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The emergence of large language models (LLMs) offers great promise for building domain-specific agents,
but adapting them for network management remains challenging. To understand why, we conduct a case
study on network management tasks and find that state-of-the-art specialization techniques rely heavily on
extensive, high-quality task-specific data to produce precise solutions. However, real-world network queries
are often diverse and unpredictable, making such techniques difficult to scale. Motivated by this gap, we
propose MeshAgent!, a new workflow that improves precision by extracting domain-specific invariants from
sample queries and encoding them as constraints. These constraints guide LLM’s generation and validation
process, narrowing the search space and enabling low-effort adaptation. We evaluate our method across three
network management applications and a user study involving industrial network professionals, showing
that it complements existing techniques and consistently improves accuracy. We also introduce reliability
metrics and demonstrate that our system is more dependable, with the ability to abstain when confidence
is low. Overall, our results show that MeshAgent achieves over 95% accuracy, reaching 100% when paired
with fine-tuned agents, and improves accuracy by up to 26% compared to baseline methods. The extraction of
reusable invariants provides a practical and scalable alternative to traditional LLM specialization, enabling the
development of more reliable agents for real-world network management.
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1 Introduction

Large language models (LLMs) have recently sparked interest in automating network management
tasks using natural language interfaces [28, 43, 45, 72]. Analogous to intent-based networking
(IBN) [30, 35, 57, 59, 62], LLM agents could improve productivity by allowing operators to specify
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high-level goals in natural language. Figure 1 shows an example of using natural language to
manage datacenter networks. Despite the potential, their real-world adoption remains limited [26],
especially in networking and systems [84]. The core reason is not just accuracy, but the lack of
reliable and adaptable LLM agents that can handle complex, safety-critical networking tasks like
configuration generation [72], fault diagnosis [12, 60], and resource planning [45].

A key barrier to building such agents is the need to specialize LLMs with task-specific knowledge,
including network designs, topologies, hardware configurations, and telemetry systems. Most
existing specialization techniques, such as retrieval-augmented generation (RAG) [19, 56], prompt
engineering [55], and fine-tuning with LoRA [27, 76], require large volumes of curated input-output
examples. Unfortunately, in networking, such data is often proprietary, difficult to collect, and
rarely generalizes to the diversity of real-world queries. This raises a critical open question: How
much task-specific data is truly needed to build deployable LLM agents for networking?

To investigate this, we conduct a case study using current LLM specialization techniques, along
with a user study involving network professionals focused on traffic analysis. Two consistent
insights emerge from our study results: (1) the effectiveness of an LLM agent depends greatly on
how closely its prompts or fine-tuning examples match real-world queries, and (2) user queries are
highly diverse and difficult to enumerate in advance. Although creating input-output examples
by experts improves performance, our study finds that this process is both error-prone and time-
consuming. Even experienced network professionals often require hours to craft accurate solutions
for their own queries. These findings reveal a fundamental bottleneck: expert-driven data curation
does not scale to the diversity of real-world queries, limiting the practicality of current LLM
specialization methods for network management.

Another significant challenge in adopting

LLM agents for networking tasks is the relia-
bility required for operations such as planning,
monitoring, configuration, and troubleshoot-
ing. Unlike general question-answering, er-
rors in these domains can lead to serious con-
sequences, including service outages [65] or
critical security vulnerabilities. For example, a
recent incident involving a simple misconfig-
uration caused a major network outage across
Facebook services, impacting 2.9 billion users
for over six hours [18]. For these high-stakes
environments, it is essential for LLM agents to
recognize their limitations and abstain from
unsafe actions when confidence is low.
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Fig. 1. Example input and output for a datacenter

capacity planning query.

