their hierarchical relationships

• Edge types and their meanings

• Attribute specifications for each node/edge type

• Naming conventions

• Operational requirements (how to add, update, calculate)

Example Constraint Patterns:
• “Hierarchy: PARENT contains CHILD, CHILD contains GRANDCHILD”

• “When adding new nodes, you should also add edges based on their relationship with

existing nodes.”

• “To find node based on type, check the name and type list. For example, [valida-

tion_example].”

• “When calculating capacity of a node, you need to sum the physical_capacity_bps on

the PORT of each hierarchy contains in this node.”
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Prompt #2: Generating App-Specific Constraints via Failure Analysis

You are a domain expert tasked with analyzing failure cases in graph-based topology

systems and deriving precise constraints to prevent such failures in the future. Given an

original user query, the corresponding failure message, and the correct expected
answer, your task is to diagnose the root cause of the failure and convert this insight into

a formal, enforceable constraint.

Output Format: Your output should be a structured JSON object following the format

below:

[

{

"id": "<sequential_number >",

"label": "<category >, <subcategory >",

"invariant ": "<constraint_in_natural_language >",

"validation_test ":

def verify_ <constraint_name >(self.graph):

"""

Validation check: <invariant_description >

"""

# Return True , "" if valid

# Raise Exception("<error_message >") if violated

}

]

Failure Analysis Guidelines:
• Identify the key gap or incorrect assumption that led to the failure.

• Map the failure to a missing or violated constraint.

• Generalize the insight into a reusable constraint that applies across similar queries or

applications.

• Constraints must be specific, testable, and grounded in the topology semantics.

• Use examples from the query or answer when helpful.

Input Provided:
• Query: The original user query
• Failure Message: The system’s error or misbehavior description

• Correct Answer: A verified correct solution or expected outcome

Example Failure Patterns:
• Invalid Topology: “A PORT must always be linked to a Packet Switch”

• Computation Mismatch: “Capacity attribute only exists at Port level nodes.”

• Naming Conflict: “Node names must be globally unique within the same topology

context.”

C User Study Interface
Figure 17 depicts the screenshot of how MeshAgent generates and executes LLM-produced code

in response to a network operator’s natural language query. Each graph node included attributes

such as color, size, and label, while edges contained network traffic attributes such as byte weight,

connection weight, and packet weight. This method addresses the explainability challenge by
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Original communication graph Updated communication graph 

Fig. 17. An example of how a natural-language-based network management system generates and
executes a program in response to a network operator’s query: “Assign a unique color for each /16
IP address prefix”. The system displays the LLM-generated code and the updated communication
graph.

enabling network operators to examine the code and understand the techniques used by LLMs to

derive answers while assessing their accuracy. Moreover, it overcomes both scalability and privacy

concerns by removing the necessity to transfer network data to LLMs, as the input for LLMs is the

natural language query and the output solely comprises LLM-generated code. Users are also able

to verify and modify the code if they want, once a code is verified, it is added to the library RAG

for future query reference.

D Invariants of Applications
We list the extracted invariants of each application in Table 8, Table 9, Table 10.
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ID Label Invariant

1 graph, type The data is represented as a networkx graph made up of nodes representing

virtual machines in a network.

2 node, attribute Each node has attributes such as a unique ip_address and one or more

labels of the form key=value.
3 node, label Each node has an attribute labels.
4 node, label Each node has an attribute labels; it is a list, for example: [app:test,

app:prod].
5 edge Each edge connects two nodes if there is a data connection between the

virtual machines represented by the nodes.

6 edge, attribute Each edge has attributes byte_weight, connection_weight, and

packet_weight, represented as ratios of the total number of bytes, connec-

tions, and packets of the entire network.

7 node, attribute Each node has an attribute ip_address; this should be used when checking

by IP address.

8 node, add Adding new nodes needs to consider corresponding edges.

9 node, remove There should not be any nodes in the graph that are not connected to any

other nodes.

10 edge, remove There should not be any edges in the graph that are not connected to any

other nodes.

Table 8. Invariants list for App-TA.
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ID Label Invariant

1 graph, type The graph is directed and each node has a name attribute to represent itself.

