
Sketching as a Tool for Efficient
Networked Systems

by

Zaoxing Liu

A dissertation submitted to The Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

October, 2018

© 2018 by Zaoxing Liu

All rights reserved

Abstract

Today, computer systems need to cope with the explosive growth of data in

the world. For instance, in data-center networks, monitoring systems are

used to measure traffic statistics at high speed; and in financial technology

companies, distributed processing systems are deployed to support graph

analytics. To fulfill the requirements of handling such large datasets, we build

efficient networked systems in a distributed manner most of the time. Ideally,

we expect the systems to meet service-level objectives (SLOs) using the least

amount of resource. However, existing systems constructed with conventional

in-memory algorithms face the following challenges: (1) excessive resource

requirements (e.g., CPU, ASIC, and memory) with high cost; (2) infeasibility

in a larger scale; (3) processing the data too slowly to meet the objectives.

To address these challenges, we propose sketching techniques as a tool to

build more efficient networked systems. Sketching algorithms aim to process

the data with one or several passes in an online, streaming fashion (e.g., a stream

of network packets), and compute highly accurate results. With sketching, we

only maintain a compact summary of the entire data and provide theoretical

guarantees on error bounds.

ii

This dissertation argues for a sketching based design for large-scale net-

worked systems, and demonstrates the benefits in three application contexts:

(i) Network monitoring: we build generic monitoring frameworks that sup-

port a range of applications on both software and hardware with univer-

sal sketches.

(ii) Graph pattern mining: we develop a swift, approximate graph pattern

miner that scales to very large graphs by leveraging graph sketching

techniques.

(iii) Halo finding in N-body simulations: we design scalable halo finders on

CPU and GPU by leveraging sketch-based heavy hitter algorithms.

iii

Acknowledgments

First, I would like to thank my advisor Vladimir (Vova) Braverman for his

guidance, endless patience in tolerating my immature ideas and views, and

continuous encouragement in pursuing exciting research problems. He has

taught me how to do research, from defining research problems to designing

elegant solutions. I have been amazed by Vova’s insights into the core of many

research questions at times. His wisdom and humbleness inspired me over the

past four years and will forever influence my life. Vova is very open-minded

and gives me enough freedom to seek ideas that interest me most; and he

is also very supportive on what I want to pursue, from attending various

conferences/workshops to connecting me to the experts in the field.

Second, I would like to express my gratitude on the support from my

committee members Vyas Sekar and Xin Jin. Vyas has always offered his time

on discussing ideas with me and provided insightful thoughts toward the

roots of the problems. I have been very fortunate working with him on the

UnivMon project and several others. His guidance on how to formulate the

problems and complete the system designs benefited me a lot over the years.

Xin has always been energetic and enthusiastic in sharing his thoughts on the

ASAP project and some others. It is with great joy that I got a chance to work

iv

with Xin and learn from him in various ways.

During the PhD journey, I have had the opportunity to interact or collabo-

rate with several researchers and faculty who have mentored me in many ways

— Yair Amir, Randal Burns, Tamas Budavari, Michael Dinitz, Gil Einziger, Roy

Friedman, Ryan Huang, Gerard Lemson, Mark Neyrinck, Shivaram Venkatara-

man, Vinodchandran N. Variyam, Ion Stoica, and Alex Szalay. Their advice

and suggestions benefited me in accomplishing specific projects and beyond.

I’m also thankful to my graduate student collaborators — Zhihao Bai, Ran Ben-

Basat, Nikita Ivkin, Anand Iyer, Srinivas Suresh Kumara, Antonis Manousis,

Li Song, Tejasvam Singh, Greg Vorsanger, Lin Yang, and Zhishuai Zhang.

I would like to thank my GBO committee members: Tamas Budavari,

Andrei Gritsan, Xin Li, and Scott Smith, who examined my pre-proposal

towards the dissertation and gave valuable suggestions.

It has been a great pleasure of studying in the department, and I want to

share my thank to the wonderful faculty and staff members here. I am grateful

to our awesome administrative team — Zackary Burwell, Debbie Deford,

Tonette McClamy, Cathy Thornton, and others, for your responsiveness and

services.

I have enjoyed my time at Hopkins. In particular, I feel incredibly fortunate

to meet, interact with several talented graduate students and postdocs: Zhihao

Bai, James Browne, Renyuan Cheng, Kuan Cheng, Arka Rai Choudhuri,

Shuya Chu, Jinqiu Deng, Venkata Gandikota, Cong Gao, Jiaqi Gao, Yifan Ge,

Aarushi Goel, Yuge Gong, Yigong Hu, Kevin Huang, Yao Huang, Nikita Ivkin,

Haoyuan Ji, Zhengzhong Jin, Qian Ke, Xingguo Li, Shuo Li, Kunal Lillaney,

v

Chang Liu, Qing Liu, Chang Lou, Hongyuan Mei, Disa Mhembere, Yasamin

Nazari, Hang Ou, Fabian Prada, Jalaj Upadhyay, Enayat Ullah, Yuefan Wang,

Shiwei Weng, Xiang Xiang, Yanbo Xu, Xi Yang, Lin Yang, Mo Yu, Zhuolong Yu,

Andong Zhan, Shi Zhang, Zeyu Zhang, Zehua Zhao, Tuo Zhao, Chao Zheng,

Yu Zheng, Da Zheng, Hang Zhu, Zhuodun Zhu, and many others. Thanks

to them all for ensuring that my time at Hopkins was smooth and delightful.

Special thanks to Tuo Zhao and Yanbo Xu for helping me develop and learn,

and gathering us together during the time at Hopkins.

I want to thank my parents for their all-around support. Thanks to them

for believing in my capabilities more than I ever will. Their love and care

encourage me to chase my dream without worries behind.

Finally, I want to express my deepest gratitude to my wife, Keke, for

sharing her valuable time with me in the United States. We share our joy and

sorrow, happiness and pain, together. I own a great deal to her for endless

love, care, and support.

This dissertation is based upon work supported in part by DARPA-111477, NSF IIS-
1447639, Research Trends Det. HR0011-16-P-0014, EAGER CCF-1650041, CAREER CCF-
1652257, Cisco-90073352, and ONR.

vi

To my parents, J.H. Liu & Z.L. Zhao.

To my wife, K.K. Wen.

vii

Table of Contents

Table of Contents viii

List of Tables xiv

List of Figures xvi

1 Introduction 1

1.1 Current Practice . 2

1.1.1 Network Monitoring . 2

1.1.2 Graph Pattern Mining 4

1.2 Background on Sketching Techniques 7

1.3 Thesis Approach and Contributions 8

1.3.1 Robust Network Monitoring Infrastructure 9

1.3.2 Fast, Approximate Graph Patterning Framework . . . 11

1.3.3 Memory-efficient Halo Finder in N-body Simulations . 12

2 UnivMon: Universal Flow Monitoring with Sketching 13

2.1 Background and Related Work 16

viii

2.2 UnivMon architecture . 19

2.3 Theoretical Foundations of UnivMon 22

2.3.1 Theory of Universal Sketching 23

2.3.2 Algorithms for Universal Sketching 25

2.3.3 Application to Network Monitoring 28

2.4 Network-wide UnivMon . 31

2.4.1 Problem Scope . 31

2.4.2 Strawman Solutions and Limitations 34

2.4.3 Our Approach . 36

2.4.4 Extension to Multi-path 38

2.5 UnivMon Implementation . 40

2.5.1 Implementation overview 40

2.5.2 Mapping UnivMon data plane to P4 43

2.5.3 Control plane . 46

2.6 Evaluation . 47

2.6.1 Methodology . 47

2.6.2 Single Router Evaluation 49

2.6.3 Network-wide Evaluation 55

2.6.4 Summary of Main Findings 56

2.7 Chapter Summary . 57

3 NitroSketch: Robust Sketch-based Monitoring in Software Switches 59

ix

3.1 Related Work and Motivation 63

3.2 Bottleneck Analysis . 67

3.3 NitroSketch Framework . 72

3.3.1 Key Idea . 72

3.3.2 NitroSketch Algorithms 75

3.3.3 Interface to Other Sketching Algorithms 79

3.4 Analysis of NitroSketch . 80

3.4.1 Interpretation of Main Theorems 81

3.4.2 Comparison to Uniform Sampling 82

3.4.3 Proof of Theorem 3.4.2 83

3.4.4 Analysis of DS-NitroSketch 87

3.4.5 Analysis of the Comparison with Uniform Sampling . 92

3.5 Implementation . 100

3.5.1 Data Plane Module . 100

3.5.2 Control Plane Module 102

3.6 Evaluation . 102

3.6.1 Methodology . 103

3.6.2 Throughput . 105

3.6.3 CPU Utilization . 108

3.6.4 Accuracy and Convergence Time 109

3.6.5 Comparison with Other Solutions 109

3.7 Chapter Summary . 112

x

4 ASAP: Fast, Approximate Graph Pattern Mining at Scale 113

4.1 Background & Motivation . 117

4.1.1 Approximate Pattern Mining 118

4.1.2 Graph Pattern Mining Theory 119

4.1.2.1 Example: Triangle Counting 121

4.1.3 Challenges . 122

4.2 ASAP Overview . 123

4.3 Approximate Pattern Mining in ASAP 125

4.3.1 Extending to General Patterns 125

4.3.1.1 Analysis of General Patterns 126

4.3.1.2 Programming API 132

4.3.2 Applying to Distributed Settings 135

4.3.3 Advanced Mining Patterns 137

4.4 Building the Error-Latency Profile (ELP) 140

4.4.1 Building Estimator vs. Time Profile 141

4.4.2 Building Estimator vs. Error Profile 142

4.4.3 Handling Evolving Graphs 144

4.5 Evaluation . 144

4.5.1 Overall Performance . 146

4.5.2 Advanced Pattern Mining 149

4.5.3 Effectiveness of ELP Techniques 150

4.5.4 Scaling ASAP on a Cluster 153

xi

4.5.5 More Complex Patterns 154

4.6 Related Work . 155

4.7 Chapter Summary . 156

5 Streaming Algorithms for Halo Finders 157

5.1 Streaming Algorithm . 160

5.1.1 Streaming Data Model 160

5.1.1.1 Definitions . 160

5.1.1.2 Heavy Hitter 161

5.1.1.3 Data Transformation 162

5.1.1.4 Heavy Hitter and Dense Cells 163

5.1.2 Streaming Algorithms for Heavy Hitter Problem 164

5.1.2.1 The Count-Sketch Algorithm 165

5.1.2.2 The Pick-and-Drop Sampling Algorithm . . . 166

5.2 Implementation . 167

5.2.1 Simulation Data . 167

5.2.2 Implementation Details 169

5.2.2.1 Count-Sketch-based Halo Finder 169

5.2.2.2 Pick-and-Drop-based Halo Finder 170

5.2.3 Shifting Method . 172

5.3 Evaluation . 172

5.3.1 Correctness . 174

xii

5.3.2 Stability . 179

5.3.3 Memory Usage . 179

5.4 Chapter Summary . 181

6 Conclusions and Future Work 184

6.1 Summary of Contributions . 184

6.2 Potential Limitations . 187

6.3 Future Work . 189

Bibliography 191

xiii

List of Tables

1.1 Summary of the efficiency optimization goals in different appli-

cation settings. 9

2.1 CAIDA traces in the evaluation. 48

2.2 Time to compute sketching manifests using ILP. 56

3.1 I/O comparison on a single core. 66

3.2 CPU hotspots in a OVS-DPDK vswitchd thread. 68

3.3 Cache and DRAM access for simple hash table. 70

3.4 CPU hotspots on UnivMon with OVS-DPDK. 71

4.1 ASAP’s Approximate Pattern Mining API. 132

4.2 Graph datasets used in evaluating ASAP. 145

4.3 Comparing the performance of ASAP and Arabesque on large

graphs. The System column indicates the number of machines

used and the number of cores per machine. 148

4.4 Improvements from techniques in ASAP that handle advanced

pattern mining queries. 149

xiv

4.5 ELP building time for different tasks on UK graph 152

4.6 Approximating 5-Motif patterns in ASAP. 154

xv

List of Figures

2.1 Overview of UnivMon: The data plane nodes perform the mon-

itoring operations and report sketch summaries to the control

plane which calculates application-specific metric estimates. . 19

2.2 High-level view of universal sketch. 26

2.3 Example topology to explain the one-big-switch notion and to

compare candidate network-wide solutions. 32

2.4 ILP to compute sketching manifests. 37

2.5 Example topology to showcase difficulty of multi-path. 38

2.6 An illustration of UnivMon’s stages along with the two main

implementation options. 41

2.7 Error rates of HH, Change and DDoS for UnivMon and OpenS-

ketch. 50

2.8 Error vs. Memory for HH, DDoS, Change. 50

2.9 Average memory usage to achieve a 1% error rate for different

time intervals . 51

2.10 Error rates of Entropy and F2 estimation 52

xvi

2.11 The impact of a growing portfolio of monitoring applications

on the relative performance . 53

2.12 Analyzing different HH data structures 54

2.13 Network-wide evaluation on major ISP backbone topologies . 55

3.1 Count-Min Sketch Example. 64

3.2 Packet rate of different data structures using random 64B pack-

ets. (Setting: single thread OVS-DPDK.) 69

3.3 (a) Before using NitroSketch, each packet goes through multiple

hash computations (e.g., O(log δ−1)), update multiple counters,

and query and update to a top-k HH storage (e.g., heap). (b)

After applying NitroSketch, only a small portion of packets

(say 5% by geometric sampling) need to go through O(1) hash

computations, update to one row of counters (instead of all

rows) and occasionally to a top-k structure. Therefore, the CPU

cost is significantly reduced. 73

3.4 Overview of the evaluation testbed. 103

3.5 Throughput/Packet rate on OVS-DPDK with the all-in-one

version using CAIDA and data center traces. 105

3.6 Throughput/Packet rate on OVS-DPDK and VPP with the

separate-thread version using 64B packets and data center

traces. In (a), virtual switches use one CPU core to switch

packets while in (b) and (c) there are two cores. 106

xvii

3.7 Throughput over time for the delayed sampling approach (DS-

NitroSketch) with two different sketches (Setting: 40GbE with

CAIDA traces). 106

3.8 (a) Throughput vs. memory for varying error targets. (b)

Throughput with different NitroSketch components applied: 0:

Vanilla UnivMon; 1: add AVX2 paralleled hash; 2: apply also

NitroSketch; 3: add pre-batched geometric samples; 4: apply

also sampling for heap update. (Setting: one vswitchd thread

with 40GbE NIC.) . 107

3.9 CPU usage of the all-in-one version (NitroSketch-AIO) and the

separate-thread version (NitroSketch-ST) 108

3.10 (a),(b) Error rates of NitroSketch. (c) Convergence time on

CAIDA traces. 109

3.11 (a) In-memory packet rates: SketchVisor vs. NitroSketch. (b)

Memory usage: NetFlow vs. NitroSketch. 110

3.12 HH errors on SketchVisor and NitroSketch, in CAIDA, DDoS,

and data center traces. 111

3.13 HH recall rates on NetFlow/sFlow with different sampling

rates and NitroSketch with 0.01, using CAIDA, DDoS, and data

center traces. 111

4.1 Simply extending approximate processing techniques to graph

pattern mining does not work. 118

4.2 Triangle count by neighborhood sampling 121

xviii

4.3 ASAP architecture . 123

4.4 Two ways to sample four cliques. (a) Sample two adjacent

edges (0, 1) and (0, 3), sample another adjacent edge (1, 2), and

wait for the other three edges. (b) Sample two disjoint edges

(0, 1) and (2, 3), and wait for the other four edges. 126

4.5 Example approximate pattern mining programs written using

ASAP API. 134

4.6 Runtime with graph partition. 135

4.7 The actual relations between number of estimators and run-

time or error rate. 140

4.8 ASAP is able to gain up to 77× improvement in performance

against Arabesque. The gains increase with larger graphs and

more complex patterns. Y-axis is in log-scale. 147

4.9 Runtime vs. number of estimators for Twitter, Friendster, and

UK graphs. The black solid lines are ASAP’s fitted lines. . . . 150

4.10 Error vs. number of estimators for Twitter, Friendster, and UK

graphs. 151

4.11 CDF of 100 runs with 3% error target. 152

4.12 The errors from two cluster scenarios with different number

of nodes. Config-1:strong-scaling to fix the total number of

estimators as 2M× 128; Config-2: weak-scaling to fix the number

of estimators per executor as 2M. 153

4.13 Two representative (from 21) patterns in 5-Motif. 154

xix

5.1 Count-Sketch Algorithm . 166

5.2 Pick-and-Drop Algorithm . 167

5.3 Halo mass distribution of various halo finders. 168

5.4 Count-Sketch Algorithm . 169

5.5 Pick-and-Drop Sampling . 170

5.6 Halo Finder Procedure . 171

5.7 (a) Measure of the disagreement between PD and CS, and vari-

ous in-memory algorithms. The percentage shown is the frac-

tion of haloes farther than a half-cell diagonal (0.5
√

3 Mpc/h)

from PD or CS halo positions. (b) The number of top-1000 FoF

haloes farther than a distance d away from any top-1000 halo

from the algorithm of each curve. 175

5.8 Number of detected halos by our two algorithms. The solid

lines correspond to (CS) and the dashed lines to (PD). The

dotted line at k = 1000 shows our selection criteria. The x axis

is the threshold in the number of particles allocated to the heavy

hitter. The cyan color denotes the total number of detections,

the blue curves are the true positives (TP), and the red curves

are ethe false positives (FP). 176

5.9 This ROC curve shows the tradeoff between true and false

detections as a function of threshold. The figure plots TPR vs

FPR on a log-log scale. The two thresholds are shown with

symbols, the circle denotes 1000, and the square is 900. 177

xx

5.10 The top 1000 heavy hitters are rank-ordered by the number of

their particles. We also computed a rank of the corresponding

FoF halo. The linked pairs of ranks are plotted. One can see

that if we adopted a cut at k = 900, it would eliminate a lot of

the false positives. 178

5.11 Each line on the graph represents the top 1000 halo centers

found with Pick-and-Drop sampling, Count-Sketch, and in-

memory algorithms. The shaded area (too small to be visible)

shows the variation due to randomness. 180

xxi

Chapter 1

Introduction

Over the last decade, we experienced an exponential growth of data in the

world, and this trend will continue to 2020 and beyond [1]. The challenges of

handling massive-scale datasets arise in domains such as data centers, enter-

prises, ISPs, and scientific research. Each domain requires large networked

systems to handle tasks such as cloud services, network monitoring, security,

or other computation-heavy tasks. For instance, the network operators of data

centers may utilize monitoring systems to (1) effectively measure the network

performance, (2) efficiently detect anomalies on the network, and (3) detect

and filter malicious network traffic as much as possible. While in financial

technology companies, large distributed systems are deployed to (1) compute

graph analytics to detect outliers, (2) mine complex graph patterns to detect

fraud transactions, and (3) conduct streaming processing to drop malicious

transactions in an online fashion.

However, as the amounts of data outburst and patterns of workloads evolve,

the systems built with traditional in-memory algorithms are unable to handle

the fast growth of the data in one or more following aspects: (i) excessive

1

hardware resource requirements, (ii) infeasibility in a larger scale, and (iii)

significant slowness on processing the data. The reason is that the improve-

ment of hardware cannot be linearly coped with the growth of datasets. To

address these challenges, we propose to build efficient systems with sketching

algorithms1 when approximated results can be allowed. While there has been

a large body of work on sketching techniques regarding the streaming pro-

cessing model in the theory community, there is little work done on building

systems with sketches in different applications. To put the work presented

in this dissertation in perspective, we discuss the sketching techniques for

building efficient systems in the contexts of networking monitoring, graph

pattern mining, and halo finding in astrophysical N-body simulations. In this

chapter, we discuss the current practice and the background on sketching

algorithms before briefing our approaches and contributions.

1.1 Current Practice

1.1.1 Network Monitoring

Network management today requires accurate estimates of metrics for many

applications including traffic engineering (e.g., heavy hitters), anomaly detec-

tion (e.g., entropy of source addresses), and security (e.g., DDoS detection).

Obtaining accurate estimates given router CPU and memory constraints is a

challenging problem. Existing approaches fall in one of two undesirable ex-

tremes: (1) low fidelity general-purpose approaches such as packet sampling,

1In this thesis, we refer to “sketching algorithms” and “sketches” interchangeably.