In this paper, we introduce MeshAgent, a new framework for building specialized and reliable

LLM agents for network management tasks. We focus on graph-structure applications such as
capacity planning [50], traffic analysis [23, 29, 85], and cloud resource configuration [48]. In these
applications, the system translates a user’s goals into specific commands (using a domain-specific
language, or DSL) to analyze and manipulate a network graph. While user queries are diverse, we
observe that they often share consistent structural invariants. MeshAgent uses these invariants
to guide DSL generation, improve correctness, and indicate the reliability of the solution. Our
contributions are as follows:
e Constraint Guided Optimization for Reliable Code Generation. We introduce a method to
encode application-specific invariants (e.g., safety conditions, dependency rules) as constraints.
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These constraints are applied both during generation (to guide the LLM via the prompt) and
after generation (to validate the LLM’s output), ensuring the results meet application-specific
requirements. If a constraint is violated, the system enters an error reduction loop that iteratively
refines the output. MeshAgent also introduces an abstention mechanism, enabling the agent to
withhold output when its confidence is low. Confidence scores are computed dynamically using
task-specific signals such as output consistency and error frequency, and low-confidence queries
trigger a semi-automated review process to update the constraints.

e Semi-automated Constraint Creation via Failure Driven Learning. To reduce adaptation
cost, MeshAgent provides a constraint synthesis pipeline. It extracts structural constraints (e.g.,
node and edge types, graph schemas) from the network topology and derives higher-level
behavioral constraints by analyzing failures in a small set of sample and abstained queries.
Constraints are stored in a database with auto-validation support for continuous refinement.
New constraints are compared against existing ones using similarity between embeddings. If
similarity falls below a threshold, the new entry is added directly; otherwise, it is reconciled with
similar entries to avoid duplication. This enables generalization across diverse networking tasks
with minimal expert review.

e Evaluation on Diverse Benchmark Queries and Real-world Use Case. We evaluate Me-
shAgent on three network management applications using a benchmark of 240 curated queries
across five agent types and three state-of-the-art LLMs (GPT-40, Gemini-2, and DeepSeek-v3).
MeshAgent consistently improves both reliability and generalization: it achieves 98% accuracy
(excluding abstention) and 91% overall using only 14 constraints, compared to 85% and 74% with-
out constraints, respectively. In a real-world user study with 200 open ended queries collected
from industry professionals, MeshAgent generalizes to unseen tasks with 96% accuracy using
constraints built from just 15 seed input/output examples. We release code, data, and benchmarks
to support future research on building and evaluating LLM agents in the networking domain.

2 Motivation

Large language models (LLMs) [1, 7, 13, 52, 68, 70] offer a compelling opportunity to bring natural
language interfaces to network management. These models excel at understanding human intent
and have achieved remarkable success across diverse domains [37, 66, 71]. Their application
in networking is gaining momentum, with early efforts exploring tasks such as configuration
generation [3, 72], root cause analysis [12, 25, 60], and broader operator workflows [31, 61, 77].
Despite this promise, LLM-based agents often struggle in real world deployments [12, 25, 60, 72].
Two challenges stand out: accuracy and adaptability. First, even the most advanced models are
prone to hallucinations [46] and reasoning errors [8, 14], which can lead to critical misdiagnoses
or unsafe network configurations. Second, adapting these agents is a major obstacle because the
immense diversity of user objectives, network topologies, and organizational requirements makes
it unclear how much task-specific data is sufficient.

To better understand the challenges, we conduct a case study of state-of-the-art LLM agents
across three network management tasks. This serves as a concrete lens to evaluate their reliability
and adaptability in practical settings.

2.1 Graph Analysis and Manipulation in Network Management

Many network management and control tasks can be framed as graph analysis and manipulation
over network topologies or communication graphs. In this work, we focus on three representative
applications. Table 1 shows example queries from each task.
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Apps Query details

Calculate the byte weight of edges incident per node, cluster into 5 groups using k-means, and color the nodes by cluster.
TA How many unique nodes have edges to nodes with label app: prod and don’t contain the label app: prod?

What is the average byte weight and connection weight of edges incident on nodes with labels app:user?

Optimize topology by identifying removable PACKET_SWITCH nodes that won’t affect CONTROL_DOMAIN connectivity.
MALT Determine optimal placement of new PACKET_SWITCH jul.al.m1.s2c9 with 5 PORTs to balance AGG_BLOCK capacity.

Remove packet switch jul.al.ml1.s2c4 from Chassis c4. How to balance the capacity between Chassis?