2 node, type Each node has a type attribute in the format of EK_{TYPE}. This is impor-

tant: type must be a list, can include [EK_SUPERBLOCK, EK_CHASSIS, EK_RACK,
EK_AGG_BLOCK, EK_JUPITER, EK_PORT, EK_SPINEBLOCK, EK_PACKET_SWITCH,
EK_CONTROL_POINT, EK_CONTROL_DOMAIN].

3 node, attribute Each node can have other attributes depending on its type.

4 edge, type Each directed edge also has a type attribute, including RK_CONTAINS,
RK_CONTROL.

5 relationship You should check relationship based on edge, check name based on node at-

tribute.

6 node, add Adding new nodes needs to consider all hierarchy. For example, adding a new

switch requires adding it to the corresponding jupiter, aggregation block, and

domain.

7 edge, add When adding new nodes, you should also add edges based on their relationship

with existing nodes.

8 PORT, attribute Each PORT node has an attribute physical_capacity_bps.
9 PORT, name For example, a PORT node name is ju1.a1.m1.s2c1.p3.
10 capacity When calculating capacity of a node, sum the physical_capacity_bps on the

PORTs contained in this node.

11 node, hierarchy Hierarchy: CHASSIS contains PACKET_SWITCH, JUPITER contains SUPERBLOCK,
etc.

12 graph, add When creating a new graph, filter nodes and edges with attributes from the

original graph.

13 graph, update When updating a graph, always create a graph copy; do not modify the input

graph.

14 node, attribute Packet-switch nodes also have a switch-location attribute switch_loc in node

attribute packet_switch_attr.
15 node, type To find node based on type, check the name and type list. Example: [node[0]

== ’ju1.a1.m1.s2c1’ and ’EK_PACKET_SWITCH’ in node[1][’type’]].

Table 9. Invariants list for App-MALT.
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ID Label Invariant

1 graph, type The data is represented as a networkx graph made up of cloud resource

graph in Azure network.

2 node, type Node type can be virtualmachines, Networkinterfaces,
virtualnetworks, or networksecuritygroups.

3 node, name Node name is a string depending on its type.
4 node, properties, vir-

tualmachines

When type=virtualmachines, properties has osType,
Networkinterfaces. When type=Networkinterfaces, properties has

virtualnetworks, Networkinterfaces. When type=virtualnetworks,
properties has provisioningState, addressPrefixes, port.
When type=networksecuritygroups, properties has protocol,
addressPrefixes, port, priority.

5 node, properties, Net-

workinterfaces

When type=Networkinterfaces, properties has virtualnetworks,
Networkinterfaces. When type=virtualnetworks, properties
has provisioningState, addressPrefixes, port. When

type=networksecuritygroups, properties has protocol,
addressPrefixes, port, priority.

6 node, properties, virtu-

alnetworks

When type=virtualnetworks, properties has provisioningState,
addressPrefixes, port. When type=networksecuritygroups,
properties has protocol, addressPrefixes, port, priority.

7 node, properties, net-

worksecuritygroups

When type=networksecuritygroups, properties has protocol,
addressPrefixes, port, priority.

8 edge, virtualmachines,

Networkinterfaces

A virtualmachines node can be connected to a Networkinterfaces node
if they have the same value for Networkinterfaces in properties.

9 edge, Networkinter-

faces, virtualnetworks

A Networkinterfaces node can be connected to a virtualnetworks node
if they share the same value for addressPrefixes in properties.

10 edge, virtualnetworks,

networksecurity-

groups

A virtualnetworks node can be connected to a networksecuritygroups
node if they have the same addressPrefixes and port in properties.

11 node, VM VM node refers to a virtualmachines type node in the graph.

12 node, network inter-

faces

Network interfaces node refers to a Networkinterfaces type node in the

graph.

13 node, virtual networks Virtual networks node refers to a virtualnetworks type node in the graph.
14 node, network security

groups

Network security groups node refers to a networksecuritygroups type
node in the graph.

15 inbound, traffic When checking inbound traffic, verify whether InBound is contained in the

node’s name.

Table 10. Invariants list for App-CRG.
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