2

or (2) high fidelity but complex algorithms customized to specific application-

level metrics.

Packet Sampling. Existing network monitoring tools in the industry depend

on sampling flow measurements from routers (e.g., NetFlow [2] or sFlow [3]).

They use these tools to sample packets by either packet-based (identified by

flow keys), or volume-based (counted by byte counts). The core technique

here is to aggregate uniformly sampled packets into some flow reports, and

compute any metrics based on the flow reports. While the sampling based

approaches are useful for coarse-grained metrics (e.g., total volume or esti-

mated flow size distribution), they cannot offer good fidelity unless running

at a very high sampling rate, which is undesirable due to computation and

memory overhead.

Application-specific Algorithms. To address the drawbacks of packet sam-

pling approach, researchers have proposed a number of application-specific

sketches to handle specific measurement tasks. These sketching algorithms

allow for memory-efficient monitoring systems as they reduce the memory

usage of measurement tasks while maintaining guaranteed fidelity. There

always be a trade-off between memory and accuracy backed by rigorous theo-

retical proofs. Examples of monitoring tasks that are supported by sketches

include:

• Heavy Hitter Detection to identify flows that consume more than a

threshold α of the total capacity. The capacity can be packet-based (flow

keys) or volume-based (byte counts). Example custom algorithm include

Count-Min Sketch [4], Space-saving [5], and Count Sketch [6].

3

• Cardinality Estimation to estimate the number of distinct flows in the

traffic [7].

• Change Detection to identify flows that contribute more than a thresh-

old of the total capacity change over two consecutive time intervals

using reversible k-ary Sketch [8, 9].

• Entropy Estimation to measure the entropy value of a specific head field

distribution (e.g., Lall et al [10]).

• Attack Victim Detection to identify a destination host that receives

traffic from more than a threshold number of source hosts [11].

However, although application-specific approaches have good theoreti-

cal guarantees and practical performances, this architecture still has several

drawbacks: (1) when handling multiple measurement tasks, there are large

memory and CPU burdens; (2) No late-binding: need to commit the resources

and the set of tasks before running the measurement.

1.1.2 Graph Pattern Mining

Mining patterns in a graph represent an important class of graph processing

problems. The objective is to find instances of a given pattern in a graph

or graphs. The common way of representing graph data is in the form of a

property graph [12], where user-defined properties are attached to the vertices

and edges of the graph. A pattern is an arbitrary subgraph, and pattern mining

algorithms aim to output all subgraphs, commonly referred to as embeddings,

that match the input pattern. Matching is done via sub-graph isomorphism,

4

which is known to be NP-complete. Several varieties of graph pattern mining

problems exist, ranging from finding cliques to mining frequent subgraphs.

We refer the reader to [13, 14] for an excellent, in-depth overview of graph

mining algorithms.

A common approach to implement pattern mining algorithms is to iterate

over all possible embeddings in the graph starting with the simplest pattern

(e.g., a vertex or an edge). We can then check all candidate embeddings, and

prune those that cannot be a part of the final answer. The resulting candi-

dates are then expanded by adding one more vertex/edge, and the process is

repeated until it is not possible to explore further. The obvious challenge in

graph pattern mining, as opposed to graph analysis, is the exponentially large

candidate set that needs to be checked.

Distributed graph processing frameworks are built to process large graphs,

and thus seem like an ideal candidate for this problem. Unfortunately when

applied to graph mining problems, they face several challenges in managing

the candidate set. Arabesque [13], a recently proposed distributed graph

mining system, discusses these challenges in detail, and proposes solutions to

tackle several of them. However, even Arabesque is unable to scale to large

graphs due to the need to materialize candidates and exchange them between

machines. As an example, Arabesque takes over 10 hours to count motifs of

size 3 in a graph with less than a billion edges on a cluster of 20 machines,

each having 256GB of memory.

Current graph processing systems. A large number of systems have been

proposed in the literature for graph processing [15, 16, 17, 18, 19, 20, 21, 22,

5

23, 24, 25]. Of these, some [15, 17, 18] are single machine systems, while

the rest supports distributed processing. By using careful and optimized

operations, these systems can process huge graphs, in the order of a trillion

edges. However, these systems have focused their attention mainly on graph

analysis, and do not support efficient graph pattern mining. Some systems

implement very specific versions of simple pattern mining (e.g., triangle

count). However, these systems do not support general pattern mining.

Current graph mining systems. Similar to graph processing systems, a num-

ber of graph mining systems have also been proposed. Here too, the proposals

contain a mix of centralized systems and distributed systems. These proposals

can be classified into two categories. The first category focuses on mining

patterns in an input consisting of multiple small graphs. This problem is

significantly easier, since the system only finds one instance of the pattern in

the graph, and is trivially incorporated in ASAP. Since this approach can be

massively parallelized, several distributed systems exist that focus specifically

on this problem. The state-of-the-art in distributed, general purpose pattern

mining systems is Arabesque [13]. While it supports efficient pattern mining,

the system still requires significant amount of time to process even moderately

sized graphs. A few distributed systems have focused on providing approxi-

mate pattern mining. However, these systems focus on a specific algorithm,

and hence are not general-purpose.

6

1.2 Background on Sketching Techniques

Streaming Model. A data stream D = D(n, m) is an ordered sequence of

objects a1, a2, . . . , an, where aj = 1 . . . m. The elements of the stream can repre-

sent any digital objects: integers, real numbers of fixed precisions, network

packets, edges of a graph, messages, images, web pages, etc. Data streaming

model has emerged as a natural computational model for a number of appli-

cation in big data processing. In this model, algorithms are allows to access a

limited amount of memory and can process the dataset in one pass (or a few

passes) but are guaranteed to produce sufficiently accurate answers for some

objective statistics of the dataset. In particular, the strict memory limitation

in this model captures various applications in processing large-scale datasets

and makes the algorithms new scalable tools for networked systems. First,

let’s describe some fundamental problems in this model.

Lp Norm and Frequency Moment. In a stream D of objects a1, a2, . . . , an,

we define the frequency vector F(m) as a vector of dimensionality m with

non-negative entries fi, i ∈ [m] as

fi = |{j : 1 ≤ j ≤ n, aj = i}|

Then, the Lp norm of the frequency vector M is defined as (∑m
i=1(fi)

p)
1
p ,

and the p-frequency moment is ∑m
i=1(fi)

p.

Lp Heavy Hitter Problem. We say that an element is “heavy” if it appears

more times than a constant fraction of some Lp norm of the stream. We

consider the following heavy hitter problem.

7

Problem 1 . Given a stream D of n elements, the ϵ-approximate (ϕ, Lp)-heavy

hitter problem is to find a set of elements T:

• ∀i ∈ [m], fi > ϕLp =⇒ i ∈ T.

• ∀i ∈ [m], fi < (ϕ− ϵ)Lp =⇒ i ̸∈ T.

In networking, we usually consider the L1 heavy hitter problem.

1.3 Thesis Approach and Contributions

In this thesis, we look into the core constructions behind several networked

systems and try to focus on a more resource-efficient design in the application

contexts of networking, graph processing, and astrophysics. Before achieving

resource-efficiency, we want to understand the bottlenecks of resources in dif-

ferent application settings. For instance, in network monitoring, the resource

bottleneck on a hardware switch is the memory (SRAM) to store intermediate

data in an online fashion while it might not be the case in a software switch. In

a software switch, we focus on reducing the per-packet processing overhead

of the measurement module while still achieving high accuracy. For a detailed

bottleneck analysis on software switches, please refer to Section 3.2. However,

we still do not want to allocate too much memory on the software switch

since we may want to store the most of the data structures on CPU cache,

and save cache and memory for other concurrent network services. In graph

pattern mining systems, a deterministic algorithm may generate intermediate

subgraph candidates in an exponential-level in terms of the graph edge size,

which brings infeasibility to handle large graph due to memory overflow

8

Settings Cache RAM CPU or ASIC

Network Monitoring (Hardware) ↓ ↓ ×
Network Monitoring (Software) ↓ × ×
Graph Pattern Mining × ↓ ↓
N-body Simulation × ↓ ↓

Table 1.1: Summary of the efficiency optimization goals in different application
settings.

or slow execution due to memory bandwidth limitation. Similarly in astro-

physical N-body simulations, a deterministic algorithm needs to handle huge

intermediate data.

Thus, we summarize the efficiency goals in Table 1.1 based on the different

resource bottlenecks in the three application contexts. ↓ means the usage

should be as small as possible and × implies not important. In these cases,

by trading a small loss on the accuracy of the results, we can utilize sketching

algorithms as the core construction to alleviate the resource bottlenecks and

achieve significant efficiency.

1.3.1 Robust Network Monitoring Infrastructure

UnivMon: Network management requires accurate estimates of metrics

for many applications. Existing monitoring approaches fall in one of two

undesirable extremes: (1) low fidelity general-purpose approaches such as

sampling, or (2) high fidelity but complex algorithms customized to specific

application-level metrics. Ideally, a solution should be both general (i.e.,

supports many applications) and provide accuracy comparable to custom

algorithms.

9

In Chapter 2, we presents UnivMon [26], a framework for flow monitor-

ing which leverages recent theoretical advances and demonstrates that it is

possible to achieve both generality and high accuracy. UnivMon uses an

application-agnostic data plane monitoring primitive; different (and possi-

bly unforeseen) estimation algorithms run in the control plane, and use the

statistics from the data plane to compute application-level metrics. We imple-

ment UnivMon using P4 and develop coordination techniques to provide a

“one-big-switch” abstraction for network-wide monitoring. We evaluate the

effectiveness of UnivMon using a range of trace-driven evaluations and show

that it offers comparable (and sometimes better) accuracy relative to custom

sketching solutions across a range of monitoring tasks.

NitroSketch: With increasing virtualization of services and network func-

tions, virtual switches are emerging as an important measurement vantage

point. Given the tight resource requirements, sketching algorithms are a

promising alternative to traditional monitoring (e.g., sampling or full packet

capture). However, sketching algorithms (e.g., Count-Min Sketch and Uni-

vMon) are typically designed with memory-oriented optimization goals in

theory and incur significant computational overhead in software. Unfor-

tunately, existing efforts that try to address this performance issue have to

make compromises on the worst-case theoretical guarantees, make strong

assumptions about the traffic distributions, or only work for specific sketches.

Chapter 3 presents NitroSketch, a general and efficient software sketching

framework that enables line-rate packet processing for a broad spectrum

of sketching algorithms. NitroSketch has provable worst-case guarantees,

10

without needing any distributional assumptions about the traffic. We do this

by systematically identifying the fundamental performance bottlenecks of

sketches and developing rigorous solutions to tackle these. We implement a

NitroSketch prototype and integrate it with two popular software switching

platforms: Open vSwitch-DPDK and FD.io-VPP. We evaluate NitroSketch

on commodity servers and show that accuracy is guaranteed > 95% while

attaining a 27× speedup in sketching and a 45% reduction in CPU usage.

1.3.2 Fast, Approximate Graph Patterning Framework

While there has been a tremendous interest in processing data that has an

underlying graph structure, existing distributed graph processing systems

take several minutes or even hours to mine simple patterns on graphs.

Chapter 4 presents ASAP [27], a fast, approximate computation engine

for graph pattern mining. ASAP2 leverages state-of-the-art results in graph

approximation theory, and extends it to general graph patterns in distributed

settings. To enable the users to navigate the tradeoff between the result

accuracy and latency, we propose a novel approach to build the Error-Latency

Profile (ELP) for a given computation. We have implemented ASAP on a

general-purpose distributed dataflow platform and evaluated it extensively on

several graph patterns. Our experimental results show that ASAP outperforms

existing exact pattern mining solutions by up to 77×. Further, ASAP can scale

to graphs with billions of edges without the need for large clusters.

2As co-leading authors, Anand Iyer and I are both using this in our dissertations with full
knowledge and support of the other.

11

1.3.3 Memory-efficient Halo Finder in N-body Simulations

Astrophysical N-body simulations are essential for studies of the large-scale

distribution of matter and galaxies in the Universe. This analysis often in-

volves finding clusters of particles and retrieving their properties. Detecting

such “halos” among a very large set of particles is a computationally intensive

problem, usually executed on the same super-computers that produced the

simulations, requiring huge amounts of memory.

In Chapter 5, we present a novel connection between the N-body simula-

tions and the sketching algorithms [28]. In particular, we investigate a link

between halo finders and the problem of finding frequent items (heavy hitters)

in a data stream, that should significantly reduce the computational resource

requirements, especially the memory needs. Based on this connection, we

build a new halo finder by running efficient heavy hitter algorithms as a

black-box. We implement two representatives of the family of heavy hitter

algorithms, the Count-Sketch algorithm (CS) and the Pick-and-Drop sampling

(PD), and evaluate their accuracy and memory usage. Comparison with other

halo-finding algorithms from [29] shows that our halo finder can locate the

largest haloes using significantly smaller memory space and with comparable

running time. This streaming approach makes it possible to run and analyze

extremely large data sets from N-body simulations on a smaller machine,

rather than on supercomputers. Our findings demonstrate the connection

between the halo search problem and streaming algorithms as a promising

initial direction for further research.

12

Chapter 2

UnivMon: Universal Flow
Monitoring with Sketching

Network management is multi-faceted and encompasses a range of tasks

including traffic engineering [30, 31], attack and anomaly detection [32], and

forensic analysis [33]. Each such management task requires accurate and

timely statistics on different application-level metrics of interest; e.g., the

flow size distribution [34], heavy hitters [35], entropy measures [10, 36], or

detecting changes in traffic patterns [9].

At a high level, there are two classes of techniques to estimate these met-

rics of interest. The first class of approaches relies on generic flow monitor-

ing, typically with some form of packet sampling (e.g., NetFlow [2]). While

generic flow monitoring is good for coarse-grained visibility, prior work has

shown that it provides low accuracy for more fine-grained metrics [37, 38, 39].

These well-known limitations of sampling motivated an alternative class of

techniques based on sketching or streaming algorithms. Here, custom online

algorithms and data structures are designed for specific metrics of interest that

13

can yield provable resource-accuracy tradeoffs (e.g., [39, 10, 40, 38, 41, 42, 43]).

While the body of work in data streaming and sketching has made signifi-

cant contributions, we argue that this trajectory of crafting special-purpose

algorithms is untenable in the long term. As the number of monitoring tasks

grows, this entails significant investment in algorithm design and hardware

support for new metrics of interest. While recent tools like OpenSketch [44]

and SCREAM [45] provide libraries to reduce the implementation effort and

offer efficient resource allocation, they do not address the fundamental need

to design and operate new custom sketches for each task. Furthermore, at any

given point in time the data plane resources have to be committed (a priori) to

a specific set of metrics to monitor and will have fundamental blind spots for

other metrics that are not currently being tracked.

Ideally, we want a monitoring framework that offers both generality by

delaying the binding to specific applications of interest but at the same time

provides the required fidelity for estimating these metrics. Achieving generality

and high fidelity simultaneously has been an elusive goal both in theory [46]

(Question 24) as well as in practice [47].

In this chapter, we present the UnivMon (short for Universal Monitoring)

framework that can simultaneously achieve both generality and high fidelity

across a broad spectrum of monitoring tasks [10, 39, 40, 48]. UnivMon builds

on and extends recent theoretical advances in universal streaming, where a

single universal sketch is shown to be provably accurate for estimating a large

class of functions [49, 50, 51, 52, 53]. In essence, this generality can enable us

to delay the binding of the data plane resources to specific monitoring tasks,

14

while still providing accuracy that is comparable (if not better) than running

custom sketches using similar resources.

While our previous paper suggested the promise of universal stream-

ing [54], it fell short of answering several practical challenges, which we

address in this chapter. First, we demonstrate a concrete switch-level realiza-

tion of UnivMon using P4 [55], and discuss key implementation challenges

in realizing UnivMon. Second, prior work only focused on a single switch

running univmon for a specific feature (e.g., source addresses) of interest,

whereas in practice network operators want a panoramic view across multiple

features and across traffic belonging to multiple origin-destination pairs. To

this end, we develop lightweight-yet-effective coordination techniques that

enable UnivMon to effectively provide a “one big switch” abstraction for

network-wide monitoring [56], while carefully balancing the monitoring load

across network locations.

We evaluate UnivMon using a range of traces [57, 58] and operating

regimes and compare it to state-of-art custom sketching solutions based on

OpenSketch [44]. We find that for a single network element, UnivMon achieves

comparable accuracy, with an observed error gap ≤ 3.6% and average error

gap ≤ 1%. Furthermore, UnivMon outperforms OpenSketch in the case of a

growing application portfolio. In a network-wide setting, our coordination

techniques can reduce the memory consumption and communication with

the control plane by up to three orders of magnitude.

Contributions and roadmap: In summary, this chapter presents the following

contributions:

15

• A practical architecture which translates recent theoretical advances to

serve as the basis for a general-yet-accurate monitoring framework (§2.2,

§2.3).

• An effective network-wide monitoring approach that provides a one-big

switch abstraction (§2.4).

• A viable implementation using emerging programmable switch archi-

tectures (§2.5).

• A trace-driven analysis which shows that UnivMon provides compa-

rable accuracy and space requirements compared to custom sketches

(§4.5).

We begin with background and related work in the next section. We

highlight outstanding issues and conclude in §6.

2.1 Background and Related Work

Many network monitoring and management applications depend on sampled

flow measurements from routers (e.g., NetFlow or sFlow). While these are

useful for coarse-grained metrics (e.g., total volume) they do not provide good

fidelity unless these are run at very high sampling rates, which is undesirable

due to compute and memory overhead.

This inadequacy of packet sampling has inspired a large body of work in

data streaming or sketching. This derives from a rich literature in the theory

community on streaming algorithms starting with the seminal “AMS” paper

16

[59] and has since been an active area of research (e.g., [49, 6, 60, 61]). At the

high level, the problem they address is as follows: Given an input sequence

of items, the algorithm is allowed to make a single or constant number of

passes over the data stream while using sub-linear (usually poly-logarithmic)

space compared to the size of the data set and the size of the dictionary. The

algorithm then provides an approximate estimate of the desired statistical

property of the stream (e.g., mean, median, frequency moments). Stream-

ing is a natural fit for network monitoring and has been applied to several

tasks including heavy hitter detection [39], entropy estimation [10], change

detection [40], among others.

A key limitation that has stymied the practical adoption of streaming

approaches is that the algorithms and data structures are tightly coupled

to the intended metric of interest. This forces vendors to invest time and

effort in building specialized algorithms, data structures, and corresponding

hardware without knowing if these will be useful for their customers. Given

the limited resources available on network routers and business concerns, it

is difficult to support a wide spectrum of monitoring tasks in the long term.

Moreover, at any instant the data plane resources are committed beforehand

to the application-level metrics and other metrics that may be required in

the future (e.g., as administrators start some diagnostic tasks and require

additional statistics) will fundamentally not be available.

The efforts closest in spirit to our UnivMon vision is the minimalist moni-

toring work of Sekar et al. [47] and OpenSketch by Yu et al., [44]. Sekar et al.

17

showed empirically that flow sampling and sample-and-hold [39] can pro-

vide comparable accuracy to sketching when equipped with similar resources.

However, this work offers no analytical basis for this observation and does

not provide guidelines on what metrics are amenable to this approach.

OpenSketch [44] addresses an orthogonal problem of making it easier to

implement sketches. Here, the router is equipped with a library of predefined

functions in hardware (e.g., hash-maps or count-min sketches [61]) and the

controller can reprogram these as needed for different tasks. While OpenS-

ketch reduces the implementation burden, it still faces key shortcomings. First,

because the switches are programmed to monitor a specific set of metrics,

there will be a fundamental lack of visibility into other metrics for which data

plane resources have not been committed, even if the library of functions

supports those tasks. Second, to monitor a portfolio of tasks, the data plane

will need to run many concurrent sketch instances, which increases resource

requirements.

In summary, prior work presents a fundamental dichotomy: generic ap-

proaches that offer poor fidelity and are hard to reason about analytically

vs. sketch-based approaches that offer good guarantees but are practically

intractable given the wide range of monitoring tasks of interest.