Cut the graph into two parts such that the number of virtual networks nodes between the cuts is the same.
CRG  For all network security groups nodes with name AllowVnetInBound, list all ports and rank them based on priority.

Identify all paths from the network interfaces nodes to virtual networks node with name Subnet-1.

Table 1. Representative query examples per application. See Appendix A, Table 7 for more.

o Traffic Analysis (TA). Network operators analyze traffic to identify bottlenecks, congestion, and
underused resources, as well as for traffic classification. A valuable representation in traffic
analysis is traffic dispersion graphs (TDGs) [29] or communication graphs [20], in which nodes
represent network components such as routers, switches, or devices, and edges symbolize con-
nections or paths between components. These graphs offer a visual representation of data packet
paths, facilitating a comprehensive understanding of traffic patterns. Network operators typically
utilize these graphs in two ways: (1) examining these graphs to understand the current state of
the network for performance optimization [29], traffic classification [67], and anomaly detection
[33], and (2) manipulating the nodes and edges to simulate the impact of their actions on network
performance and reliability [34].

o Network Lifecycle Management (MALT). Managing a network’s lifecycle involves phases like
capacity planning, topology design, deployment, and diagnostics. Most operations require precise
topology representations at various abstraction levels and the manipulation of topology to achieve
the desired network state [50]. For example, network operators may employ a high-level topology
to plan the network’s capacity and explore alternatives to increase bandwidth between two data
centers. Similarly, network engineers may use a low-level topology to determine the location of
a specific network device and its connections to other devices.

o Cloud Resource Configuration Analysis (CRG). Cloud resource management involves providing
efficient resource exploration and allocation across the cloud. A common approach is to use
graph representations and DSLs [48] to facilitate querying of resources and cloud subscription
information. Network operators rely on complex query operations (e.g., filtering, grouping, and
sorting by resource properties) to manage cloud environments and to assess the effect of applying
policies. For instance, users can identify the ports that allow inbound traffic with a specific
network security group and rank the network policy by priority.

2.2 Case Study: Specializing LLMs for Network Management

To evaluate state-of-the-art LLM specialization techniques for network management tasks, we
collect 30 diverse queries per application from public documents and reports [44, 47, 50], using
the applications described in Section 2.1. We use LLM-based agents to generate Python code for
natural language queries, verifying its output against the ground truth to ensure it aligns with the
query’s intent. The accuracy of the techniques is reported based on all 90 queries as the test set.
Each query is run five times to determine the average accuracy against the ground truth for the
predominant specialization techniques discussed below.
e Context Injection and Prompt Engineering. A common way to specialize LLMs is to provide
domain-specific context via Retrieval-Augmented Generation (RAG) [19, 36, 56] and few-shot
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Prompt: CoT+RAG Fine-tuned:CoT+RAG Fine-tuned:CoT+RAG

+ ReAct (tune w.10 <q,a>) (tune w.20 <q,a>)
GPT-01-mini/40 0.76 0.55 0.71
Gemini-2/1.5 0.68 0.60 0.65
GPT-01-mini/40 0.71 0.50 0.69
MALT
Gemini-2/1.5 0.67 0.52 0.63
GPT-o01-mini/40 0.69 0.64 0.75
CRG
Gemini-2/1.5 0.68 0.57 0.72

Table 2. Existing LLM specialization approaches show limited effectiveness, with low accuracy and
generalization on a set of 90 representative networking tasks.

prompting [55]. In RAG, the system retrieves relevant information (e.g., documents, specifica-
tions) and prepends it to the prompt. Few-shot prompting provides a small set of query-response
examples, sometimes with comments or reasoning steps, to guide the LLM’s output. In network-
ing, few-shot examples typically pair user queries with configurations or operational procedures.
Furthermore, recent LLM-based code generation introduce more sophisticated prompting meth-
ods to improve reasoning, such as ReAct [82] and feedback-driven refinement [9, 11, 63]. These
approaches aim to improve output quality by encouraging step-by-step reasoning, incorporating
environment feedback, or selecting among multiple candidate solutions.