Our previous paper makes a case for a “RISC” approach for monitor-

ing [54], highlighting the promise of recent theoretical advances in universal

streaming [49, 50]. However, this prior work fails to address several key prac-

tical challenges. First, it does not discuss how these primitives can actually be

18

3.	
 Metric	
 Estimation

App	
 1

Manifest computation

UnivMon
Control
Plane

UnivMon
Data
Plane

App	
 2 App	
 N

Topology
Routing	

#Sketches,
Dimension,
Memory

1. Distribute
Manifests

2.	
 Collect	
 Sketch	
 counters

…

Figure 2.1: Overview of UnivMon: The data plane nodes perform the monitor-
ing operations and report sketch summaries to the control plane which calculates
application-specific metric estimates.

mapped into switch processing pipelines. In fact, we observe that the data-

control plane split that they suggest is impractical to realize as they require

expensive sorting/sifting primitives (see §2.5). Second, this prior work takes a

narrow single-switch perspective. As we show later, naively extending this to

a network-wide context can result in inefficient use of compute resources on

switches and/or result in inaccurate estimates (see §2.4). This work develops

network-wide coordination schemes and demonstrate an implementation in

P4 [55]. Further, we show the fidelity of UnivMon on a broader set of traces

and metrics.

2.2 UnivMon architecture

In this section, we provide a high-level overview of the UnivMon framework.

We begin by highlighting the end-to-end workflow to show the interfaces

19

between (a) the UnivMon control plane and the management applications and

(b) between the UnivMon control and data plane components. We discuss the

key technical requirements that UnivMon needs to satisfy and why these are

challenging. Then, we briefly give an overview of the control and data plane

design to set up the context for the detailed design in the following sections.1

Figure 2.1 shows an end-to-end view of the UnivMon framework. The

UnivMon data plane nodes run general-purpose monitoring primitives that

process the incoming stream of packets it sees and maintains a set of counter

data structures associated with this stream. The UnivMon control plane

assigns monitoring responsibilities across the nodes. It periodically collects

statistics from the data plane, and estimates the various application-level

metrics of interest.

Requirements and challenges: There are three natural requirements that

UnivMon should satisfy:

• [R1.] Fidelity for a broad spectrum of applications: Ideally UnivMon should

require no prior knowledge of the set of metrics to be estimated, and yet

offer strong guarantees on accuracy.

• [R2.] One-big-switch abstraction for monitoring: There may be several

network-wide management tasks interested in measuring different di-

mensions of traffic; e.g., source IPs, destination ports, IP 5-tuples. Univ-

Mon should provide a “one big switch” abstraction for monitoring to the

management applications running atop UnivMon, so that the estimates

1We use the terms routers, switches, and nodes interchangeably.

20

appear as if all the traffic entering the network was monitored at a giant

switch [56].

• [R3.] Feasible implementation roadmap: While pure software solutions

(e.g., Open vSwitch [62]) may be valuable in many deployments, for

broader adoption and performance requirements, the UnivMon primi-

tives used to achieve [R1] and [R2] must have a viable implementation

in (emerging) switch hardware [55, 63].

Given the trajectory of prior efforts that offer high generality and low

fidelity (e.g, packet sampling) vs. low generality and high fidelity (e.g., custom

sketches), [R1] may appear infeasible. To achieve [R2], we observe that if each

router acts on the traffic it observes independently, it can become difficult

to combine the measurements and/or lead to significant imbalance in the

load across routers. Finally, for [R3], we note that even emerging flexible

switches [63, 64, 55] have constraints on the types of operations that they can

support.

Approach Overview: Next, we briefly outline how the UnivMon control and

data plane designs address these key requirements and challenges:

• UnivMon data plane: The UnivMon plane uses sketching primitives based

on recent theoretical work on universal streaming [49, 50]. By design, these

so-called universal sketches require no prior knowledge of the metrics

to be estimated. More specifically, as long as these metrics satisfy a

series of statistical properties discussed in detail in §2.3, we can prove

theoretical guarantees on the memory-accuracy tradeoff for estimating

21

these metrics in the control plane.

• UnivMon control plane: Given that the data plane supports universal

streaming, the control plane needs no additional capabilities w.r.t. [R1]

once it collects the sketch information from the router. It runs simple es-

timation algorithms for every management application of interest as we

discuss in §2.3 and provides simple APIs and libraries for applications

to run estimation queries on the collected counters. To address [R2],

the UnivMon control plane generates sketching manifests that specify the

monitoring responsibility of each router. These manifests specify the set

of universal sketch instances for different dimensions of interest (e.g., for

source IPs, for 5-tuples) that each router needs to maintain for different

origin-destination (OD) pair paths that it lies on. This assignment takes

into account the network topology and routing policies and knowledge

of the hardware resource constraints of its network elements.

In the following sections, we begin by providing the background on uni-

versal streaming that forms the theoretical basis for UnivMon. Then, in §2.4, we

describe the network-wide coordination problem that the UnivMon control

plane solves. In §2.5, we show how we implement this design in P4 [55, 65].

2.3 Theoretical Foundations of UnivMon

In this section, we first describe the theoretical reasoning behind universal

streaming and the class of supported functions [50, 49]. Then, we present and

explain the underlying algorithms from universal streaming which serve as a

22

basis for UnivMon. We also show how several canonical network monitoring

tasks are amenable to this approach.

2.3.1 Theory of Universal Sketching

For the following discussion, we consider an abstract stream D(m, n) of length

m with n unique elements. Let fi denote the frequency of the i-th unique

element in the stream.

The intellectual foundations of many streaming algorithms can be traced

back to the celebrated lemma by Johnson and Lindenstrauss [66]. This shows

that N points in Euclidean space can be embedded into another Euclidean

space with an exponentially smaller dimension while approximately preserv-

ing the pairwise distance between the points. Alon, Matias, and Szegedy used

a variant of the Johnson-Lindenstrauss lemma to approximately compute the

second moment of the frequency vector = ∑i f 2
i (or the L2 norm =

√
∑i f 2

i) in

the streaming model [59], using a small (polylogarithmic) amount of memory.

The main question that universal streaming seeks to answer is whether such

methods can be extended to more general statistics of the form ∑ g(fi) for an

arbitrary function g. We refer to this statistic as the G-sum.

Class of Stream-PolyLog Functions: Informally, streaming algorithms which

have polylogarithmic space complexity, are known to exist for G-sum func-

tions, where g is monotonic and upper bounded by the function O(f 2
i) [49,

67].2 Note that this only guarantees that some (possibly custom) sketching

2This is an informal explanation; the precise characterization is more technically involved
and can be found in [49]. While streaming algorithms are also known for G-sum when its g
grows monotonically faster than f 2

i [42] they cannot be computed in polylogarithmic space

23

algorithm exists if G-sum ∈ Stream-PolyLog and does not argue that a single

“universal” sketch can compute all such G-sums.

Intuition Behind Universality: The surprising recent theoretical result of

universal sketches is that for any function g() where G-sum belongs to the

class Stream-PolyLog defined above can now be computed by using a single

universal sketch.

The intuition behind universality stems from the following argument

about heavy hitters in the stream. Informally, item i is a heavy hitter w.r.t. g

if changing its frequency fi significantly affects the G-sum value as well. For

instance, consider the frequency vector (
√

n, 1, 1, . . . , 1) of size n; here the first

item is a L2 heavy hitter since its frequency is a large fraction of the L2 norm of

the frequency vector. For function g, let G-core be the set containing g-heavy

elements. g-heavy elements can be defined as, for 0 < γ < 1, any element

i ∈ [n] such that g(fi) > γ ∑j g(f j).

Now, let us consider two cases:

1. There is one sufficiently large g-heavy hitter in the stream:

If the frequency vector has one (sufficiently) large heavy hitter, then

most of mass is concentrated in this value. Now, it can be shown that a

heavy hitter for the L2 norm of the frequency vector is also a heavy hitter

for computable g [49, 67]. Thus, to compute G-core, we can simply find

L2 heavy hitters (L2-HH) using some known techniques (e.g., [6, 59])

and use it to estimate G-sum.

2. There is no single g-heavy hitter in the stream and no single element

due to the lower bound Ω(n1−2/k) where k > 2 [68].

24

contributes significantly to the G-sum:

When there is no single large heavy hitter, it can be shown that G-sum can

be approximated w.h.p. by finding heavy hitters on a series of sampled

substreams of increasingly smaller size. The exact details are beyond the

scope of this chapter [49] but the main intuition comes from tail bounds

(Chernoff/Hoeffding). Each substream is defined recursively by the

substream before it, and is created by sampling the previous frequency

vector by replacing each coordinate of the frequency vector with a zero

value with probability 0.5. Repeating this procedure k times reduces the

dimensionality of the problem by a factor of 2k. Then, summing across

heavy hitters of all these recursively defined vectors, we create a single

“recursive sketch” which gives a good estimate of G-sum [50].

2.3.2 Algorithms for Universal Sketching

Using the intuition from the two cases described above, we now have the

following universal sketch construction using an online sketching stage and

an offline estimation stage. The proof of the theorems governing the behavior

of these algorithms is outside the scope of this chapter and we refer readers

to the previous work of Braverman et al [49, 50]. In this section, we focus on

providing a conceptual view of the universal sketching primitives. As we

will discuss later, the actual data plane and control plane realization will be

slightly different to accommodate switch hardware constraints (see §2.5).

In the online stage, as described in Algorithm 1, we maintain log(n) par-

allel copies of a “L2-heavy hitter” (L2-HH) sketch (e.g., [6]), one for each

25

Figure 2.2: High-level view of universal sketch.

substream as described in case 2 above. For the jth parallel instance, the algo-

rithm processes each incoming packet 5-tuple and uses an array of j pairwise

independent hash functions hi : [n] → {0, 1} to decide whether or not to

sample the tuple. When 5-tuple tup arrives in the stream, if for all h1 to hj,

hi(tup) = 1, then the tuple is added to Dj, the sampled substream. Then, for

substream Dj, we run an instance of L2-HH as shown in Algorithm 1, and

visualized in Figure 2.2. Each L2-HH instance outputs Qj that contains L2

heavy hitters and their estimated counts from Dj. This creates substreams

of decreasing lengths as the j-th instance is expected to have all of the hash

functions agree to sample half as often as the (j− 1)-th instance. This data

structure is all that is required for the online portion of our approach.

In the offline stage, we use Algorithm 2 to combine the results of the

parallel copies of Algorithm 1 to estimate different G-sum functions of interest.

This method is based on the Recursive Sum Algorithm from [50]. The input

to this algorithm is the output of Algorithm 1; i.e., a set of {Qj} buckets

maintained by the L2-HH sketch from parallel instance j. Let wj(i) be the

3In this way, we obtain log(n) streams D1, D2 . . . Dlog(n); i.e., for j = 1 . . . log n, the number
of unique items n in Dj+1, is expected to be half of Dj.

26

Algorithm 1 UnivMon Online Sketching Step
Input: Packet stream D(m, n) = {a1, a2, . . . , am}

• Generate log(n) pairwise independent hash functions h1 . . . hlog(n) : [n]→
{0, 1}.
• Run L2-HH sketch on D and maintain HH set Q0.
• For j = 1 to log(n), in parallel:

1. when a packet ai in D arrives, if all h1(ai) × h2(ai) · · · × hj(ai) = 1,
sample and add ai to sampled substream Dj.3

2. Run L2-HH sketch on Dj and maintain heavy hitters Qj.

Output: Q = {Q0, . . . , Qlog(n)}

Algorithm 2 UnivMon Offline Estimation Algorithm
Input: Set of heavy hitters Q = {Q0, . . . , Qlog(n)}

• For j = 0 . . . log(n), call g() on all counters wj(i) in Qj. After g(), the i-th
entry in Qj is g(wj(i)).
• Compute Ylog(n) = ∑i g(wlog(n)(i)).
• For each j from log(n)− 1 to 0, compute:

Yj=2Yj+1+∑i∈Qj
(1-2hj+1(i)) g(wj(i))

Output: Y0

counter of the i-th bucket (heavy hitter) in Qj. hj(i) is the hash of the value of

the i-th bucket in Qj where hj is the hash function described in Algorithm 1

Step 1. It can be shown that the output of Algorithm 2 is an unbiased estimator

of G-sum [49, 50]. In this algorithm, each Y is recursively defined, where Yj

is function g applied to each bucket of Qj, the L2-HH sketch for substream

Dj, and the sum taken on the value of those buckets and all Yj′ , j′ > j. Note

that Qlog(n) is the set of heavy hitters from the sparsest substream Dlog(n) in

Algorithm 1, and we begin by computing Ylog(n). Thus, Y0 can be viewed as

computing G-sum in parts using these sampled streams.

The key observation here is that the online component, Algorithm 1, which

27

will run in the UnivMon data plane is agnostic to the specific choice of g in

the offline stage. This is in stark contrast to custom sketches where the online

and offline stages are both tightly coupled to the specific statistic we want to

compute.

2.3.3 Application to Network Monitoring

As discussed earlier, if a function G-sum ∈ Stream-PolyLog, then it is amenable

to estimation via the universal sketch. Next, we show that a range of network

measurement tasks can be formulated via a suitable G-sum ∈ Stream-PolyLog.

For the following discussion, we consider network traffic as a stream D(n, m)

with m packets and at most n unique flows. When referring to the defini-

tions of Heavy Hitters, note that L2 heavy hitters are a stronger notion that

subsumes L1 heavy hitters.

Heavy Hitters: To detect heavy hitters in the network traffic, our goal is to

identify the flows that consume more than a fraction γ of the total capacity [39].

Consider a function g(x) = x such that the corresponding G-core outputs a

list of heavy hitters with(1± ϵ)-approximation of their frequencies. For this

case, these heavy hitters are L1-heavy hitters and g(x) is upperbounded by x2.

Thus we have an algorithm that provides G-core. This is technically a special

case of the universal sketch; we are not ever computing a G-sum function and

using G-core directly in all cases.

DDoS Victim Detection: Suppose we want to identify if a host X is expe-

riencing a Distributed Denial of Service (DDoS) attack. We can do so using

sketching by checking if more than k unique flows from different sources

28

are communication with X [44]. To show that the simple DDoS victim de-

tection problem is solvable by the universal sketch, consider a function g

that g(x) = x0 and g(0) = 0. Here g is upper bounded by f (x) = x2 and

sketches already exist to solve this exact problem. Thus, we know G-sum is

in Stream-PolyLog and we approximate G-sum in polylogarithmic space using

the universal sketch. In terms of interpreting the results of this measurement,

if G-sum is estimated to be larger than k, a specific host is a potential DDoS

victim.

Change Detection: Change detection is the process of identifying flows that

contribute the most to traffic change over two consecutive time intervals. As

this computation takes place in the control plane, we can store the output

of the universal sketches from multiple intervals without impacting online

performance. Consider two adjacent time intervals tA and tB. If the volume

for a flow x in interval tA is SA[x] and SB[x] over interval tB. The difference

signal for x is defined as D[x] = |SA[x]− SB[x]|. A flow is a heavy change flow

if the difference in its signal exceeds ϕ percentage of the total change over

all flows. The total difference is D = ∑x∈[n] D[x]. A flow x is defined to be

a heavy change iff D[x] ≥ ϕ · D. The task is to identify these heavy change

flows. We assume the size of heavy change flows is above some threshold

T over the total capacity c. We can show that the heavy change flows are L1

heavy hitters on interval tA (a1 · · · an/2) and interval tB (b1 · · · bn/2), where

L1(tA, tB) = ∑ |ai − bi|. G-sum here is L1 norm, which belongs to Stream-

PolyLog, and G-core can be solved by universal sketch. The G-sum outputs the

estimated size of the total change D and G-core outputs the possible heavy

29

change flows. By comparing the outputs from G-sum and G-core, we can

detect and determine the heavy change flows that are above some threshold

of all flows.

Entropy Estimation: We define entropy with the expression H ≡ −∑n
i=1

fi
m log(fi

m) [10] and we define 0 log 0 = 0 here. The entropy estimation task

is to estimate H for source IP addresses (but could be performed for ports

or other features). To compute the entropy, H = −∑n
i=1

fi
m log(fi

m) = log(m)

− 1
m ∑i fi log(fi). As m can be easily obtained,4 the difficulty lies in calculating

∑i fi log(fi). Here the function g(x) = x log(x) is bounded by g(x) = x2

and thus its G-sum is in Stream-PolyLog and H can be estimated by universal

sketch.

Global Iceberg Detection: Consider a system or network that consists of

N distributed nodes (e.g., switches). The data set Sj at node j contains a

stream of tuples < itemid, c> where itemid is an item identity from a set

U = {µ1 . . . µn} and c is an incremental count. For example, an item can be

a packet or an origin-destination (OD) flow. We define fri = ∑j ∑<µi,c>∈Sj
c,

the frequency of the item µi when aggregated across all the nodes. We want

to detect the presence of items whose total frequency across all the nodes

adds up to exceed a given threshold T. In other words, we would like to

find out if there exists an element µi ∈ U such that fri ≥ T. (In §2.4, we

will explain a solution to gain a network-wide universal sketch. Here, we

assume here that we maintain an abstract universal sketch across all nodes

by correctly combining all distributed sketches.) Consider a function g(x) =

4e.g., a single counter or estimated as a G-sum.

30

x such that the corresponding G-core outputs a list of global heavy hitters

with(1± ϵ)−approximation of their frequencies. For this case, since g-heavy

hitters are L1 heavy hitters, we have an algorithm that provides G-core.

2.4 Network-wide UnivMon

In a network-wide context, we have flows from several origin-destination

(OD) pairs, and applications may want network-wide estimates over multiple

packet header combinations of interest. For instance, some applications may

want per-source IP estimates, while others may want characteristics in terms

of the entire IP-5-tuple. We refer to these different packet header features and

feature-combinations as dimensions.

In this section, we focus on this network-wide monitoring problem of mea-

suring multiple dimensions of interest traversing multiple OD-pairs. Our goal

is to provide equivalent coverage and fidelity to a “one big switch abstraction”,

providing the same level of monitoring precision at the network level as at the

switch level. We focus mostly for the case where each OD-pair has a single

network route and describe possible extensions to handle multi-pathing.

2.4.1 Problem Scope

We begin by scoping the types of network-wide estimation tasks we can

support and formalize the one-big-switch abstraction that we want to provide

in UnivMon. To illustrate this, we use the example in Figure 2.3 where we

want to measure statistics over two dimensions of interest: 5-tuple and source-

IP.

31

Figure 2.3: Example topology to explain the one-big-switch notion and to compare
candidate network-wide solutions.

In this example, we have four OD-pairs; suppose the set of traffic flows

on each of these is denoted by P11, P12, P21, and P22. We can divide the

traffic in the network into four partitions, one per OD-pair. Now, imagine we

abstract away the topology and consider the union of the traffic across these

partitions flowing through one logical node representing the entire network;

i.e., computing some estimation function F(P11 ⊎ P12 ⊎ P21 ⊎ P22), where ⊎

denotes the disjoint set union operation.

For this work, we restrict our discussion to network-wide functions where
we can independently compute the F estimates on each OD-pair substream
and add them up. In other words, we restrict our problem scope to estimation

32

functions Fs such that:

F(P11 ⊎ P12 ⊎ P21 ⊎ P22) = F(P11) + F(P12) + F(P21) + F(P22)

Note that this still captures a broad class of network-wide tasks such as

those mentioned in section 2.3.3. One such example measurement is finding

heavy hitters for destination IP addresses. An important characteristic of

the UnivMon approach is that in the network-wide setting the output of

sketches in the data plane can then be added together in the control plane

to give the same results as if all of the packets passed through one switch.

The combination of the separate sketches is a property of the universal sketch

primitive used in the data plane and is independent of the final statistic

monitored in the control plane, allowing the combination to work for all

measurements supported by UnivMon. We do however acknowledge that

some tasks fall outside the scope of this partition model; an example statistic

that is out of scope would be measuring the statistical independence of source

and destination IP address pairs (i.e. if a source IP is likely to appear with a

given destination IP, or not), as this introduces cross-OD-pair dependencies.

We leave extensions to support more general network-wide functions for

future work (see §6).

The challenge here is to achieve correctness and efficiency (e.g., switch mem-

ory, controller overhead) while also balancing the load across the data plane

elements. Informally, we seek to minimize the total number of sketches instan-

tiated in the network and the maximum number of sketches that any single

node needs to maintain.

33

2.4.2 Strawman Solutions and Limitations

Next, we discuss strawman strategies and argue why these fail to meet one or

more of our goals w.r.t. correctness, efficiency, and load balancing. We observe

that we can combine the underlying sketch primitives at different switches as

long as we use the same random seeds for our sketches, as the counters are

additive at each level of the UnivMon sketch. With this, we only need to add

the guarantee that we count each packet once to assure correctness. In terms

of resource usage, our goal is to minimize the number of sketches used.

Redundant Monitoring (RM): Suppose for each of k dimensions of interest,

we maintain a sketch on every node, with each node independently processing

traffic for the OD-pairs whose paths it lies on. Now, we have the issue of

combining sketches to get an accurate network-wide estimate. In particular,

adding all of the counters from the sketches would be incorrect, as packets

would be counted multiple times. In the example topology, to correctly count

packets we would need to either only use the sketches at A or B, or, conversely,

combine the sketches for source IP at O1 and O2 or D1 and D2. In terms of

efficiency, this RM strategy maintains a sketch for all k dimensions at each

node and thus we maintain a total of kN sketches across N nodes. Our goal,

is to maintain s total sketches, where s << kN.

Ingress Monitoring (IM): An improvement over the RM method is to have

only ingress nodes maintaining every sketch. Thus, for each OD pair, all sketch

information is maintained in a single node. By not having duplicate sketches

per OD pair, we will not double count and therefore can combine sketches

together. This gives us the correctness guarantee missing in RM. In Figure 2.3,

34

IM would maintain sketches at O1 and O2. However, for Ni ingress nodes,

we would run kNi sketches, and if Ni ≈ N we spend a similar amount of

resources to RM, which is still high. Additionally, these sketches woul be

would all be present on a small number of nodes, where other nodes with

available compute resources would not run any sketches.

Greedy Divide and Conquer (GDC): To overcome the concentration of

sketches in IM above, one potential solution is to evenly divide sketch process-

ing duties across the path. Specifically, each node has a priority list of sketches,

and tags packets with the current sketches that are already maintained for

this flow so that downstream nodes know which remaining sketches to run.

For instance, in Figure 2.3, GDC would maintain the source IP sketch at O1

and O2, and the 5-tuple sketch at A. This method is correct, as each sketch for

each OD pair is maintained once. However, it is difficult to properly balance

resources as nodes at the intersection of multiple paths could be burdened

with higher load.

Reactive Query and Sketch (QS): An alternative approach is to use the

controller to ensure better sketch assignment. For instance, whenever a new

flow is detected at a node, we query the controller to optimally assign sketches.

In Figure 2.3, the controller would optimally put the source IP sketch at A and

the 5-tuple sketch at B (or vice versa). With this method, we can be assured

of correctness. However, the reactive nature means that QS generates many

requests to the controller.

35

2.4.3 Our Approach

Next, we present our solution, which uses the UnivMon controller to coordi-

nate switches to guarantee correctness and efficiency but without incurring

the reactive query load of the QS strategy described above.

Periodically, the UnivMon controller gives each switch a sketching man-

ifest. For each switch A and for each OD-pair’s route that A lies on, the

manifest specifies the dimensions for which A needs to maintain a sketch.

When a packet arrives at a node, the node uses the manifest to determine

the set of sketching actions to apply. When the controller needs to compute

a network-wide estimate, we pull sketches from all nodes and for each di-

mension, combine the sketches across the network for that dimension. This

method minimizes communication to the control plane while still making use

of the controller’s ability to optimize resource use.

The controller solves a simple constrained optimization problem that we

discuss below. Note that maintaining two sketches uses much more memory

than adding twice as many elements to one sketch. Thus, a key part of this

optimization is to ensure that we try to reuse the same sketch for a given

dimension across multiple OD pairs. In Figure 2.3, we would first assign A

the source IP sketch, then B the 5-tuple sketch for the OD pair (O1, D1). When

choosing where to place the sketches for the OD pair (O2, D2), the algorithm

matches the manifests such that the manifest for (O2, D2) uses the source IP

sketch already at A and the 5-tuple sketch already at B.

We formulate the controller’s decision to place sketches as an integer linear

program (ILP) shown in Figure 2.4. Let sjk be a binary decision variable

36

Minimize: N ×Maxload + Sumload, subject to

∀i, k : ∑
j∈pi

sjk ≥ 1 (2.4.1)

∀j : Loadj = ∑
k

rk × sjk (2.4.2)

∀j : ∑ sjkrk ≤ R (2.4.3)

∀j : Maxload ≥ Loadj (2.4.4)

∀j : Sumload = ∑
j

Loadj (2.4.5)

Figure 2.4: ILP to compute sketching manifests.

denoting if the switch j is maintaining a sketch for dimension j. The goal of

the optimization is to ensure that every OD-pair is suitably “covered” and

that the load across the switches is balanced. Let rk be the amount of memory

for a sketch for dimension k and let R denote maximum amount of memory

available on a single node. Note that the amount of memory for a sketch can

be chosen in advance based on the accuracy required. As a simple starting

point, we focus primarily on the memory resource consumption assuming

that all UnivMon operations can be done at line-rate; we can extend this

formulation to incorporate processing load as well.

Eq (2.4.1) captures our coverage constraint that we maintain each sketch

once for each OD-pair.5 We model the per-node load in Eq (2.4.2) and ensure

that it respects the router capacity in Eq (2.4.3). Our objective function balances

5Our coverage constraint allows multiple sketches of the same kind to be placed in the
same path. This is because in some topologies, it may not be feasible to have an equality
constraint. In this case, the controller post-processes the solution and removes duplicates
before assigning sketches for a given OD pair.

37

Figure 2.5: Example topology to showcase difficulty of multi-path.

two components: the maximum load that any one node faces and the total

number of sketches maintained.6

2.4.4 Extension to Multi-path

Adapting the above technique to multi-path requires some modification, but

is feasible. For simplicity, we still assume that packets are routed deterministi-

cally (e.g., by prefix rules), but may have multiple routes. We defer settings

that depend on randomized or non-deterministic routing for future work.

Even in this deterministic setting, there are two potential problems. First,

ensuring packets are only counted once is important to avoid false positives,

as in the single path case. Second, if the packets with a heavy feature (e.g., the

destination address is heavy) are divided over many routes, it can increase

the difficulty of accurately finding heavy hitters, removing false positives and

preventing false negatives.

6The N term for MaxLoad helps to normalize the values.

38

The first issue, guaranteeing packets are counted only once, is solvable

by the ILP presented above. For each path used by an OD pair, we create a

unique sub-pair which we treat as an independent OD pair. This is shown in

Figure 2.5 by the red O1-D1 path and the blue O1-D1 path. By computing the

ILP with multiple paths per OD pair as needed, sketches are distributed across

nodes, and single counting is guaranteed. This method works best when the

total number of paths per OD pair is constant relative to the total number of

nodes, and larger numbers of paths will cause the sketches to concentrate on

the source or destination nodes, possibly requiring additional solutions.

The second issue occurs when multi-path routing causes the frequency

of an item to be split between too many sketches. In the single-path setting,

if an OD pair has a globally heavy feature, then it will be equally heavy or

heavier in the sketch where it is processed. However in the multi-path case,

it is possible for some OD pairs to have more paths than others, and thus it

becomes possible for items that are less frequent but have fewer routes to be

incorrectly reported heavy, and in turn fail to report true heavy elements in

the control plane. This problem is shown in Figure 2.5. In this case, we have

10,000 packets from node O1 to D1 split across two paths, and 6,000 packets

from O2 to D2. For simplicity, assume we are only looking for the "heaviest"

source IP, the source IP with the highest frequency, and that the nodes have a

single IP address, (i.e. Packets go from IPO1 to IPD1 and IPO1 IPD2). For this

metric, the sketch at A will report IPO1 as a heavy source address with count

5,000, and B will report IPO2 as a heavy source address with count 6,000. At

the data plane these values are compared again, and the algorithm would

39

return IPO2 , a false positive, and miss IPO1 , a false negative. To solve this

issue, instead of sending the heavy hitter report from individual sketches as

described in Algorithm 1, the counters from each sketch must be sent directly

to the control plane to be added, reconstructing the entire sketch and allowing

the correct heavy hitters to be identified. In our example, the counters for

the O1 at A and B would be added, and IPO1would be correctly identified

as the heavy hitter. This approach is already used in the P4 implementation

discussed below, but is not a requirement of UnivMon in general. We note

that when using the method described below in Section 2.5.2, identifying the

true IP address of the heavy item is harder in the multi-path setting, but is

solved by increasing γ relative to the maximum number of sketches per true

OD pair, which is naturally limited by the ILP. With these modifications, the

heavy hitters are correctly found from the combined sketch, and the one big

switch abstraction are maintained in a multi-path setting.

2.5 UnivMon Implementation

In this section, we discuss our data plane implementation in P4 [55, 65]. We

begin by giving an overview of key design tradeoffs we considered. Then, we

describe how we map UnivMon into corresponding P4 constructs.

2.5.1 Implementation overview

At a high level, realizing the UnivMon design described in the previous

sections entails four key stages:

40

Sampling Sketching Top-k HH App-Estimation
Implementation Stages

Option 1 Option 2

S Sk Top-k App
Data Plane Control Plane

S Sk Top-k App
Data Plane Control Plane

Pros: Storage - CommOverhead
Cons: HW Complexity

table sampling1 {
actions {

sample_1;
}

} table Sket_1 {
actions {

sket_1;
}

}

Figure 2.6: An illustration of UnivMon’s stages along with the two main implementa-
tion options.

1. A sample stage which decides whether an incoming packet will be

added to a specific substream.

2. A sketching stage which calculates sketch counters from input sub-

streams and populates the respective sketch counter arrays.

3. A top-k computation stage which identifies (approximately) the k heavi-

est elements of the input stream.

4. An estimation stage which collects the heavy element frequencies and

calculates the desired metrics.

Let us now map these stages to our data and control plane modules from

Figure 2.1. Our delayed binding principle implies that the estimation stage

41

maps to the UnivMon control plane. Since the sample and sketching are

processing packets, they naturally belong in the data plane to avoid control

plane overhead.

One remaining question is whether the top-k computation stage is in the

data or control plane (Figure 2.6). Placing the top-k stage in the data plane

has two advantages. First, the communication cost between the data and

control plane will be low, as only the top-k rather than raw counters need to be

transferred. Second, the data plane only needs to keep track of the flowkeys

(e.g., source IP) of the k heaviest elements at any given point in time, and thus

not incur high memory costs. However, one stumbling block is that realizing

this stage requires (i) sorting counter values and (ii) storing information about

the heavy elements in some form of a priority queue. Unfortunately, these

primitives may be hard to implement in hardware and are not supported in

P4 yet. Thus, we make a pragmatic choice to split the top-k stage between

the control and the data planes. We identify the top-k heavy flowkeys in the

dataplane and then we use the raw data counters to calculate their frequencies

in the control plane. The consequence is that we incur higher communication

overhead to report the raw counter data structure, but the number of flowkeys

stored in the data plane remains low.

UnivMon’s raw counters and flowkeys are stored on the target’s on-chip

memory (TCAM and SRAM). We argue that in practice the storage overhead

of UnivMon is manageable even for hardware targets with limited SRAM [69,

70, 44]. We show that for the largest traces that we evaluate and without

losing accuracy, the total size of the raw counters can be less than 600 KB

42

whereas the cost of storing flowkeys (assuming k is ≤ 20) is only a few KBs

per measurement epoch. Thus, this decision to split the top-k between the two

planes computation is practical and simplifies the data plane requirements.

2.5.2 Mapping UnivMon data plane to P4

Based on the above discussion, the UnivMon data plane implements sample,

sketching, and “heavy” flowkey storage in P4. In a P4 program, packet

processing is implemented through Match+Action tables, and the control flow

of the program dictates the order in which these tables are applied to incoming

packets. Given the sketching manifests from the control plane, we generate

a control program that defines the different pipelines that a packet needs to

be assigned to. These pipelines are specific to the dimension(s) (i.e., source

IP, 5-tuple) for which the switch needs to maintain a universal sketch. We

begin by explaining how we implemented these functions and then describe a

sample control flow.

sample: P4 enables programmable calculations on specific header fields

using user-defined functions. We use this to sample incoming packets, with a

configurable flowkey that can be any subset of the 5-tuple (srcIP, dstIP, srcPort,

dstPort, protocol). We define l pairwise-independent hash functions, where l

is the number of levels from §2.3. These functions take as input the flowkey

and output a binary value. We store this output bit as packet metadata. A

packet is sampled at level i if the outputs of the hash functions of all levels ≤ i

is equal to 1. We implement sampling for each level as a table that matches

all packets and whose action is to apply the sampling hash function of that

43

level. The hash metadata in the packets are used in conditional statements in

the control flow to append the packet to the first i substreams. Packets that

are not sampled are not subject to further UnivMon processing.7

Sketching: The sketching stage is responsible for maintaining counters for

each one of the l substreams. From these sketch counters, we can estimate the

L2-HH for each stage and then the overall top-k heavy hitters and their counts.

While UnivMon does not impose any constraints on the L2-HH algorithm to

be used, in our P4 implementation we use Count Sketch [6]. The sketching

computation for each level is implemented as a table that matches every

packet belonging to that level’s substream and its actions update the counters,

stored in the sketch counter arrays. Similar to the sample stage, we leverage

user-defined hash functions that take as input the same flowkey as in the

sample stage. We use their output to retrieve the indexes of the sketch register

arrays cells that correspond to a particular packet and update their value as

dictated by the Count Sketch algorithm.

P4 provides a register abstraction which offers a form of stateful memory

that can store user-defined data and that can be arranged into one dimensional

arrays of user-defined length. Register cells can be read or written by P4 action

statements and are also accessible through the control plane API. Given that

our goal is to store sketch counter values which do not represent byte or

packet counts, we use register arrays to store and update sketch counters. The

size of the array and the bitlength of each array cell are user-defined and can

be varied based on the required memory-accuracy tradeoff as well as on the

7There may be other routing/ACL actions to be applied to the packet but this is outside
our scope.

44

available on-chip memory of the hardware target. Each sketch is an array of t

rows and w columns. We instantiate register arrays of length t ∗ w, and the

bitlength of each cell is based on the maximum expected value of a counter.

The one remaining issue is storing flowkeys corresponding to the “heavy”

elements since these will be needed by the estimation stage running in the

control plane. One option is to use a priority queue to maintain the top k

heavy hitters online, as it is probably the most efficient and accurate choice to

maintain heavy flowkeys. However, this can incur more than constant update

time for each element, which makes it difficult to implement on hardware

switches. To address the issue, we use an alternative approach which is to

maintain a fixed sized table of heavy keys and use constant time updates for

each operation. It is practical and acceptable when the size of the table is small

(e.g., 10-50) and the actual number of heavy flows doesn’t greatly exceed this

size. The lookup/update operations could be very fast (in a single clock cycle)

when leveraging some special types of memory (e.g., TCAM) on hardware

switches.

Another scheme we use is as follows, and we leave improved sketches for

finding heavy flowkeys as future work. For γ-threshold heavy hitters, there

are at most 1/γ of them. While packets are being processed, we maintain an

up-to-date L2 value (of the frequency vector), specifically L2 = (L2
2 + (ci +

1)2 −(ci)
2)1/2, where ci is each flow’s current count and we create log(1/γ)

buckets of size k. In the online stage, when updating the counters in L2-HH,

ci is obtained by reading current sketch counters.

We then maintain buckets marked with L2/2, L2/4, . . . , γL2. For each

45

element that arrives, if its counter is greater than L2/2, insert it into the L2/2

bucket using a simple hash; otherwise, if its counter is greater than L2/4,

insert it into the L2/4 bucket, and so forth. When the value of L2 doubles itself,

we delete the last γL2 bucket and we add a new L2/2 bucket. This scheme

ensures that O(k log(1/γ)) flowkeys are stored, and at the end of the stream

we can return most top k items heavier than γL2.

P4 Control Flow: As a simple starting point, we use a sequential control flow

to avoid cloning every incoming packet l (i.e., number of levels) times. This

means that every packet is processed by a sketching, a storage and a sampling

table sequentially until the first level where it doesn’t get sampled. More

specifically, after a packet passes the parsing stage during which P4 extracts its

header fields, it is first processed by the sketching table of level_0. The “heavy”

keys for that stage are updated and then it is processed by the sampling table

of level_1. If the packet gets sampled at level_1, it is sketched at this level,

the “heavy” keys are updated and the procedure continues until the packet

reaches the last level or until it is not sampled.

2.5.3 Control plane

We implement the UnivMon control plane as a set of custom C++ modules and

libraries. We implement modules for (1) Assigning sketching responsibilities

to the network elements, and (2) implementing the top-k and estimation

stages. The P4 framework allows us to define the API for control-data plane

communication. We currently use a simple RPC protocol that allows us to

import sketching manifests and to query the contents of data plane register

46

arrays

After the heavy flowkeys and their respective counters have been collected,

the frequencies of the k-most frequent elements in the stream are extracted.

The heavy elements along with the statistical function of the metric to be

estimated are then fed to the recursive algorithm of UnivMon’s estimation

stage.

2.6 Evaluation

We divide our evaluation into two parts. First, we focus on a single router

setup and compare UnivMon vs. custom sketches via OpenSketch [44]. Sec-

ond, we demonstrate the benefits of our network-wide coordination mecha-

nisms.

2.6.1 Methodology

We begin by describing our trace-driven evaluation setup.

Applications and error metrics: We have currently implemented translation

libraries for five monitoring tasks: Heavy Hitter detection (HH), DDoS de-

tection (DDoS), Change Detection (Change), Entropy Estimation (Entropy),

and Global Iceberg Detection (Iceberg). For brevity, we only show results for

metrics computed over one feature, namely the source IP address; our results

are qualitatively similar for other dimensions too.

For Heavy Hitters and Global Iceberg detection, we set a threshold T =

0.05% of the link capacity and identify all large flows that consume more

47

Trace Loc Date and Time
1. CAIDA’15 Equinix-Chicago 2015/02/19
2. CAIDA’15 Equinix-Chicago 2015/05/21
3. CAIDA’15 Equinix-Chicago 2015/09/17
4. CAIDA’15 Equinix-Chicago 2015/12/17
5. CAIDA’14 Equinix-Sanjose 2014/06/19

Table 2.1: CAIDA traces in the evaluation.

traffic than that threshold. We obtain the average relative error on the counts

of each identified large flow; i.e., |True−Estimate|
True . For Change Detection, whose

frequency has changed more than a threshold ϕ of the total change over all

flows across two monitoring windows. We chose this threshold to be 0.05%

and calculate the average relative error similar to HH. For Entropy Estimation

and DDoS, we evaluate the relative error on estimated entropy value and the

number of distinct source IPs.

Configuration: We normalize UnivMon’s memory usage with the custom

sketches by varying three key parameters: number of rows t and number of

columns w in Count-Sketch tables, and the number of levels l in the universal

sketch. In total UnivMon uses t×w× l counters. In OpenSketch, we configure

the memory usage in a similar way by varying number of rows t and counters

per row w in all the sketches they use. When comparing the memory usage

with OpenSketch, we calculate the total number of sketch counters assuming

that each integer counter occupies 4 bytes. Both UnivMon and OpenSketch

use randomized algorithms; we run the experiment 10 times with random

hash seeds and report the median cross these runs.

Traces: For this evaluation, we use five different one-hour backbone traces

(Table 2.1) collected at backbone links of a Tier1 ISP between (i) Chicago,

48

IL and Seattle, WA in 2015 and (ii) between San Jose and Los Angeles in

2014 [57, 58]. We split the traces into different representative time intervals (5s,

30s, 1min, 5min). For example, each one hour trace contains 720 5s-epoch data

points and we report min, 25%, median, 75%, and max on whisker bars. By

default, we report results for a 5-second trace. Each 5s packet-trace contains

155k to 286k packets with ∼55k distinct source IP addresses and ∼40k distinct

destination IP addresses. The link speed of these traces is 10 Gbps.

Experiment Setup: For our P4 implementation prototype, we used the P4 be-

havioral simulator, which is essentially a P4-enabled software switch [71]. To

validate the correctness of our P4 implementation, we compare it against a soft-

ware implementation of the data plane and control plane algorithms, written

in C++. We evaluate P4 prototype on Trace 1 and run software implementation

in parallel on Trace 1- 5. The results between the two implementations are

consistent as the relative error between the results of the two implementations

does not exceed 0.3%. To evaluate OpenSketch, we use its simulator written

in C++ [72].