Evaluation. We test Gemini-2 [69] and GPT-01-mini [51] using prompting techniques including
chain-of-thought (CoT) [75], ReAct [82], and RAG via Llamalndex [42]. As shown in Table 2,
these agents achieve only 67% to 76% accuracy across applications. We find that complex, multi-
step requirements in networking queries pose major difficulties. For example, even with ReAct
reasoning, GPT-4o0 places a new packet switch in parallel with a chassis, instead of following
the required hierarchy where it should be added as a child node of the chassis. Additionally,
it ignores the required capacity attribute on the Port of the new packet switch. These results
indicate that supplying more context alone does not ensure reliable execution, especially for
network tasks with structural dependencies and latent constraints.

Insight 1: More context is NOT always better. Injecting network domain knowledge via prompt-
ing can degrade LLM performance when structural and latent dependencies are not explicitly
modeled. Even advanced prompting fails on networking queries that require precise multi-step
reasoning.

e Model Fine-Tuning. Another strategy is to fine-tune LLMs on domain-specific data by adapting
model weights using example input-output (query-answer) pairs [24, 38, 74]. However, this
approach faces generalization challenges similar to traditional machine learning: models often
overfit to training patterns and perform poorly on unseen queries. This places a heavy burden
on network experts to curate broad and diverse training data, which is time-consuming and
difficult to scale. Some recent methods apply reinforcement learning (RL) after fine-tuning to
improve robustness [9, 32, 54], but these approaches rely on designing reward signals to provide
consistent feedback, which are difficult to obtain in complex network systems.

Evaluation. To assess this, we fine-tune two LLMs (GPT-40-mini and Gemini-1.5), combining
them with prompting techniques for complementarity. Each model is fine-tuned on 10 query-
answer pairs for each application. While both models correctly answer all 10 training queries,
they frequently fail on unseen ones, often generating code that mimics the structure of training
solutions even when logically incorrect. For example, after fine-tuning Gemini-1.5 on a query
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Fig. 2. Fine-tuned models perform poorly on dissimilar queries in the MALT application, revealing
limited generalization beyond training examples.
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Fig. 3. Semantic similarity between 200 user-submitted and 30 pre-sampled traffic analysis queries
shows a long tail of dissimilar cases, highlighting the unpredictability of real-world tasks.

such as “Add a new packet switch so that the capacity is balanced among chassis,” along with
its corresponding solution, the model learns to apply capacity balancing as a default behavior.
As a result, when queried with any request to add a new node to the datacenter, it attempts to
balance capacity among chassis at the final step, even in cases where this action is unnecessary
or incorrect. (Figure 2a compares a similar testing query with a dissimilar query). As shown in
Table 2, this setup performs even worse than prompting alone. We further expand the training set
to 20 queries and observe the same overfitting behavior. We also compute the cosine similarity
between query embeddings and find a strong correlation between similarity to training examples
and test accuracy (Figure 2b).

Insight 2: Fine-tuned LLM agents tend to overfit to training queries and fail to generalize.
Without diverse, task-specific data, fine-tuning degrades reliability and mimics solution patterns
without understanding the logic.

2.3 User Study with Network Professionals

Our case study above highlights that the effectiveness of LLM agents strongly depends on the
similarity between task-specific examples and real-world queries. However, real users often pose
diverse and unpredictable questions that are difficult for domain experts to anticipate. To further
investigate this, we conduct a user study at a major cloud provider focused on traffic analysis (§6).
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Fig. 4. Instead of relying on prompting or fine-tuning with numerous examples, our framework
specializes LLM agents using reusable constraints. This approach offers greater generalization,
improved reliability, and reduced human effort for real-world network management tasks.

Network engineers submit 200 open-ended queries. While some resemble our benchmark queries
(e.g., calculating total bytes, clustering nodes), many exhibit substantial variation.

Figure 3 shows the semantic similarity distribution across these queries. Over 70% shows high
sematic similarity, but a long tail of highly diverse queries accounts for nearly 25% of the dataset.
Notably, participants were asked to write ground-truth solutions for their own queries and log the
time required. The average answer creation time per query exceeds 1.5 hours. This reinforces a key
insight: manually curating representative examples is not only error-prone and labor-intensive,
but fundamentally unscalable. The core challenge is thus to go beyond surface-level examples
and enable principled generalization. Our user study further underscores the potential need for
structured, reusable knowledge representations that can help LLMs generalize across the long tail of
real-world tasks.

Insight 3: Queries collected from real-world network professionals are diverse. LLM agents relying
on pre-defined examples cannot scale to the unpredictable, long-tail nature of production queries.

3 Design

Overview. We introduce MeshAgent, an end-to-end workflow for specializing LLM agents to net-
work management tasks by extracting reusable knowledge representations, which we call constraints.
Unlike data input-output examples that are unbounded and hard to enumerate, constraints offer
a more compact and generalizable way to guide LLM behavior. Intuitively, there may be many
different queries, but only a limited number of underlying rules and invariants. However, it remains
unclear how many constraints are needed, how reliable they are, and what is the best way to extract
them when adapting LLMs to a new application. MeshAgent addresses these questions with a
practical framework designed to (1) reduce adaptation overhead, and (2) ensure high reliability by
abstaining when uncertain. It is also designed to be dynamic and continually improve through
constraint refinement (Figure 4).

(1) Adaptation-time. Traditional LLM specialization techniques, such as RAG and fine-tuning,
rely heavily on manual data collection and expert curation. These processes are difficult to scale
and lack standardization. MeshAgent addresses these challenges by introducing constraints as
a unifying abstraction to reduce human intervention. Each constraint consists of an invariant,
which is a natural language rule that define fundamental properties that must always hold, and a
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"id": 1,

"label": node, hierarchy,

"invariant": Nodes must follow the hierarchy: CHASSIS contains PACKET_SWITCH, JUPITER contains
SUPERBLOCK, SUPERBLOCK contains AGG_BLOCK, AGG_BLOCK contains PACKET_SWITCH, PACKET_SWITCH contains PORT,

"validation_test":
def verify_node_hierarchy (self):
hierarchy = {

“JUPITER": ["SUPERBLOCK"I,
“SUPERBLOCK": ["AGG_BLOCK"],
“AGG_BLOCK": ["PACKET_SWITCH"],
"CHASSIS": ["PACKET_SWITCH"],
“PACKET_SWITCH": ["PORT"],

¥
for edge in self.graph.edges(data=True):
if 'CONTAINS' in edgel[2]['type'l:
source_node_types = self.graph.nodes[edge[0]]['type']
target_node_types = self.graph.nodes[edge[1]]["'type']
for source_type in source_node_types:
if source_type in hierarchy and any(target_type in hierarchy[source_typel for
target_type in target_node_types):
return True, ""

raise Exception("verify_node_hierarchy failed at edge: " + str(edge))

Fig. 5. Each Constraint includes a label describing the keyword, a natural language invariant
defining the application-specific condition, and a validation function to check if the generated
result satisfies it.

corresponding validation test that verifies whether LLM outputs satisfy the rule. MeshAgent prepares
these constraints using a hybrid process. First, it automatically extracts structural features from
the network graph (such as nodes, edges, and metadata) and uses LLMs to generate corresponding
invariants and validation code. Second, MeshAgent analyzes LLM failures on abstained queries,
identifies recurring error patterns, and infers updated constraints. Engineers only need to review,
edit and approve the constraint suggestions, which significantly reduces manual effort.

(2) Run-time. After constraints are built, MeshAgent integrates with the LLM agent by retrieving
relevant entries from the constraint database. The invariants are included in the prompt, and
the LLM-generated output is executed in a sandbox environment before being checked against
validation tests. If it fails, MeshAgent enters an error-reduction loop: the original query, constraints,
and error context are provided to the LLM to generate a corrected response. Only validated
outputs are returned to the user. To further improve reliability, MeshAgent includes a heuristic
abstention mechanism that suppresses low-confidence answers. Confidence scores are computed
using task-specific signals, such as output consistency and error rates. If confidence remains low
after refinement, the query is routed back to the adaptation-time workflow for constraint update.
This design reduces the need for manual debugging and helps prevent the deployment of incorrect
responses.