2.6.2 Single Router Evaluation

Comparison under fixed memory setting: First, we compare UnivMon and

OpenSketch on the applications that OpenSketch supports: HH, Change, and

DDoS. In Figures 2.7(a) and 2.7(b), we assign 600KB memory and use all traces

in order to estimate the error when running UnivMon and OpenSketch. We

find that the absolute error is very small for both approaches. We observe that

OpenSketch provides slightly better results for all three metrics. However

49

0.01
1

5

10

OC192-P4
OC192-1

OC192-2
OC192-3

OC192-4
OC192-5

E
rr

o
r

R
a

te
 (

%
)

Heavy Hitter
Change Detection

DDoS

(a) UnivMon

0.01

1

2

3

OC192-1
OC192-2

OC192-3
OC192-4

OC192-5

E
rr

o
r

R
a

te
 (

%
)

Heavy Hitter
Change Detection

DDoS

(b) OpenSketch

Figure 2.7: Error rates of HH, Change and DDoS for UnivMon and OpenSketch.

0.01

1

0.2 0.4 0.6 0.8 1

E
rr

o
r

R
a
te

 (
%

)

Memory Usage (MB)

UnivMon
OpenSketch

(a) HH

0.11
2

5

15

0.1 0.4 0.8 1 2

E
rr

o
r

R
a
te

 (
%

)

Memory Usage (MB)

UnivMon
OpenSketch

(b) DDoS

0.1
2

5

15

0.25 0.8 1 2 3

E
rr

o
r

R
a
te

 (
%

)

Memory Usage (MB)

UnivMon
OpenSketch(CM)

OpenSketch(K-ary)

(c) Change

Figure 2.8: Error vs. Memory for HH, DDoS, Change.

we note that UnivMon uses 600KB memory to run three tasks concurrently

while OpenSketch is given 600KB to run each task. Figure 2.7(a) and 2.7(b)

confirm that this observation holds on multiple traces; the error gap between

UnivMon and OpenSketch is ≤3.6%.

Accuracy vs. Memory: The previous result considered a fixed memory

value. Next, we study the sensitivity of the error to the memory available.

Figure 2.8(a) and 2.8(b) shows that the error is already quite small for all the

HH and DDoS applications and that the gap is almost negligible with slightly

increased memory ≥ 1MB.

Figure 2.8(c) shows the results for the Change Detection task. For this task,

50

200

300

5s 30s 1m 5m

M
e

m
o

ry
 U

s
a

g
e

 (
K

B
)

Monitoring Time Interval

OS-trace1
OS-trace2
OS-trace3
OS-trace4
OS-trace5

UM-trace1
UM-trace2
UM-trace3
UM-trace4
UM-trace5

(a) HH

0.3
0.5

1.0

1.5

2.0

5s 30s 1m 5m

M
e

m
o

ry
 U

s
a

g
e

 (
K

B
)

Monitoring Time Interval

OS-trace1
OS-trace2
OS-trace3
OS-trace4
OS-trace5

UM-trace1
UM-trace2
UM-trace3
UM-trace4
UM-trace5

(b) Change

Figure 2.9: Average memory usage to achieve a 1% error rate for different time
intervals

the original OpenSketch paper uses a streaming algorithm based on reversible

k-ary sketches [9]. We implement an extension to OpenSketch using a similar

idea as UnivMon.8 Our evaluation results show that our extension offers

better accuracy vs. memory tradeoff than OpenSketch’s original method [9].

For completeness, we also report the memory usage of OpenSketch’s original

design (using the k-ary sketch). From Figure 2.8(c), we see UnivMon provides

comparable accuracy even though UnivMon has a much smaller sketch table

on each level of its hierarchical structure. This is because the “diff” across

sketches are well preserved in UnivMon’s structure.

Fixed Target Errors: Next, we evaluate the memory needed to achieve the

same error rates (≤1%). In Figures 2.9(a) and 2.9(b) as we vary the monitoring

window, we can see that only small amount of memory increase is required for

both UnivMon and OpenSketch to achieve 1% error rates. In fact, we find that

UnivMon does not require more memory to maintain a stable error rate for

8We maintain two recent Count-Min sketches using the same hash functions; combine
two sketches by one sketch “subtracts” the other; and use reversible sketch to trace back the
keys.

51

0.11
2

5

15

0.1 0.4 0.8 1 1.5

E
rr

o
r

R
a
te

 (
%

)

Memory Usage (MB)

UnivMon(Entropy)
UnivMon(F2)

Figure 2.10: Error rates of Entropy and F2 estimation

increased number of flows in the traffic. This is largely because sketch-based

approaches usually just take logarithmic memory increase in terms of input

size to maintain similar error guarantees. Furthermore, the nature of traffic

distribution also helps as there are only a few very heavy flows and the entire

distribution is quite “flat”.

Other metrics: We also considered metrics not in the OpenSketch library in

Figure 2.10 to confirm that UnivMon is able to calculate a low-error estimate.

Specifically, we consider the entropy of the distribution and the second fre-

quency moment F2 = f 2
1 + f 2

2 · · ·+ f 2
m for m distinct elements.9 Again, we find

that with reasonable amounts of memory (≥ 500KB) the error of UnivMon is

very low.

Impact of Application Portfolio: Next, we explore how UnivMon and

OpenSketch handle a growing portfolio of monitoring tasks with a fixed

memory. We set the switch memory to 600KB for both UnivMon and OpenS-

ketch and run three different application sets: AppSet1={HH}, AppSet2

9This is a measure of the “skewness” and is useful to calculate repeated rate or Gini index
of homogeneity.

52

-10

-5

-1
1

5

10

Appset1
Appset2

Appset3

E
rr

o
r

G
a
p
 (

%
)

Heavy Hitter
DDoS

Change Detection

Figure 2.11: The impact of a growing portfolio of monitoring applications on the
relative performance

={HH,DDoS}, and AppSet3={HH,DDoS,Change}. We assume that OpenS-

ketch divides the memory uniformly across the constituent applications; i.e.,

in AppSet1 600KB is devoted to HH, but in AppSet2 and Appset3, HH only

gets 300KB and 200KB respectively. Figure 2.11 shows the “error gap” be-

tween UnivMon and OpenSketch (UnivMon − OpenSketch); i.e., positive

values imply UnivMon is worse and vice versa. As expected, we find that

when running concurrent tasks, the error gap decreases as each task gets less

memory in OpenSketch. That is, with more concurrent and supported tasks,

UnivMon can still provide guaranteed results on each of the applications.

Choice of Data Structures: UnivMon uses a a sketching algorithm that iden-

tifies L2 heavy hitters as a building block. Two natural questions arise: (1)

How do different heavy hitter algorithms compare and (2) Can we use other

popular heavy hitter identifiers, such as Count-Min sketch? We implemented

and tested the Pick-and-Drop algorithm [41] and Count-Min sketch [61] as

building blocks for UnivMon. Figure 2.12 shows that Pick-and-Drop and CM

53

0.2

10

100

HH DDoS Change Entropy

E
rr

o
r

R
a

te
(%

)

UnivMon with Different Data Structures (600KB)

Count-Sketch
Pick-and-Drop

Count-Min-Sketch

Figure 2.12: Analyzing different HH data structures

sketch lose the generality of UnivMon as they can provide accurate results only

for HH and Change tasks. This is because, intuitively, only Lp(p = 1 or p ≥ 3)

heavy hitters are identified. The technical analysis of universal sketch shows

that only L2 heavy hitters contribute significantly to the G-Sum when G-Sum

is upper bounded by some L2 norm. As discussed in Section 2.3.3, the G-Sum

functions corresponding to HH and Change are actually L1 norms. Therefore,

the estimated L1 heavy hitters output by Count-Min or Pick-and-Drop work

well for HH and Change tasks, but not Entropy or DDoS. When combining

heavy hitter counters in the recursive step of calculation, we will simply miss

too many significant heavy elements for all tasks.

Processing Overhead: One concern might be the computational cost of

the UnivMon vs. custom sketch primitives. We used the Intel Performance

Counter Monitor [73] to evaluate compute overhead (e.g., Total cycles on

CPU) on UnivMon and OpenSketch’s software simulation libraries. For any

54

0.1

1

ATT-N.A. GEANT BellSouth

E
rr

o
r

R
a
te

 (
%

)

Network Wide Evaluation (600KB per sketch)

Ingress
Greedy-D.&C.

Q.&S.
UnivMon

(a) Error rates of global ice-
berg detection

 0

 500

 1000

 1500

 2000

ATT-N.A. GEANT BellSouth

A
v
e
ra

g
e
 M

e
m

o
ry

(K
B

)

Network Wide Evaluation (600KB per sketch)

Ingress
Greedy-D.&C.

Q.&S.
UnivMon

(b) Average memory consump-
tion

0.1k

1k

2k

ATT-N.A. GEANT BellSouth

T
o
ta

l
re

q
u
e
s
ts

 t
o
 c

o
n
tr

o
lle

r

Network Wide Evaluation (600KB per sketch)

Ingress
Greedy-D.&C.

Q.&S.
UnivMon

(c) Total number of requests to
controller

Figure 2.13: Network-wide evaluation on major ISP backbone topologies

given task, our software implementation was only 15% more expensive than

OpenSketch. When we look at all three applications together, however, the

UnivMon takes only half the compute cycles as used by OpenSketch in total.

While we acknowledge that we cannot directly translate into actual hardware

processing overheads, this suggests that UnivMon’s compute footprint will

be comparable and possibly better.

2.6.3 Network-wide Evaluation

For the network-wide evaluation, we consider different topologies from the

Topology Zoo dataset [74]. As a specific network-wide task, we consider the

problem of estimating source IP and destination IP “icebergs”. We report the

average relative errors across these two tasks.

Benefits of Coordination: Figure 2.13(a), Figure 2.13(b), and Figure 2.13(c)

present the error, average memory consumption, and total controller requests

of four solutions: Ingress Monitoring(IM), Greedy Divide and Conquer(GDC),

Query and Sketch(QS), and our approach(UnivMon). We pick three repre-

sentative topologies: AT&T North America, Geant, and Bell South. We see

55

Topology OD Pairs Dim. Time (s) Total Sketches
Geant2012 1560 4 0.09 68
Bellsouth 2550 4 0.10 60
Dial Telecom 18906 4 2.8 252
Geant2012 1560 8 0.22 136
Bellsouth 2550 8 0.28 120
Dial Telecom 18906 8 12.6 504

Table 2.2: Time to compute sketching manifests using ILP.

that UnivMon provides an even distribution of resources on each node while

providing results with high accuracy. Furthermore, the control overhead is

several orders of magnitude smaller than purely reactive approaches.

ILP solving time: One potential concern is the time to solve the ILP. Table 2.2

shows the time to compute the ILP solution on a Macbook Pro with a 2.5

GHz Intel Core i7 processor using glpsol allowing at most k sketches per

switch, where k is the number of dimensions maintained. We see that the ILP

computation takes at most a few seconds which suggest that updates can be

pushed to switches with reasonable responsiveness as the topology or routing

policy changes.

2.6.4 Summary of Main Findings

Our analysis of UnivMon’s performance shows that:

1. For a single router with 600KB of memory, we observe comparable

median error rate values between UnivMon and OpenSketch, with a

relative error gap ≤ 3.6%. The relative error decreases significantly with

a growing application portfolio.

2. When comparing sensitivity to error and available memory, we observe

56

that UnivMon provides comparable accuracy with OpenSketch with

similar, or smaller memory requirements.

3. The network-wide evaluation shows that UnivMon provides an even

distribution of resources on each node while providing results with high

accuracy.

2.7 Chapter Summary

In contrast to the status quo in flow monitoring that can offer generality or

fidelity but not both simultaneously, UnivMon offers a dramatically different

design point by leveraging recent theoretical advances in universal streaming.

By delaying the binding of data plane primitives to specific (and unforeseen)

monitoring UnivMon provides a truly software-defined monitoring approach

that can fundamentally change network monitoring. We believe that this

“minimality” of the UnivMon design will naturally motivate hardware vendors

to invest time and resources to develop optimized hardware implementations,

in the same way that a minimal data plane was key to get vendor buy-in for

SDN [75].

Our work in this chapter takes UnivMon beyond just a theoretical curios-

ity and demonstrates a viable path toward a switch implementation and a

network-wide monitoring abstraction. We also demonstrate that UnivMon

is already very competitive w.r.t. custom solutions and that the trajectory

(i.e., as the number of measurement tasks grows) is clearly biased in favor of

UnivMon vs. custom solutions.

57

UnivMon already represents a substantial improvement over the status

quo, That said, we identify several avenues for future work to further push

the envelope. First, in terms of the data plane, while the feasibility of mapping

UnivMon to P4 is promising and suggests a natural hardware mapping, we

would like to further demonstrate an actual hardware implementation on

both P4-like and other flow processing platforms. Second, in terms of the

one-big-switch abstraction, we need to extend our coordination and sketching

primitives to capture other classes of network-wide tasks that entail cross-OD-

pair dependencies. Third, while the ILP is quite scalable for many reasonable

sized topologies, we may need other approximation algorithms (e.g., via

randomized rounding) to handle even larger topologies. Fourth, in terms of

the various dimensions of interest to track, we currently maintain independent

sketches; a natural question if we can avoid explicitly creating a sketch per

dimension. Finally, while being application agnostic gives tremendous power,

it might be useful to consider additional tailoring where operators may want

the ability to adjust the granularity of the measurement to dynamically focus

on sub-regions of interest [76].

58

Chapter 3

NitroSketch: Robust Sketch-based
Monitoring in Software Switches

Traffic measurements are at the core of advanced network algorithms such

as traffic engineering, fairness, load balancing, quality of service and intru-

sion detection [77, 78, 79, 80, 81, 82, 83]. While monitoring on dedicated

switching hardware continues to be important, measurement capabilities are

increasingly deployed inside software switches with the transition to virtualized

deployments and “white-box” capabilities (e.g., Open vSwitch [84], Microsoft

Hyper-V [85], Cisco Nexus 1000V [86], and FD.io VPP [87]).

Naturally, we want these measurement capabilities to run at high line rates

and yet have a small resource footprint to avoid constraining the main switch-

ing functions and services that run atop the switch. In this respect, sketching

algorithms are a promising approach for various metrics of interest such as

per-flow frequency estimation [6, 4], Heavy Hitters [88, 9, 89], Hierarchical

Heavy Hitters [90], Distinct flows [26], Frequency moments [91] and Change

detection [26].

59

However, the packet processing performance of sketching algorithms on

software switches is far from ideal [92, 93, 94]. This is not surprising as

sketches are often optimized for (asymptotic) low memory requirement which

is not the key bottleneck in software implementations.

Motivated by this, recent efforts seek to tackle of the performance issues of

sketching algorithms in software, including SketchVisor [94], Hashtable-based

monitoring [92, 93], and Randomized-HHH [90], but these efforts have to

sacrifice the generality or rigor on one or more dimensions; i.e., either make

strong assumptions about the traffic patterns at high load (e.g., SketchVisor

relies on the skew of workload to achieve high accuracy and speedup, and

cannot meet 10G line-rate under min-sized packets), or lose the theoretical

guarantees (e.g., the Hashtable-based approach uses extensive memory to

achieve high accuracy, and fails to achieve 10G line-rate when the workload

is not skewed), or only apply to a specific measurement task (e.g., R-HHH

achieves speedup only on measuring hierarchical heavy hitters).

This chapter is motivated by a simple question: can we rigorously im-

prove the performance of sketches in software switches in general settings;

i.e., (a) without compromising the worst-case theoretical guarantees; (b) with-

out making assumptions about the traffic distributions; and (c) in a way

that benefits a large number of sketching use cases and software platforms?

To this end, we revisit the problem from first principles and systematically

profile sketch implementations to identify the key performance bottlenecks.

Basically, the sketch data structure is a (2D) array of counters. We find that

existing sketches compute multiple hash functions while processing each

60

packet (computational intensive), and exhibit random memory access pattern

(make inefficient use of the cache if it is smaller than the sketch).

Our insight here is to reformulate the sketching problem to be optimized

for software implementations. Specifically, we design sketching algorithms

that require slightly more space and convergence time than the theoretical

lower bounds, but run significantly faster in software. Intuitively, we allow

sketches to process enough packets before fetching statistics from them, and

we call this period “convergence”.

Based on this reformulation, we present NitroSketch, a framework to op-

timize the packet processing speed of sketches. The key idea is that we want

the sketching algorithms to conduct fewer hash computations and counter

updates while maintaining the same accuracy. We achieve this by combining

sketch implementation with a sampling front-end. The front-end reduces the

number of packets processed by a sampling probability of p. However, the

memory increase to get comparable accuracy can be high if we naively use

uniform sampling (section 3.4.2). Instead, we draw geometric samples1 to de-

cide what the next index of a counter update to the sketch would be (and thus

determine how many packets to skip until the next update). We rigorously

prove (section 3.4) that NitroSketch is accurate for a broad family of sketches

that share a common structure as Count-Min Sketch [4] and Count Sketch [6].

We acknowledge that the performance speedups of NitroSketch come with

two caveats. First, it consumes more memory than the original sketches for

1Geometric sampling also reduces the CPU requirement as we do not need to run a
probabilistic computation every time — once a packet is sampled we compute the “index” of
the next sampled packet, and we can avoid processing all intermediary packets.

61

the same error guarantee. Our theoretical analysis shows that for a given

ϵL1 guarantee2 NitroSketch requires double space and for an ϵL2 guarantee,

it increases space by a factor of O(p−1), where p is the sampling rate in the

geometric pre-processing (section 3.4). In practice, this increase is acceptable

in software switches (e.g., <6MB). Second, due to its sampling techniques,

NitroSketch is only accurate after some convergence time (<10s).

We implement a NitroSketch prototype and integrate it with Open vSwitch-

DPDK [84] and FD.io-VPP [87]. We port several canonical sketches—a re-

cently proposed universal sketching framework (UnivMon [26]) and three

application-specific sketches (Count-Min [4], Count Sketch [6], and K-ary

Sketch [8]). We evaluate NitroSketch on OVS-DPDK and VPP using a range

of traces [95, 96, 97] on commodity servers with 40GbE NICs. We show that

sketches based on NitroSketch match the throughput of 40GbE OVS-DPDK,

and have reduced CPU utilization and competitive accuracy after convergence.

Compared to NetFlow/sFlow [2, 3], NitroSketch achieves better accuracy

and uses significantly less memory when evaluated with the same sampling

rate. When compared with SketchVisor [94], NitroSketch runs dramatically

faster (>52Mpps vs. <7Mpps), or uses significantly less CPU to achieve the

same throughput and yields more accurate results after convergence. Our

in-memory benchmark also suggests that NitroSketch can keep up with future

(faster than 40G) virtual switches.

2Here, L1 ≜ ∑ fx and L2 ≜
√

∑ f 2
x refer to the first and second norms of the flow frequency

vector of the packet trace, and ϵ > 0.

62

3.1 Related Work and Motivation

In this section, we briefly survey sketching algorithms and explain why they

are a promising alternative to traditional measurement approaches such as

sampling and accurate measurements. We also show that the performance of

existing sketching algorithms on software switch platforms is far from ideal

and discuss recent efforts to alleviate these bottlenecks and their limitations.

Sketches as a measurement tool. Traditional network measurement tasks

depend on uniformly sampled flows with statistics, e.g., NetFlow [2] and

sFlow [3]. It is expensive to sample the traffic at a high sampling rate due

to memory and computational limitations. However, low sampling rates

cause failures in fine-grained measurement tasks. Sketches allow for memory-

efficient network measurement systems as they reduce the memory usage of

measurement tasks while maintaining guaranteed fidelity. Sketches are tradi-

tionally designed for hardware as high-speed memory on hardware comes at

a premium [98, 99, 100]. Sketching algorithms are backed by rigorous theoreti-

cal proofs on error vs. memory trade-offs, and they make no assumptions on

the workload.

Examples of measurement tasks that are supported by sketching algo-

rithms include: (1) Heavy Hitter Detection to identify flows that consume

more than a threshold α of the total capacity. Here the capacity can be packet-

based (identified by flow keys) or volume-based (counted by byte counts).

Concrete sketches include Count-Min Sketch [4], Space-saving [5], Count

Sketch [6], and UnivMon [26]; (2) Change Detection to identify flows that

63

+1

+1

+1

+1

Pkt

+1
d-hashes

h1…hd

w = 9

d=5

Figure 3.1: Count-Min Sketch Example.

contribute more than a threshold of the total capacity change over two con-

secutive time intervals using reversible k-ary Sketch [8, 9] and UnivMon [26];

(3) Cardinality Estimation to estimate the number of distinct flows in the

traffic [7, 26]; (4) Entropy Estimation to estimate the entropy of different

header distributions (e.g., Lall et al [10]); and (5) Attack Detection to identify

a destination host that receives traffic from more than a threshold number

of source hosts [11]. Instead of using a different sketch for each task, uni-

versal sketching [26] supports a broad spectrum of these tasks, while the

measurement task is given only at query time. Indeed, NitroSketch supports

the above sketches, including UnivMon [26], Count-Min [4], Count Sketch [6],

and K-ary Sketch [8].

To illustrate the main idea of sketches, we can use Count-Min Sketch [4],

where we maintain a d× w matrix of counters, as shown in Figure 3.1. On

its Count procedure, the flow identifier (e.g., 5-tuple information) of each

packet is hashed d times independently into one of the w counters of a row

by {hi : [n]→ [w]}i∈[d] hash functions, and then the corresponding counters

are updated by its packet size. To obtain the size estimate of a given flow, we

return Min, which is the minimum among the d hashed counters of the flow.

Count-Min Sketch guarantees ϵL1-error bound estimates when d = log2 δ−1

64

and w = 2ϵ−1 with 1− δ probability.

Sketch performance in software switches. The goal of conducting measure-

ment tasks on software switches is to support line rate operations with high

fidelity and low resource footprint. The low footprint is critical to ensure that

other concurrent services can make maximal use of available resources, e.g.,

virtual machine instances.

To this end, we evaluate the I/O performance of various software sketches

implemented atop OVS-DPDK (Table 3.1). We configure the memory alloca-

tion of the sketches based on the desired error targets. For Count-Min Sketch,

we set 5 rows of 1000 counters; for UnivMon, its Count Sketch component has

5 rows of 10000 counters. We observe that sketches bring significant compu-

tation overhead to a single thread vanilla OVS-DPDK. Even the purportedly

light-weight Count-Min Sketch [4] is far away from line rate processing. We

see that existing sketches can neither meet 10G line-rate with a single CPU

core under minimal-sized packets nor meet 40G line-rate under common case

workloads (e.g., data center).

Therefore, while sketches optimize towards space efficiency, they incur

significant per-packet computations. This is in conflict on the goal of software

measurement as computation time becomes the bottleneck.

Proposed optimizations. Indeed, parallel efforts were made to address such

bottlenecks. Alipourfard et al., [92, 93] suggest that simple hash tables will

suffice on software switches since normal workloads are quite skewed and

the management of larger L2/L3 cache in modern CPUs keeps improving.

However, as we will see later, a hash table based approach is not robust for

65

Setting Core/Thread Pkt Sizes (Bytes) Thru.(Mpps)

DPDK 1C/1T 64/714 22.93/6.95
OVS-DPDK 1C/1T 64/714 14.76/6.81
with Count-Min 1C/1T 64/714 7.29/6.29
with UnivMon 1C/1T 64/714 0.81/0.79

Table 3.1: I/O comparison on a single core.

two key reasons. First, hash tables consume excessive memory to maintain

100% or high accuracy when the number of flows in the traffic is large. The

access pattern of a hash table highly depends on the skewness of the workload.

In Section 3.2, we show that less-skewed traffic may cause L2/L3 cache misses

and thus prevent line-rate processing. Further, even if we maintain the hash

table entirely in the cache, we can still hardly achieve 10G line-rate using a

single thread due to its per-packet access pattern.

SketchVisor [94] proposes a hybrid solution via a hybrid normal path and a

fast path algorithm. The fast path algorithm is designed to take over the packets

when the sketches in the normal path cannot handle packets at high speed. To

track top k heavy hitters, the fast path, in essence, maintains a hash table of k

entries and each entry has three different counters used for deciding an update

or kick-out operation from the table. Even though this fast path algorithm

runs faster than existing sketches, it still runs significantly slower than hash

tables due to its more expensive per packet operations. The correctness of this

hybrid approach crucially depends on the skewness of traffic, which may not

hold under attacks or anomalous conditions. In terms of accuracy, the fast

path algorithm implies worse error bounds than sketches, and there might be

an issue when it handles the majority of traffic. Furthermore, their evaluation

66

only reports numbers without DPDK and caps out at 1.7Mpps.3

3.2 Bottleneck Analysis

Before we propose any optimization, it is critical to identify what/where the

performance bottlenecks are. Unfortunately, while the efforts above [92, 93,

94] measured the throughput limitations of existing sketches, they do not

provide a systematic understanding of what the fundamental bottlenecks are.

To this end, we tackle this problem from first principles and profile sketch

implementations to identify the bottlenecks that ultimately inform our design

innovations in the next sections. To stress-test the throughput of software

sketch implementations, we use min-sized packets as a “worst case” scenario

since all other real-world situations are less stressful. We have also tried on

CAIDA traces whose average packet size is 717 bytes, and the performance

bottlenecks are structurally similar.

Bottleneck analysis testbed. We set up a testbed with three commodity

servers, each of which has an Intel Xeon E5-2620 v4 processor with 16 cores

(256KB L2 cache per core, and 20MB L3 cache) and 128GB DDR4 memory.

Among the servers, one acts as a switch and the other two as hosts. To alleviate

the bottleneck of packet I/O, each server enables single-thread Data Plane

Development Kit Polling Mode Driver (DPDK-PMD) [101] on each 40G port.

For vanilla DPDK, it does not saturate a single CPU core to transmit pack-

ets, but the bottleneck in the media access control layer of an XL710 network

3This is far from 10G line-rate for 64B packets, and we are unsure of how SketchVisor will
perform when DPDK is enabled.

67

Func/Call Stack Description CPU Time

miniflow_extract retrieve miniflow info 7.808s
i40e_recv_pkts_vec dpdk packet recv 6.188s
__memcmp_sse_4_1 flow entry memory cmp 5.93s
xmit_fixed_burst_vec dpdk packet send 5.836s
emc_loopup Lookup emc table 2.449s
All others other function calls 21.866s
Total OVS-DPDK 50.076s

Table 3.2: CPU hotspots in a OVS-DPDK vswitchd thread.

interface card (NIC) limits the performance (see Intel XL710 Datasheet [102]).

We instrument the system using Intel VTune Amplifier [103] to analyze the

vswitchd process shown in Table 3.2.

Observation 1: In a single thread OVS-DPDK, there is small CPU headroom

for sketching algorithms.

In a one-minute profiling with a 1ms sampling interval, the total CPU time

is 50.076 sec (83.86%). We can claim from the profiling results that miniflow

extraction bottlenecks OVS-DPDK in the exact match cache (EMC) processing

and the packet transmission path in the DPDK PMD thread. For a single

OVS-DPDK vswitchd process, only a small limited portion of CPU can be

used for running sketching algorithms.

Observation 2: Cache residency is crucial for any existing sketches to achieve

high-speed or line-rate due to sketches’ per-packet access pattern.

68

1K 10K 100K 1M 10M 100M
No. of Flows

0

5

10

15

P
ac

ke
t R

at
e

(M
pp

s)

Hashtable
UnivMon (5%)

CountMin (1%)
K-ary Sketch (5%)

Figure 3.2: Packet rate of different data structures using random 64B packets. (Setting:
single thread OVS-DPDK.)

Hash tables can be considered as the simplest “sketch” structure we can

use to preserve the entire traffic’s flow size distribution. Despite their huge

memory usage, they incur fewer computations than sketches, i.e., per packet

access pattern is light-weight with three operations: a hash computation, a

counter update, and a flow key copy. Prior work [92, 93] evaluated simple

hash tables (on Click Router and DPDK) against more complex sketches and

observed superior throughput performance. We evaluate simple hash tables

as the only measurement component integrated with OVS-DPDK.

In Figure 3.2, we evaluate hash tables and sketching algorithms with a

varying number of flows in the network traffic. We implement a packet

generator using a Zipf distribution generator and use the MoonGen [104] API

to emulate the different number of flows in the traffic. For the hash table, the

number of flows equals the number of entries in the table. For other sketches,

we use calculated theoretical amount of memory to meet 1% or 5% error

targets. For instance, UnivMon uses 410KB on 1M flows while Count-Min

69

Memory Usage IPC L2 Hit L3 Hit DRAM (per sec)

0.08 MB 2.62 0.45 1.00 <200
0.8 MB 2.52 0.42 1.00 <100
8 MB 1.32 0.03 1.00 <100
80 MB 0.71 0.00 0.25 8383K

Table 3.3: Cache and DRAM access for simple hash table.

uses 20KB.

When the number of entries that a hash table holds is small, it can nearly

meet the 10G line rate with minimal sized packets (13.1Mpps out of 14.88Mpps).

If the number of flows is small, a tiny hash table can beat other sketches in

terms of processing speed since sketches are far from line rates. However,

with the increasing number of flows, its throughput gradually moves away

from the line speed. We analyzed hash table’s cache residency and report in

Table 3.3. Together with Figure 3.2, we confirm that cache residency is crucial

for existing sketches to achieve line rate.

Observation 3: Even when a sketch fits into the cache, it cannot achieve line-

rate due to its per-packet hash operations, data structure maintenance, and

counter updates.

Taking the recently proposed UnivMon [26] as an example, we profiled

their per packet function-call hotspots. With UnivMon [26], a single sketch

simultaneously collects different types of traffic statistics. At a high level,

UnivMon needs to maintain a set of heavy hitter monitoring modules, which

comprises Ω(log δ−1) (for δ failure probability) hash operations and priority

70

Func/Call Stack Description CPU Time

xxhash32 hash computations 36.79%
heap_find heap operation 11.31%
__memcpy memcpy and counter update 10.91%
univmon_proc pkt copy and cache 9.13%
heapify heap maintenance 5.12%
miniflow_extract retrieve miniflow info 2.91%
recv_pkts_vecs dpdk packet recv 2.73%

Table 3.4: CPU hotspots on UnivMon with OVS-DPDK.

queue updates for each packet. Thus it runs slow in software switches. We

instrument a single thread OVS-DPDK with UnivMon integrated to pinpoint

the significant performance bottlenecks.

From the profiling results in Table 3.4, we can pinpoint a couple of major

performance bottlenecks: multiple calls to the hash function; excessive calls

to locate and update the item in the heap structure of UnivMon. Besides, the

large number of memory copies implies significant overheads. Similarly, for

less complex sketches (e.g., Count Sketch), the performance bottlenecks are

structurally the same.

Summary and key implications. Based on the above analysis, we argue that

several fundamental bottlenecks prevent sketching algorithms from achieving

line rate processing in software. The data structures in the measurement

algorithms with per-packet random access pattern cannot be too large; when

they are sized larger than the L3 cache performance drops. Per-flow data

structures, such as hash tables, fall short of line rate when they are not cache-

resident. Sketches as a memory efficient alternative can be sized to fit the

L3 cache, but they are unable to meet line rate, due to the expensive hash

71

computations and memory accesses per packet.

Based on these observations, we revisit prior work that tried to address

the performance of sketches and understand why they do not adequately

tackle this problem. We see that they are stuck in a fundamental dilemma:

(1) per-flow based structures need to fit into cache to achieve 10G line rate

but they are in practice too large to retain cache residency; (2) sketches can fit

into cache easily but have too complicated access patterns to attain line-rate

speeds. SketchVisor [94] partially addressed the bottlenecks by proposing

an improved Misra-Gries algorithm [88] to simplify the per-packet access

pattern, but this comes at the cost of accuracy, generality, and robustness.

Moreover, even the fast path still requires per-packet hashes and updates and

can suffer under worst-case workloads. As we will see, our work addresses

these fundamental bottlenecks by reformulating the problem to tolerate a

small increase in memory footprint and latency.

3.3 NitroSketch Framework

This section describes the design of our framework. We start by outlining

the key ideas, and then define the NitroSketch algorithm and its variant. We

conclude by explaining how our general approach applies to other sketch

algorithms.

3.3.1 Key Idea

At a high level, answering the following is the driving intuition behind our

design: can we trade-off a small increase in the memory footprint and measurement

72

pkt

Packet batch

Step 1:
Hash each pkt
multiple times.

Step 2:
Update multiple counters

Top
Keys

Step 3:
Query & update
to top keys

+1

+1

+1

+1

+1

(a) Original Sketches (Common Structure)

+1

pkt

Packet batch
(Pre-processing stage)

Geometric Select

(Sketch-updating stage)

Step 1:
Pick a pkt to update
Select row 2.

Step 2:
Hash with the
pkt

Step 3:
Update one counter

Top
Keys

Step 4:
Query and update to top
keys with probability p

(b) With NitroSketch

Figure 3.3: (a) Before using NitroSketch, each packet goes through multiple hash
computations (e.g., O(log δ−1)), update multiple counters, and query and update
to a top-k HH storage (e.g., heap). (b) After applying NitroSketch, only a small
portion of packets (say 5% by geometric sampling) need to go through O(1) hash
computations, update to one row of counters (instead of all rows) and occasionally to
a top-k structure. Therefore, the CPU cost is significantly reduced.

latency for a significant reduction in the CPU footprint, without compromising the

error guarantees (i.e., for arbitrary traffic)?

As we show, this problem reformulation produces significant speedups

even for complicated sketches such as recently proposed UnivMon [26], or

the hardest case of min-sized packets. We observe that many sketches share a

common structure but with different operations on that structure. This allows

us to design a sampling front-end that applies to these sketches, as depicted

in Figure 3.3.

Common structure of sketches. Many sketches, including popular Count

Sketch [6] and Count-Min Sketch [4], are derived from the seminal AMS

sketch [91]. At a high level, they project high dimensional data into a lower

dimensional counter matrix while preserving some of the properties of the

original data with high probability.

These sketches can be conceptually viewed as a counter matrix where

for each stream input we independently update a subset of the counters in

multiple rows, as shown in Figure 3.3(a). The variations between algorithms

73

manifest in different choices of hash operations and counter configurations.

Indeed, even more, general and complex sketches like UnivMon [26] are

composed of multiple instances of such basic sketches. For example, Count

Sketch requires O(log 1
δ) rows of counters and two hash functions per row,

where δ is the failure probability. It updates a single counter in each row,

requiring Ω(log 1
δ) independent hash computations per packet. Further, in

some cases, we also require an additional data structure to list the heavy hitters

which further increases per-packet processing. Count-Min Sketch follows a

very similar structure and differs in the number of counters per row and the

“action” performed on each counter. That is, Count-Sketch increments and

decrements the counters and Count-Min Sketch only increments them.

NitroSketch workflow. NitroSketch uses a two-stage procedure to process

packets: a pre-processing stage and a sketch-updating stage, as shown in Fig-

ure 3.3(b).

• Pre-processing stage: In this stage, packets arrive as batches (e.g., from

DPDK Polling Mode Driver). NitroSketch selects a sample of the packets

and sends them to the sketch-updating stage, while ignoring the remaining

packets. We consider packets in this stage as a geometric distribution, and

only the packets who “succeed” in the geometric trials proceed to update

in the sketch. To this extent, the majority of packets (say 95%) are “skipped”

from sketching operations, and we discuss this stage in Section 3.3.2.

• Sketch-updating stage: Selected packets in the pre-processing stage are

sent to the Sketch-updating stage to update a single counter on a specified

row. This minimizes the processing overheads of selected packets.

74

Convergence time: Intuitively, NitroSketch skips most of the packets and

performs a single counter update to the rest. This approach only works once

the number of processed packets is large enough. The term “convergence

time” refers to the number of packets needed to converge. We provide an

upper bound in Section 3.4 and evaluate it with real workloads in Section 4.5.

3.3.2 NitroSketch Algorithms

We now introduce NitroSketch and explain how it addresses the performance

bottlenecks of existing sketches. We use NitroSketch with Count Sketch (L2

guarantee) as the illustration example. We start by showing that NitroSketch

is better than a Count-Sketch with a single row.

Naively, we could simply use a single row Count-Sketch structure. We

call this suggestion One-Row-Count-Sketch. This reduces the per-packet hash

operations to O(1) but comes with two drawbacks. First, it requires O(ϵ−2δ−1)

space [6], which is exponentially more than the O(ϵ−2 log δ−1) requirement

of Count-Sketch. Second, we are still required to perform a single per-packet

hash computation followed by a random memory access which is not always

feasible. Instead, NitroSketch amortizes the per-packet hash computations to

o(1). Further, it also utilize the cache in an efficient manner as the majority

of operations are counting the number of packets to be ignored until the next

sample.

The NitroSketch Algorithm. We maintain a similar data structure to sketches

(e.g., Count-Min Sketch or Count Sketch), but update and query counters

differently. Rather than updating counters in all rows for every packet, we

75

Algorithm 3 NitroSketch Data-plane

Input: Packet stream D(m, n) = a0, . . . , am−1 ∈ [n][m]

1: Generate pairwise independent hash functions:
2: {hi:[n]→ [w]; gi:[n]→ {−1,+1} or {+1}}i∈[d]
3: r ← (−1), q← 0
4: j← 0 ▷ The next packet to select
5: while j ≤ m do ▷ Continue to process packets
6: FastUpdate()
7: procedure FASTUPDATE
8: r += Geo(p) ▷ Geometric variable
9: j += ⌊r/d⌋ ▷ Skip packets if needed

10: r ← r mod d ▷ The row to update
11: Cr,hr(aj)

+= p−1 · gr(aj)

12: procedure QUERY(x)
13: return mediani∈[d]{Ci,hi(x) · gi(x)}

update each row independently with probability p. To compensate for the

sampling, each counter update changes its value by p−1. When querying a

flow, we calculate the median of its estimations in all rows, same as in the

original Count Sketch. This poses a trade-off — the sketch becomes faster but

requires more space as the probability p decreases.

A straightforward realization of the above algorithm needs to make an

independent coin flip for every row when processing each packet, which

incurs one additional operation per row in the sketch. Instead, we use a

geometric sampling technique to directly calculate how many packets to

ignore before the next sampled packet, and which row to select next. This

is logically equivalent to per-row coin flip and allows us to “skip” multiple

packets by a single uniform variate once a packet is selected.

Specifically, in Algorithm 3, we present this procedure as FASTUPDATE

76

(Lines 7-11). The procedure draws a geometric variable X ∼ Geo(p) to de-

termine how many rows to skip until the next sampled packet. This imple-

mentation requires o(1) hash computations per-packet, a significant speedup

when comparing to hash table and One-Row-Count-Sketch. The evaluation

in section 4.5 shows that NitroSketch reaches the limit of 40G OVS-DPDK

when setting a small sampling probability p≪ d−1 where d is the number of

rows in the sketch (e.g., d = 5 and p = 0.01).

Maintaining Top-k Heavy-Hitters. Similarly to Count Sketch, top-k heavy

hitters are maintained in a heap of size k. In Count Sketch, when a packet

arrives, we need to query its flow counter to check if the minimal item should

be replaced.

Performing this update for each incoming packet requires Ω(d) hash com-

putations. Therefore, we only update the heap with probability p for each

packet. As p = o(d−1), this only adds o(1) hash computations per packet. In

practice, we use a geometric variable and generate one uniform variate for

every query instead of for each packet.

NitroSketch with Delayed Sampling (DS-NitroSketch). NitroSketch only

provides accuracy guarantees after a certain number of packets were pro-

cessed, which poses a challenge to some applications and sketch based mea-

surement methods. Some applications require measurement results to be

available at all time and may not want to wait.

We design a DS-NitroSketch that is always accurate, but only provides an

acceleration once enough packets were processed (converged). Intuitively, DS-

NitroSketch starts as a Count Sketch (in which all rows are updated per packet).

77

Algorithm 4 NitroSketch with Delayed Sampling

Input: Packet stream D(m, n) = a0, . . . , am−1 ∈ [n][m]

1: Generate pairwise independent hash functions:
2: {hi:[n]→ [w]; gi:[n]→ {−1,+1}}i∈[d]
3: converged← 0, r ← (−1), q← 0, j← 0
4: T ← 121(1 + ϵ

√
p)ϵ−4p−2 ▷ Threshold for sampling

5: while j ≤ m do ▷ Continue to process packets
6: if converged then FASTUPDATE()
7: else NORMALUPDATE()
8: procedure NORMALUPDATE
9: j← j + 1

10: for r = 0, . . . , d− 1 do ▷ A Count Sketch update
11: Cr,hr(aj)

+ = gr(aj)

12: if (j mod Q) = 0∧ (mediani∈[d] ∑w
y=1 C2

i,y) > T then
13: converged← 1

It periodically estimates the L2 norm to determine when it can justify switching

to NitroSketch. That way, accuracy guarantee is preserved throughput the

measurement but speedup is only achieved once converged. The pseudocode

of DS-NitroSketch is given in Algorithm 4. Observe that we now update rows

with varying probabilities (initially as 1 and then p), we update the counters

with the inverse sampling probability (initially 1 and then p−1).