3.1 Building Constraints for Specific Network Applications

To improve LLM performance on domain-specific queries, prior work [19] uses Retrieval-Augmented
Generation (RAG), where an external database provides contextual information for prompt con-
struction. This typically includes past user queries with answers (few-shot learning) or domain
handbooks (e.g., tool instructions or library guides). However, applying this approach directly to
networking tasks introduces two key challenges: (1) Exhaustively enumerating user queries is
impractical and risks introducing low-quality examples; (2) Injecting excessive or irrelevant context
can mislead the LLM. For instance, in datacenter capacity planning, if attributes like ‘switch_loc’
(location) are unnecessarily included in the prompt, a simple query like “Calculate capacity?” may
result in incorrect logic that focuses on location-level aggregation rather than port-level summation.
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Graph Parser (Python) Constraint Translation (LLM) Valid Graph Constraints
Input: G' Input: See prompt details in Appendix B Prompt #1 S1d: 1
Output: Output: - Label: node\, type
+ Node type: Chassis; Switch; Port + Invariants: Node in the graph can only be following types - Invariants: Node in the graph can only
—> | « Node attributes: capacity; location > Chassis, Switch, Port. —>||| be following types: Chassis, Switch, Port

+ Node hierarchy: Chassis contains + Validation test:

G' for Switch; Switch contains Port def check node_type (G)

application | * Edge Type: contains; link TYPES = {"Chassis", "Switch", "Port"}

(.json) * Edge attributes: None for node in G.nodes:

* Edge hierarchy: None if node not in TYPES:

raise Error(f"Invalid type at {node_id}")
return True, "All node types are valid"

Fig. 6. Graph structure constraints are directly extracted from the graph data and translated into
code by an LLM. Their explicit structure makes them easy for LLMs to process accurately.

Constraint Definition. To address these issues, we propose focusing on a small set of critical,
reusable invariants instead of injecting verbose domain context. The key insight is that while user
queries are diverse and long-tailed, the correctness conditions governing their answers (i.e., invariants)
are limited and stable across tasks. By guiding the LLM with these invariants, we avoid the overhead
of exhaustive enumeration and reduce prompt noise, leading to more accurate and reliable outputs.
We define a structured ‘Constraint’ format that supports both runtime prompting and post-
generation validation (example in Figure 5):
o Label: A keyword-based summary describing the constraint’s abstraction. It supports fuzzy
matching between user queries and relevant constraints.

e Invariant: A natural language rule specifying the application-specific condition that must hold
(e.g., valid node types, required field formats).

o Validation test: A test function that checks whether the generated output satisfies the constraint.
This is used in the error-reduction module (§3.2).

Constraint Generalization. At first glance, building Constraints for each new application may

appear labor-intensive. A natural approach is to either (1) rely on domain experts to manually

define them, or (2) use LLMs to generate them automatically. However, both have limitations:

Manual creation is time-consuming, error-prone, and bounded by the expert’s prior knowledge,

which may miss critical cases. Automated generation with LLMs is faster but often unreliable, since

LLMs can produce plausible but incorrect or inconsistent constraints. Furthermore, generating

accurate constraints often requires giving LLM the full access to the network graph data, which

may be restricted in industrial settings due to privacy concerns.

To address these issues, we introduce a semi-automated constraint creation workflow that
balances efficiency with reliability. Instead of relying entirely on manual effort or LLMs, we leverage
LLMs to only translate structured inputs into constraint formats, while engineers review and refine
the results rather than creating them from scratch. We categorize constraints in graph-based
network management into two types:

(1) Graph-Structure Constraints: These constraints define the attributes and relationships of nodes
and edges within network graphs. (i) We first implement a feature extractor in Python. Given a
graph as input, it extracts structural features such as all node and edge types, attribute fields, and
hierarchical relationships. (ii) Each extracted feature is then sent to an LLM-based constraint
translator, which generates a constraint invariant and a corresponding validation test using
structured prompting (See full prompt in Appendix B). (iii) The validation test is executed
directly on the graph data to verify the correctness and functionality of the generated constraint.
Because the input is structured and unambiguous, this automated process produces high-quality
constraints without requiring manual review (Figure 6).
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(2) Application-Specific Constraints: These constraints encode logical rules specific to an application,
such as valid actions, dependencies, or invariants that are inexplicit from the graph data. (i)
Engineers begin by providing a small set of sample queries and their ground truth answers
(we use 10 in our evaluation). (ii) For each sample query, the LLM agent attempts to generate a
solution using the existing graph constraints. (iii) The output is executed and compared to the
ground truth. If the execution results of the generated solution, under current constraints, is
numerically equivalent to the ground truth known by operators, no new constraint is needed.
If they differ, the failure information and ground truth are sent to the LLM-based constraint
translator to produce a new constraint based on the observed failure (See full prompt in
Appendix B). (iv) Newly generated constraints are manually reviewed for correctness before
being incorporated into the constraint database. The LLM agent is then re-run on the same query
using the updated constraint set. If it passes, the constraint is validated and retained. Although
this process involves human-provided sample queries, our evaluation shows it produces more
generalizable constraints with significantly less effort compared to traditional fine-tuning or
prompt engineering approaches (Figure 4).

Query-specific Constraint Extraction. Once constraints for an application are created, the
challenge becomes selecting the most relevant subset for each query. Simply appending all con-
straints degrades accuracy (“All constraints” in Table 3), as excessive context make LLMs lost in the
middle [41]. Instead, we dynamically extract query-specific constraints to form focused prompts.

To retrieve the most relevant constraints, MeshAgent uses a hybrid search method that combines
keyword and vector-based similarities. This approach is especially effective for network queries,
which often involve technical terms and domain-specific synonyms. For instance, “port” and “switch”
are semantically related but may not always co-occur. Hybrid search captures such relations by
combining two perspectives: exact matches (via keyword search) and semantic proximity (via
vector embeddings). For each user query, we compute the hybrid match score using Reciprocal
Rank Fusion (RRF) [15], which integrates ranked results from both search methods, where k is a
smoothing constant, and r(c) is the rank of constraint c in each individual search:

RRFscore(c € C) = Z ! ] (1)

k+r(c)

MeshAgent applies this fusion process between the query and constraint representations (including
their labels) to select those with a similarity score above 0.7 (tunable threshold) for inclusion in the
prompt. When queries contain specific terms (e.g., “packet switch”), keyword rankings tend to domi-
nate; whereas in cases with differing surface terms (e.g., “capacity” vs. “bandwidth”), vector similari-
ties play a greater role. MeshAgent empirically adopts RRF as a common and effective fusion method
for combining keyword and vector search results. While our focus is not on optimizing the fusion
strategy itself, more advanced algorithms could further improve constraint retrieval performance.

All Con- Keyword  Vector Hybrid
Dynamic Constraint Evolution. Net- straints  Search Search Search

work management queries often follow

. . Precision 0.56 0.81 0.90 0.91
{)redlctglt)li patterns but iilso 1nc1u(;f? a Lecall 100 0.89 0.88 0.94
ong-tail of rare or complex cases (Fig- 0.72 0.85 0.89 0.93

ure 3b). To handle these edge cases, Me-
shAgent dynamically evolves its con-
straint set based on system interactions.
When the LLM abstains from answer-
ing a query due to low confidence, the associated failure log is used to identify gaps in the constraint

Table 3. Hybrid search consistently outperforms keyword
and vector methods, achieving higher constraint match-
ing accuracy across diverse network queries.
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database. If a network engineer requests, “Cluster all nodes in the communication graph into five
groups,” and the LLM abstains, the logs may reveal that the agent attempted various clustering algo-
rithms, but some were incompatible with the structure or semantics of communication graphs. In
such cases, engineers can refine the constraint set by adding new invariants to exclude inappropriate
algorithm choices, enabling the agent to avoid similar failures in future requests.

To maintain consistency and avoid redundancy, each new invariant is compared against existing
entries using cosine similarity between their embeddings. If the similarity falls below a set threshold,
the invariant is added directly; otherwise, it is reconciled with overlapping entries. This keeps the
constraint database concise and relevant. Validation tests are also revised as network structures or
safety policies evolve. While human oversight may still be required, this semi-automated pipeline
substantially reduces manual workload and improves adaptability. We evaluate this mechanism
using abstained queries collected from the real-world user study in Section 6.

3.2 Contextual Error Reduction

Even with constraint guidance to narrow the LLM’s search space, models still struggle with complex
network management queries. For example, a query like “Cluster the graph nodes based on bytes
transmitted” requires multi-step reasoning and execution, which LLMs often fail to handle in a
single pass. To address this, we incorporate the existing Chain-of-Thought (CoT) principle [75] to
explicitly decompose such queries into sub-steps, reducing complexity per step.

Once decomposed, the next challenge is to minimize errors before executing these steps in a
real environment. Prior approaches use reinforcement learning [11] or generate unit tests to select
valid outputs [10, 64, 83], but as the case study (Table 2) shows, these methods are ineffective for
network management. LLMs often produce syntactically correct code that violates domain-specific
constraints, or fail to generate valid test cases due to inconsistent formats across applications.

To address this, we introduce a bi-level error detection and reduction mechanism with contextual
support at each step of execution (Algorithm 1):

e Execution error check: Detects failures in the sandbox environment caused by hallucinated
attributes, invalid API calls, or syntax errors.

o Constraint error check: Uses validation functions from the constraint database to verify that the
generated output satisfies application-specific rules.
If an error is detected, the system feeds the query, execution step, relevant constraint, and error trace
back to the LLM to regenerate a corrected version. If the model continues to fail after N iterations,
the system generates a structured summary of the failure, including error types, affected steps, and
violated constraints. This summary enables a network engineer to intervene with minimal effort.
This error-reducer is especially effective for abstract or optimization queries where a one-shot
response is unlikely to be correct. For instance, the prompt “Optimize the current network topology
by removing redundant nodes” typically requires multiple iterations. As shown in Fig. 14, both
execution and constraint errors become more frequent with increasing query complexity, requiring
more correction rounds.

Pipelined Execution to Reduce Latency. The sequential nature of multi-step debugging intro-
duces latency. To mitigate this, we pipeline error checks across steps. As soon as code for one step
is generated, the next step begins while the current one is being validated. Final output is returned
only when all steps pass. If an error is detected, downstream steps are paused until the issue is
resolved. In practice, most errors occur in later steps, allowing early pipelining to reduce latency.
This technique yields a 76% latency improvement on CoT method (Fig. 16b).
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3.3 Enhancing Agent Reliability

Even with the use of constraints and contextual error reduction, we cannot fully guarantee that
an LLM will always produce correct outputs. This limitation poses a critical challenge in network
management tasks, where reliability is essential. LLMs generate text by predicting the next token
rather than through true semantic understanding [46, 58, 79]. As a result, they may produce
confident-sounding but incorrect responses—an issue that becomes especially risky in networking
for two key reasons. First, incorrect outputs can directly compromise system integrity. For example,
in response to the query “Split the graph into two parts such that the number of virtual networks
is the same,” an LLM may mishandle the configuration of security groups, inadvertently assigning
overly permissive access rules and exposing critical cloud resources. Second, relying on human
engineers to manually verify and debug LLM responses is impractical. Network queries often
involve platform-specific syntax and large outputs, making error detection labor-intensive and
inconsistent—ultimately hindering the usability of LLMs for high-stakes operational tasks.

To address this, we define reliability as the agent’s ability to either produce a correct answer or
abstain when uncertainty is high. Many prior methods estimate confidence using model-generated
scores. One approach asks the LLM to report its own confidence [78], but these scores are often
biased. Another uses log probability or perplexity as a proxy, but this is known to correlate poorly
with correctness [6].

Heuristic-Based Confidence Scoring. We propose a heuristic confidence scoring mechanism
tailored to our constraint-guided workflow. If an output fails error-checking after debugging, the
agent abstains with zero confidence. Otherwise, the confidence score Sconfigence is computed based
on two key factors: (1) the semantic consistency of the LLM’s output across iterations (denoted as
Csemantic)> and (2) the number of iterations needed in the debugging loop to reach a valid response
(denoted as Ijehug). This formulation prioritizes outputs that require fewer correcti