Formally, the sum of squared counters in each row i, serves as a (1+ ϵ
√

p)-

multiplicative estimator for the stream’s L2
2 with probability 0.5, and the rows’

median with a probability of 1− δ. We perform this computation once per

Q (e.g., Q = 1000) packets which reduces the overheads and ensures that

sampling starts at most Q packets late. We use the Union Bound to get an

overall error probability of 2δ – with probability ≤ δ we start sampling too

early and with probability ≤ δ the sketch’s error exceeds ϵL2.

78

3.3.3 Interface to Other Sketching Algorithms

While NitroSketch and DS-NitroSketch are introduced with Count Sketch, a

variety of other sketching algorithms can leverage the same key ideas. This

requires setting an error budget and some minor modifications as explained

below:

Error budget ϵ. For every applicable sketch to NitroSketch, the pre-processing

stage is the same and provided by the system. A user can specify an error

target ϵ for some application-specific sketch or a general-purpose sketch, and

NitroSketch will configure the sampling rate in the pre-processing stage and

the number of counters in its sketch structure in the second stage, based on

the analysis in Section 3.4.

Minor modifications to existing sketches. To benefit from NitroSketch’s

acceleration, we make some slight adjustments of the sketches. To be specific,

the pre-processing state is the same for all sketches, but users may need to

modify the sketch-updating stage. For instance, original Count Sketch needs

two sets of log δ−1 (where δ is the failure probability) hash functions and the

logic requires to update counters in all log δ−1 rows of the sketch, as illustrated

in Figure 3.3(a). To adopt NitroSketch (Figure 3.3(b)), we need to change this

logic to update one counter based on the “index” (next row to update) from

the pre-processing stage.

79

3.4 Analysis of NitroSketch

We now show the theoretical guarantees of NitroSketch. We consider two

variants; first, combining the Count-Min Sketch with geometric sampling

for achieving an ϵL1 guarantee, and second using NitroSketch for an ϵL2

approximation. Here, Lk ≜ k
√

Fk = k

√
∑

x∈U
f k
x is the k-th norm of the frequency

vector and U is the set of all possible flows (e.g., all 232 possible source IPs).

Specifically, L1 is simply the number of packets in the measurement. We

note that computing an Lk approximation for k > 2 cannot be done using

polylogarithmic space (in |U |) and is considered infeasible [91].

The following theorem follows from the analysis in [90].

Theorem 3.4.1. Let d ≜ log2 δ−1 and w ≜ 4ϵ−1. For streams in which L1 ≥

c ·
(

ϵ−2p−1
√

log δ−1
)

for a sufficiently large constant c, Count-Min Sketch

in which every packet increases the counter of each row i independently

with probability p satisfies: Pr
[
| f̂x − fx| ≥ ϵL1

]
≤ δ where fx is the actual

frequency of flow x, and f̂x is the value returned by calling Query(x) in

Algorithm 3.

Next, we state Theorem 3.4.2 and Theorem 3.4.3 that establish the correct-

ness of NitroSketch and DS-NitroSketch.

Theorem 3.4.2. Let w = 8ϵ−2p−1, d = O(log δ−1). NitroSketch requires

O(ϵ−2p−1 log δ−1) space, operates in amortized O(1 + dp) time (constant for

p = O(1/d)), and provides the following guarantee: Pr
[⏐⏐⏐ fx − f̂x

⏐⏐⏐ > ϵL2

]
≤ δ

for streams in which L2 ≥ 8ϵ−2p−1.

80

Theorem 3.4.3. Let w = 11ϵ−2p−1 and d = O(log δ−1); DS-NitroSketch pro-

vides an estimator f̂x that satisfies: Pr
[
| f̂x − fx| > ϵL2

]
< 2δ.

3.4.1 Interpretation of Main Theorems

Intuitively, NitroSketch trades space for throughput. For example, it requires

an O(p−1) factor more space for the same accuracy when compared to Count

Sketch.

Compared to One-Row-Count-Sketch, our solution provides faster updates

and has lower space requirements. The improvement in update time comes

from reducing the number of hash computations. While One-Row-Count-

Sketch computes two hashes per packet, NitroSketch only does so for each

sampled row. As the expected number of sampled rows per packet is dp = o(1),

NitroSketch significantly reduces the processing overheads. Space-wise, Ni-

troSketch only requires O(ϵ−2 log δ−1p−1) space compared to the O(ϵ−2δ−1)

memory of One-Row-Count-Sketch and is therefore more cache resident. For

example, we can set p = d−2 = O(log δ−2) to get a space of O(ϵ−2 log δ−3).

Further, One-Row-Count-Sketch makes two hash computations per packet

while NitroSketch just o(1).

Convergence time: For example, the first 10M source IPs of the CAIDA

2016 [95] trace has a second norm of L2 ≈ 1.28 · 106 while 100M packets gives

L2 ≈ 1.03 · 107. This means that if p = 1%, we get guaranteed convergence for

ϵ ≥ 2.5% after 10M packets and ϵ ≥ 0.88% after 100M. In practice, we observe

that the error is lower which suggests that our analysis is just an upper bound

and one can use smaller ϵ values as well. Finally, we note that extending the

81

row sizes further allow faster convergence of the algorithm.

Alternatively, DS-NitroSketch has no convergence time, but does not pro-

vide an acceleration over Count-Sketch before the L2 norm is large enough.

Therefore, DS-NitroSketch can accelerate UnivMon while providing provable

accuracy guarantees throughout the measurement. As UnivMon is comprised

of multiple L2 sketches, those whose L2 is large enough would converge and

act like NitroSketch; the remaining sketches would not converge and would

act like Count-Sketches.

3.4.2 Comparison to Uniform Sampling

A natural question is whether we gain the same performance boost by feed-

ing a sub-sampled stream into a sketch. Indeed, one can expect to achieve

speedup by considering fewer items (and thus, reducing the number of hash

computations and memory accesses). The question is how to combine the two

to get the same error guarantee, and how much to increase the space to make

up for the sampling error.

In Section 3.4.5, we analyze the option of sampling each packet indepen-

dently with probability p and feeding it into Count Sketch. We stress that

the expected number of hash computations, memory accesses and uniform

variable generations is similar to that of NitroSketch with the same param-

eter p (when using geometric sampling). We show that uniform samples

are inferior to NitroSketch. To provide the same L2 guarantee with probabil-

ity 1− δ, the Count Sketch used for processing the uniform sample needs:

82

Ω
(

ϵ−2p−1 log δ−1 + ϵ−2p−1.5m−0.5log1.5 δ−1
)

counters. In contrast, NitroS-

ketch requires only O
(
ϵ−2p−1 log δ−1) counters. Here, m is the number of

packets. This also gives an alternative perspective on the result - given the

same space, the convergence time for uniform sampling is higher and de-

pends on the error probability δ. We also empirically compare our solution

against uniform sampling methods such as sFlow and Netflow; as depicted in

Figure 3.13, our approach outperforms these solutions even if the sample is

thoroughly analyzed and not sketched.

3.4.3 Proof of Theorem 3.4.2

We consider the sequence of packets that was sampled for each of the rows.

That is, let Si ⊆ S be the subset of packets that updated row i (for i ∈ {1, . . . d}).

Further, we denote by fi,x ≜ |{j | (xj ∈ Si) ∧ (xj = x)}| the frequency of x

within Si. That is, fi,x the number of times a packet arrived from flow x and

we updated row i. Let L2 ≜
√

∑
x∈U

f 2
x denote the second norm of the frequency

vector of S and similarly L2,i ≜
√

∑
x∈U

f 2
i,x denote that of Si. Clearly, we have

L2,i ≤ L2 for any row i ∈ {1, . . . , d}.

We proceed with a simple lemma that bounds E
[

L2
2,i

]
as a function of L2

2.

Observe that fi,x ∼ Bin(fx, p) and thus Var[fi,x] = fx p(1− p) and E[fi,x] =

fx p.

Lemma 3.4.4. E
[

L2
2,i

]
≤ 2pL2

2.

83

Proof.

E
[

L2
2,i

]
= ∑

x∈U
E
[

f 2
i,x

]
= ∑

x∈U
Var[fi,x] + (E[fi,x])

2

= ∑
x∈U

fx p(1− p) + (fx p)2 ≤ ∑
x∈U

2p f 2
x = 2pL2

2.

Next, we bound the variance of
(

Ci,hi(x)gi(x)− p−1 fi,x

)
– the noise that

flows other than x add to its counter on the i’th row.

Lemma 3.4.5. Var
[
Ci,hi(x)gi(x)− p−1 fi,x

]
≤ 2p−1L2

2/w.

Proof. First, observe that

Ci,hi(x) = p−1 ∑
x′∈U|hi(x)=hi(x′)

fi,x′gi(x′).

That is, the value of x’s counter, Ci,hi(x), is affected by all x′ ∈ U such that

hi(x) = hi(x′), and the contribution of each such x′ is p−1 fi,x′gi(x′).

Next, notice that since E [gi(x′)] = 0 and as gi is two-way independent,

we have that

E
[
Ci,hi(x) · gi(x)

]
= p−1 ∑

x′∈U :hi(x′)=hi(x)
E
[

fi,x′ · gi(x′) · gi(x)
]

= p−1E[fi,x] = fx.

Now, as hi is pairwise independent, we have that for any x′ ∈ U \ {x}:

84

Pr [hi(x) = hi(x′)] = 1/w. We are now ready to prove the lemma:

Var
[
Ci,hi(x)gi(x)− p−1 fi,x

]
= E

[
(Ci,hi(x)gi(x)− p−1 fi,x)

2
]

= E
[
(Ci,hi(x)gi(x))2 − 2p−1Ci,hi(x)gi(x) fi,x + p−2 f 2

i,x

]

= E

[(
p−1 ∑

x′∈U|hi(x)=hi(x′)
fi,x′gi(x′)gi(x)

)2

− 2p−1

(
p−1 ∑

x′∈U|hi(x)=hi(x′)
fi,x′gi(x′)gi(x) fi,x

)
+ p−2 f 2

i,x

]

= p−2E

[(
∑

x′∈U|hi(x)=hi(x′)
f 2
i,x′

)
− f 2

i,x

]

= p−2E

[
∑

x′∈U\{x}|hi(x)=hi(x′)
f 2
i,x′

]
≤ p−2E[L2

2,i]/w ≤ 2p−1L2
2/w,

where the last inequality is correct per Lemma 3.4.4.

We denote A ≡ Ci,hi(x)gi(x) and B ≡ p−1 fi,x (since Var[fi,x] = fx p(1− p),

we have Var[B] = fx p−1(1− p)). Our goal is to bound the variance of A and

use Chebyshev’s inequality.

Observe that

A− B =

⎛⎝p−1 ∑
x′∈U|hi(x)=hi(x′)

fi,x′gi(x′)gi(x)

⎞⎠− p−1 fi,x

= p−1 ∑
x′∈U\{x}|hi(x)=hi(x′)

fi,x′gi(x′)gi(x)

85

is independent from B, and thus

VAR [A] = VAR [(A− B) + B] = VAR [A− B] + VAR [B]

≤ p−2E[L2
2,i]/w + fx p−1(1− p) ≤ 2p−1L2

2/w + fx p−1.

We denote by f̂x(i) ≜ A = Ci,hi(x)gi(x) the estimation for x’s frequency
provided by the i’th row. Then according to Chebyshev’s inequality:

Pr
[
| f̂x(i)− fx| ≥ ϵL2

]
= Pr

[
|Ci,hi(x)gi(x)−E

[
Ci,hi(x)gi(x)

]
| ≥ ϵL2

]
= Pr [|A−E [A] | ≥ ϵL2]

≤ Pr

⎡⎣|A−E [A] | ≥ σ(A) · ϵL2√
2p−1L2

2/w + fx p−1

⎤⎦

≤ 2p−1L2
2/w + fx p−1

(ϵL2)2 =
2L2

2/w + fx

p(ϵL2)2

=
2/w
pϵ2 +

fx

p(ϵL2)2 ≤
2/w
pϵ2 +

1
pϵ2L2

.

We want a constant probability of the error exceeding ϵL2 in each row, so that

the median of the rows will be correct with probability 1− δ. Therefore, by

demanding L2 ≥ 8p−1ϵ−2 and w ≥ 8p−1ϵ−2 we get that the error probability

is

Pr
[
| f̂x,i − fx| ≥ ϵL2

]
≤ 2/w

pϵ2 +
1

pϵ2L2
≤ 3/8.

As the d = O(log δ−1) rows are independent, the algorithm’s estimate,

86

f̂x = mediani∈{1,...d} f̂x(i), will be correct with a probability of at least 1−

δ using a standard Chernoff bound. Specifically, we have established the

correctness of Theorem 3.4.2.

3.4.4 Analysis of DS-NitroSketch

We now formally analyze the accuracy guarantees of DS-NitroSketch (Al-

gorithm 4). We start with Lemma 3.4.6 that shows that once Algorithm 4

converges (see Line 12), the L2 is large enough to justify sampling with proba-

bility p.

Lemma 3.4.6. If converged = 1 then

Pr
[

L2 ≥ 11ϵ−2p−1
]
≥ 1− δ.

Proof. Since L2 grows monotonically with the number of packets, it is enough

to show that the condition of Line 12 implies the lower bound on the L2 value.

Namely, we assume that

mediani∈[d]
w

∑
y=1

C2
i,y > 121(1 + ϵ

√
p)ϵ−4p−2. (3.4.1)

It is known that given a Count Sketch that is configured for a (ϵ′, δ)-

guarantee, it is possible to compute a (1 + ϵ′)-approximation of the L2 with

probability 1 − δ [91]. Specifically, as throughout the processing of S our

sketch is identical to a Count Sketch (for ϵ′ = ϵ
√

p), we have that:

Pr

[⏐⏐⏐⏐⏐
(

mediani∈[d]
w

∑
y=1

C2
i,y

)
− L2

2

⏐⏐⏐⏐⏐ > ϵ′L2
2

]
≤ δ.

87

Combining this with (3.4.1), the lemma follows.

In DS-NitroSketch, there are d = O(log δ−1) rows, each having w =

11ϵ−2p−1 counters. As long as the sketch has not ’converged’ (see Line 12), it

is indistinguishable to a Count Sketch [6] with a guarantee of ϵ′ ≜ ϵ
√

p. Thus,

given a flow x, if converged = 0 then Algorithm 4 guarantees:

Pr
[
| f̂x − fx| ≤ ϵL′2

]
≤ δ.

As ϵ′ = ϵ
√

p ≤ ϵ the algorithm provides the desired accuracy guarantee prior

to convergence. Henceforth, we assume that converged = 1 and show that the

error is still at most ϵL2.

We denote by u the index of the packet that during its processing the

condition in Line 12 was satisfied and the sketch converged. That is, packets

ai, . . . , au were processed using a NORMALUPDATE, while au+1, . . . , am fol-

lowed a FASTUPDATE. Further, we denote by S ≜ a1, . . . , au the substream

of the first u packets, by S̈ ≜ au+1, . . . , am the remaining substream, and for

a flow x we use fx and f̈x to denote its frequency in S and S̈. Note that the

overall frequent of x is fx = fx + f̈x. Additionally, we denote the number of

times a packet that belongs to a flow x in S̈ was sampled by the i’th row as ¨fx,i.

Similarly to the analysis of NitroSketch, we first analyze the guarantee pro-

vided by a single row. Namely, fix some flow x ∈ U and a row i ∈ {1, . . . , d};

the counter associated with x on this row is Ci,hi(x). Observe that we can

88

express the value of the i’th estimator as:

Ci,hi(x)gi(x) = ∑
y:hi(y)=hi(x)

fygi(x)gi(y) + p−1 · ∑
y:hi(y)=hi(x)

¨fy,igi(x)gi(y).

(3.4.2)

That is, every flow y that is mapped to the same counter as x (i.e., hi(y) = hi(x))

changes the estimation by fygi(x)gi(y) + p−1 ¨fy,igi(x)gi(y) – every packet of

y in S surely adds gi(y) to the counter (Algorithm 3, Line 11), while every

sampled packet in S̈ modifies the counter by p−1gi(y) (Algorithm 4, Line 11).

Next, we denote A ≜ ∑y:hi(y)=hi(x) fygi(x)gi(y) and B ≜ p−1 ·∑y:hi(y)=hi(x)

¨fy,igi(x)gi(y) (i.e., Ci,hi(x)gi(x) = A + B). We note that A and B are indepen-

dent and that E
[
Ci,hi(x)gi(x)

]
= E [A] + E [B] = fx + f̈x = fx. That is, the

resulting estimator for row i is unbiased.

We now turn to bound the variance of the estimator by bounding Var[A−

fx] and Var[B − p−1 ¨fx,i]. First, since Pr [hi(x) = hi(y)] = 1/w for x ̸= y,

observe that:

Var[A− fx] = Var

⎡⎣ ∑
y:hi(y)=hi(x)

fygi(x)gi(y)− fx

⎤⎦

= Var

⎡⎣ ∑
y ̸=x:hi(y)=hi(x)

fygi(x)gi(y)

⎤⎦

= E

⎡⎣ ∑
y ̸=x:hi(y)=hi(x)

fy
2

⎤⎦ ≤ 1/w ∑
y∈U

fy
2
. (3.4.3)

89

Next, let us analyze the variance of B− p−1 ¨fx,i:

Var[B− p−1 ¨fx,i]

= Var

⎡⎣p−1 · ∑
y:hi(y)=hi(x)

¨fy,igi(x)gi(y)− p−1 ¨fx,i

⎤⎦

= Var

⎡⎣p−1 · ∑
y ̸=x:hi(y)=hi(x)

¨fy,igi(x)gi(y)

⎤⎦

= E

⎡⎣p−2 · ∑
y ̸=x:hi(y)=hi(x)

¨fy,i
2

⎤⎦ ≤ p−2/w ·E
[

∑
y∈U

¨fy,i
2
]

. (3.4.4)

Similarly to Lemma 3.4.4, we have that E
[
∑y∈U ¨fy,i

2
]
≤ 2p ∑y∈U f̈y

2, which

allows reduce (3.4.4) to

Var[B− p−1 ¨fx,i] ≤ 2p−1/w · ∑
y∈U

f̈y
2. (3.4.5)

90

Recall that during the processing of S̈, every packet is sampled with proba-

bility p and thus ¨fx,i ∼ Bin(f̈x, p). Putting everything together we get:

Var
[
Ci,hi(x)gi(x)− fx

]
= Var[A + B− fx]

= Var[(A− fx) + (B− f̈x)]

= Var[(A− fx) + (B− p−1 ¨fx,i) + (p−1 ¨fx,i − f̈x)]

= Var[(A− fx)] + Var[(B− p−1 ¨fx,i)] + Var[(p−1 ¨fx,i − f̈x)]

≤ 1/w ∑
y∈U

fy
2
+ 2p−1/w · ∑

y∈U
f̈y

2
+ f̈x p−1

≤
L2

2 ·
(
1 + 2p−1)

w
+ f̈x p−1 ≤

L2
2 ·
(
3p−1 + p−1w/L2

)
w

. (3.4.6)

Here, the last inequality follows as f̈x ≤ fx ≤ L2. We now use Lemma 3.4.6

to get that with a very high probability, L2 > w. Intuitively, this follows from

our convergence criteria (Algorithm 4, Line 12). This means that conditioned

on L2 > w (which happens with probability 1− δ), we have that

Var
[
Ci,hi(x)gi(x)− fx

]
≤

L2
2 ·
(
3p−1 + p−1w/L2

)
w

≤ L2
2 · 4p−1

w
≤ 3L2

2ϵ2/8. (3.4.7)

We now use Chebyshev’s inequality to conclude that the estimator of the

91

i’th row, f̂x(i), satisfies

Pr
[
| f̂x(i)− fx| ≥ ϵL2

]
= Pr

[
|Ci,hi(x)gi(x)− fx| ≥ ϵL2

]

≤
Var

[
Ci,hi(x)gi(x)− fx

]
(ϵL2)2 ≤ 3/8. (3.4.8)

That is, the probability that each row estimates the frequency of x with an

error no larger than L2ϵ is at least 5/8. Finally, standard use of Chernoff’s

inequality shows that d = O(log δ−1) (independent) rows are required for

their median to amplify the probability to 1− δ. Taking the union bound over

the events of sampling too early and having an error in the row’s median,

we have an error probability no larger than 2δ. This concludes the proof of

Theorem 3.4.3.

3.4.5 Analysis of the Comparison with Uniform Sampling

Our sketch updates each row, for every packet, with probability p. An alterna-

tive approach, uniform sampling, would be updating all rows with probability

1/p. We note that the two approaches make the same number of hash compu-

tations in expectation. Here, we claim that our approach is superior to that of

uniform sampling.

Intuitively, our sketch uses the fact that for each row i, with probability

3/4 we have L2,i = O(
√

pL2). This reduction in the second norm allows one

to increase the row width by a factor of p (compared to Count Sketch) to make

up for the extra error introduced by the sampling. We now show that uniform

92

sampling requires asymptotically more space as the second norm of the sam-

pled substream is expected to be Ω
(

L2
√

p log δ−1
)

with probability Ω(δ−1).

Since Count Sketch is known to have an error of Ω
(

L2/
√

w
)

for streams with

a second norm of L2, we get that for an error of ϵL2 one would need to use

more counters per row, or wait longer for the algorithm to converge. That is, a

uniform sampling with the same update rate would require a multiplicative

Ω
(
log δ−1) more space.

To begin, we first discuss a lower bound on the error of Count Sketch. In

Count Sketch, one uses a matrix of w columns and d = O(log δ−1) to get

Pr
[
| f̂x − fx| ≥ L2/

√
w
]
≤ δ. For an ϵL2 guarantee, one then sets w = O(ϵ−2).

We now show that this is asymptotically tight. Namely, we show that there

exists a distribution for which Pr
[
| f̂x − fx| ≥ ϵL2

]
= Ω(δ).

To prove our result, we use the following theorem.

Theorem 3.4.7. ([105, 106]) Let X be a binomial variable such that Var[X] ≥

40000. Then for all t ∈ [0, Var[X]/100], we have

Pr[X ≥ E[X] + t] = Ω
(

e−t2/3 Var[X]
)

We are now ready to show a lower bound on the error of Count Sketch.

Lemma 3.4.8. Let n ≥ m + 1. Consider Count Sketch allocated with d =

O(log δ−1
1) rows and w ≤ m/c′ columns, for a sufficiently large constant4 c′.

There exists c = Θ(1), a stream S ∈ [n][m], and an element x ∈ [n] such that

Pr
[
| f̂x − fx| ≥ c · L2/

√
w
]
≥ δ1.

4In practice, w≪ m, as otherwise we have enough memory for exact counting and would
not need sketches, and this trivially holds.

93

Proof. We denote by c′′ the constant in the Ω(·) of Theorem 3.4.7, and by

z = O(1) the constant such that d = z ln δ−1
1 . Let c′ = max{320000,−8 ln(

1− e−1/2z/c′′
)
} and c =

√
3
4z be two constants. We will show that with

probability of at least e−z, each row has an error of at least c · L2/
√

w. This

would later allow us to conclude that the estimation, which is the median row,

has an error of c · L2/
√

w with probability of at least δ.

Consider the stream in which all elements of [m] arrive once each (and

thus, L2 =
√

m), and consider a query for x ≜ m + 1 (i.e., fx = 0). Fix a row

i, and let Q ≜ {j ∈ [m] | hi(j) = hi(x)} be the elements that affect x’s counter

on the i’th row. Intuitively, we show that the number of items that change

x’s counter (Ci,h(x)) is |Q| = Ω (L2/w) and then give a lower bound on the

resulting value of the counter (given that some of the flows in Q increase

it while others decrease). Observe that |Q| ∼ Bin(m, 1/w). According to

Chernoff’s bound:

Pr [|Q| ≤ m/2w] ≤ e−m/8w ≤ e−c′/8 ≤ 1− e−1/2z/c′′. (3.4.9)

Next, we denote by X ≜ {j ∈ Q | gi(j) = +1} the number of elements from

Q that increased the value of x’s counter. Observe that X ∼ Bin(|Q|, 1/2) is

binomially distributed and that x’s counter satisfies ci,hi(x) = 2X− |Q|. Con-

ditioned on the event |Q| > m/2w (which happens with constant probability

as (3.4.9) shows), we have that Var[X] = |Q|/4 ≥ m/8w = c′/8 ≥ 40000.

According to Theorem 3.4.7, we now have that

Pr [X ≥ E[X] + t | |Q| > m/2w] ≥ c′′e−t2/3 Var[X] (3.4.10)

94

some c′′ > 0 and any t ∈ [0, Var[X]/100]. We will now show that in each row

i, Pr
[
ci,hi(x) ≥ c · L2/

√
w
]
≥ e−1/z, for c =

√
3
4z .

Pr
[
ci,hi(x) ≥ c · L2/

√
w
]
= Pr

[
2X− |Q| ≥ c ·

√
m/w

]
= Pr

[
X ≥ (|Q|+ c ·

√
m/w)/2

]
= Pr

[
X ≥ E[X] + c ·

√
m/4w

]
≥ Pr

[(
X ≥ E[X] + c ·

√
m/4w

)
∧
(
|Q| > m/2w

)]
= Pr

[(
X ≥ E[X] + c ·

√
m/4w

) ⏐⏐⏐ (|Q| > m/2w
)]

Pr
[
|Q| > m/2w

]
≥ Pr

[(
X ≥ E[X] + c ·

√
m/4w

) ⏐⏐⏐ (|Q| > m/2w
)]
· e−1/2z/c′′. (3.4.11)

Setting t ≜ c ·
√

m/4w = O(
√

Var[X]) and using (3.4.10), we get that

Pr
[(

X ≥ E[X] + c ·
√

m/4w
) ⏐⏐⏐ (|Q| > m/2w

)]
≥ c′′e−(c·

√
m/4w)2/3 Var[X] ≥ c′′e−(c·

√
m/4w)2/3(m/8w)

= c′′e−2c2/3 = c′′e−1/2z,

where the last inequality follows from Var[X] = |Q|/4 ≥ m/8w. Plugging

this back into (3.4.11) we get

Pr
[
ci,hi(x) ≥ c · L2/

√
w
]

≥ Pr
[(

X ≥ E[X] + c ·
√

m/4w
) ⏐⏐⏐ (|Q| > m/2w

)]
e−1/2z/c′′

≥ c′′e−1/2ze−1/2z/c′′ = e−1/z.

Thus, we established that in each row i with a probability of at least e−z, x’s

95

counter (and thus, the error) is larger than c · L2/
√

w. Finally, since the rows

are independent, we get that the probability of Count Sketch returning a

wrong estimate is at least

Pr
[

f̂x − fx ≥ c · L2/
√

w
]
≥
(

e−1/z
)d

=
(

e−1/z
)z ln δ−1

1
= δ1.

To proceed, we need some inequalities that allow us to provide a lower

bound on the reduction in L2 of the sub-sampled stream. To that end, we use

the following results:

Theorem 3.4.9. ([107]) Let X ∼ Bin(n, p); for all k such that np ≤ k ≤ n(1−

p):

Pr [X ≥ k] ≥ 1−Φ

(
k− np√
np(1− p)

)
,

where Φ(z) ≜
∫ z
−∞

1√
2π

e−z2/2 is the cumulative distribution function of the

normal distribution.

Theorem 3.4.10. ([108]) For any z > 0:

1−Φ(z) >
z

1 + z2 ϕ(z),

where ϕ(z) ≜ 1√
2π

e−z2/2 is the density function of the normal distribution.

For convenience, we also use the following fact:

Fact 3.4.11. For any z ≥ 2:

z
1 + z2 ϕ(z) =

z
1 + z2

1√
2π

e−z2/2 ≥ e−z2

96

Next, we will provide a lower bound on the reduction in L2 when sub-

sampling a stream with probability p. Once again, we consider the stream S

in which m distinct elements arrived once each (and thus its L2 is
√

m).

Lemma 3.4.12. Let S be a substream of S such that each packet in S appears

in S independently with probability p ≤ 1/2. Denote by LS
2 the L2 of S and by

LS
2 the L2 of S. Then for δ2 ≤ 1/4:

Pr

[
LS

2 ≥
√

mp +
√

mp(1− p) log δ−1
2

]
≥ δ2.

Proof. Denote by J the set of sampled elements; observe that |J| ∼ Bin(m, p)

and that LS
2 =

√
|J|. According to Theorem 3.4.9, Theorem 3.4.10, and

Fact 3.4.11, we have that:

Pr
[
|J| ≥ mp +

√
mp(1− p) log δ−1

2

]
≥ δ2.

Thus, we have that:

Pr

[
LS

2 ≥
√

mp +
√

mp(1− p) log δ−1
2

]

= Pr

[√
|J| ≥

√
mp +

√
mp(1− p) log δ−1

2

]

= Pr
[
|J| ≥ mp +

√
mp(1− p) log δ−1

2

]
≥ δ2.

The above lemma shows that the L2 of the uniformly sub-sampled stream

is larger than

√
mp +

√
mp(1− p) log δ−1

2 with probability ≥ δ2. In contrast,

97

in our sketch every row processes a sub-stream with an L2 of O(F2
√

p) (i.e.,

O(
√

mp) for this stream) with a constant probability, independently from the

other rows. We now show that in some cases (when the desired error prob-

ability is small), the dependence between the rows in the case of uniform

samples requires asymptotically more space than our sketch, for the same

error guarantee. Therefore, we claim that our sketch has clear advantages

over uniform sampling.

Theorem 3.4.13. Let S be a substream of S such that each packet in S ap-

pears in S independently with probability p. There exists a stream S such

that Count Sketch with d = Θ(log δ−1) rows applied on S requires w =

Ω
(

ϵ−2p−1 + ϵ−2p−1.5m−0.5
√

log δ−1
)

counters per row to provide (with prob-

ability 1− δ) an ϵL2 error for S.

Proof. We set δ1 = δ2 =
√

δ (and thus log δ−1
1 , log δ−1

2 = Θ
(
log δ−1)). Accord-

ing to Lemma 3.4.8, we have that there exists c = Θ(1) such that:

Pr
[
| f̂x − fx| ≥ c · LS

2 /
√

w
]
≥ δ1

Next, we use Lemma 3.4.12 to obtain

Pr

[
LS

2 ≥
√

mp +
√

mp(1− p) log δ−1
2

]
≥ δ2.

Since the Count Sketch uses randomization that is independent from the

98

stream sampling, we have that

Pr

[(
LS

2 ≥
√

mp +
√

mp(1− p) log δ−1
2

)

∧
(
| f̂x − fx| ≥ c · LS

2 /
√

w
)]

≥ δ1δ2 = δ. (3.4.12)

Thus, with probability of at least δ, the error of the Count sketch is

Ω

⎛⎝√mp +
√

mp(1− p) log δ−1

w

⎞⎠ .

Next, recall that to estimate the frequencies in the original stream S, one need

to divide the Count Sketch estimate by p. Thus, if we denote the resulting

estimation error by Ex we have that

Pr

⎡⎣Ex = Ω

⎛⎝p−1

√
mp +

√
mp(1− p) log δ−1

w

⎞⎠⎤⎦ ≥ δ.

To provide an ϵL2 = ϵ
√

m guarantee, uniform sampling Count Sketch needs

to set w such that Pr
[
Ex ≥ ϵ

√
m
]
≤ δ. Demanding

p−1

√
mp +

√
mp(1− p) log δ−1

w
= ϵ
√

m

the bound follows.

We therefore conclude that while our sketch requires O(ϵ−2p−1 log δ−1)

counters overall, inserting a uniform sample into Count Sketch, for the same

99

sampling probability p and error guarantee, requires at least

Ω
(

ϵ−2p−1 log δ−1 + ϵ−2p−1.5m−0.5log1.5 δ−1
)

.

3.5 Implementation

We have built a prototype of NitroSketch in C and integrated it with Open

vSwitch (OVS-DPDK) and FD.io/Vector Packet Processing (VPP). We imple-

ment four sketches with NitroSketch: UnivMon [26], Count-Min Sketch [4],

Count Sketch [6], and K-ary Sketch [8]. In our implementation, we focus

on a single-thread measurement daemon for both OVS and VPP. We use the

xHash library’s [109] hash function. When hashing the same flow-key with

different hash seeds, we utilize Intel AVX2 instruction set [110] to parallelize

the hash operations.

At a high level, NitroSketch includes two modules: a data-plane Sketching

module, and a control-plane Estimation module. The Sketching module

maintains the sketch data structure and the Estimation module fetches the

data from the Sketching module. In the next section, we describe the two

different versions of the Sketching module.

3.5.1 Data Plane Module

OVS-DPDK Integration. Since OVS-DPDK enables the packet processing

entirely in user space, the user space vswitchd thread has a three-tier look-up

cache hierarchy. The first-level table works as an Exact Match Cache (EMC)

with fastest look-up speed. If a packet misses in EMC, it goes through the

100

second-level classifier as a Tuple Space Search, and finally it might trigger the

third-level table managed by an OpenFlow-compliant controller. For more

details about the architecture of OVS vswitchd, please refer to the paper [84].

For efficiency, we integrate the sketching module with the OVS-DPDK’s EMC

module in dpif-netdev. We provide implementations for varying performance

requirements:

• All-in-one version. In this version, the Sketching module works as a

sub-module of the EMC module inside an OVS vswitchd/PMD thread.

That is, for each packet batch received from DPDK PMD, NitroSketch

decides which packet is replicated and measured without affecting the

packet batch, as described in Section 3.3.2. This extension incurs small

processing overhead to the EMC module, but there is a dedicated CPU

core to all tasks, such as DPDK, table look-up, and measurement.

• Separate-thread version. In this version, the Sketching module works as

a separate thread besides the OVS vswitchd thread. When a packet batch

arrives, the extended EMC module (pre-processing stage) in vswitchd

decides which packets’ headers to add into a fast lock-free concurrent

FIFO queue (modified from [111]). A separate NitroSketch thread

(sketch-updating stage) fetches the packets’ header fields concurrently

and handles the sketching updates. This implementation has minimal

overheads for the vanilla OVS-DPDK but requires an additional core

for the measurement tasks.

VPP Integration. VPP is a modular, flexible, and extensible platform that

runs entirely on the user-space. VPP is based on a “packet processing graph”,

101

where each node is a module and packets are processed node by node. For

instance, in a simple VPP based L3 vSwitch, VPP first fetches packets from

the network I/O as a batch. VPP then sends the packet batch to the Ethernet-

input module (L2), and then through IP4-input and IP4-lookup modules (L3).

We implemented a measurement module in VPP 18.02 and added it to the

packet processing graph after the VPP IP stack. This module runs both stages

of NitroSketch in a dedicated thread, minimizing the impact on other VPP

plugins.

3.5.2 Control Plane Module

The control plane module (i) periodically (at the end of each epoch) receives

sketching data from the data plane module by a simple RPC protocol through

a 1GbE link connected to the virtual switch; (ii) assigns the sketching data to

the corresponding measurement tasks based on user definitions; (iii) calculates

the estimated results. For instance, it processes the UnivMon [26] sketching

data and calculates HH, Change detection, or traffic Entropy.

3.6 Evaluation

Our evaluation demonstrates that NitroSketch: (a) can meet 10GbE line-rate

with min-sized packets, and match 40GbE on real workloads with a single core;

(b) runs on software switches with small CPU overheads; (c) provides accurate

results once converged; (d) has significantly higher throughput (> 7.6× faster)

and better accuracy once converged when compared to SketchVisor [94], and

(e) is more accurate and requires less memory than NetFlow [2] and sFlow [3].

102

Figure 3.4: Overview of the evaluation testbed.

3.6.1 Methodology

Testbed. We evaluate NitroSketch on a set of 4 commodity servers running

Ubuntu 16.04.03, each of which has an Intel Xeon E5-2620 v4 CPU@3.0Ghz,

128GB DDR4 2400Mhz memory, two Broadcom BCM5720 1GbE NICs, and an

Intel XL710 Ethernet NIC with two 40-Gigabit ports. Our testbed has three

hosts as the data plane (Figure 3.4), which send traffic directly through 10/40G

links. The control is connected through a 1GbE link. Each virtual switch is

configured with two forwarding rules for bidirectional packet forwarding.

Workloads. We use four types of workloads: (a) CAIDA: 10 one-hour public

CAIDA traces from 2015 [58] and 2016 [95] each containing 1 to 1.9 billion

packets; (b) Min-sized: simulated traffic with minimal sized packets for stress

testing; (c) Data center: data center traces UNI1 and UNI2 from [97]; (d) Cyber

attack: DDoS attack traces from [96]. The average packet sizes in the CAIDA,

DDoS attack, data center traces are 714, 272, and 747 bytes respectively.

For optimal switching performance, we modify the MAC addresses of

packets to avoid cache misses on the Exact-Match Cache of OVS-DPDK. We

use MoonGen [104] packet sender/generator to replay traces, and to generate

103

valid random 64B packets.

Sketches and metrics. We evaluate NitroSketch with four existing sketches:

Count-Min Sketch [4], Count-Sketch [6], UnivMon [26], and K-ary Sketch [8].

We use source IP as the flow key.

We consider the following performance metrics:

• Throughput: the traffic volume processed per second as Gigabits per

second (Gbps).

• Packet Rate: the number of packets transmitted per second as Million

packets per second (Mpps). For 64B packets, 10Gbps throughput is

equivalent to 14.88Mpps, and 40Gbps equals to 59.53Mpps.

• CPU Utilization: the percentage of the total CPU time spent on each

module/function, measured by Intel VTune Amplifier 2018 [103].

• Accuracy: the accuracy of three measurement tasks: Heavy Hitter (HH),

Change Detection (Change), and Entropy Estimation (Entropy). For HH

and Change, we set a threshold 0.01% and estimate the relative errors

on the detected flows. We report relative error= |t−treal |
treal

, where treal is the

ground truth of a task and t is the measured value. For each data point,

we run 10 times independently and report the median and the standard

deviation. Also, the recall rate is defined as the ratio of true instances

found.

Parameters. By default, we set a 95% precision guarantee. Note that this is

a theoretical guarantee and NitroSketch achieves higher fidelity in practice.

104

UnivMon CM CS k-ary
(a) 10GbE with CAIDA traces.

0

5

10
Th

ro
ug

hp
ut

 (G
bp

s)
OVS-DPDK(10G)
Original

NitroSketch w/OVS

0

0.5

1

1.6

P
ac

ke
t R

at
e

(M
pp

s)

UnivMon CM CS K-ary
(b) 40GbE with CAIDA traces.

0

20

40

Th
ro

ug
hp

ut
 (G

bp
s)

OVS-DPDK(40G)
Originial

NitroSketch w/OVS

0

2

4

6.5

P
ac

ke
t R

at
e

(M
pp

s)

UnivMon CM CS K-ary
(c) 40GbE with Datacenter traces.

0

20

40

Th
ro

ug
hp

ut
 (G

bp
s)

OVS-DPDK(40G)
Originial

NitroSketch w/OVS

0

2

4

6.7

P
ac

ke
t R

at
e

(M
pp

s)

Figure 3.5: Throughput/Packet rate on OVS-DPDK with the all-in-one version using
CAIDA and data center traces.

For throughput evaluation, we set a p = 0.01 geometric sampling rate for

NitroSketch and allocate the memory based on the precision guarantee. We

evaluate four sketches in NitroSketch. (a) UnivMon: we allocate 2MB, 1MB,

500KB, 250KB for the first HH sketches, and 125KB for the rest of sketches.

(b) Count-Min: we use 20KB memory for 5 rows of 1000 counters. (c) Count

Sketch: we allocate 2MB for 5 rows of 102400 counters. (d) K-ary Sketch: we

utilize 10 rows of 51200 counters.

3.6.2 Throughput

Throughput with all-in-one. We evaluate the throughput of the all-in-one ver-

sion in Figure 3.5 with 1h CAIDA traces and 1h datacenter traces. All original

sketches implemented with OVS-DPDK suffer from significant throughput

degradation. Among the four sketches, UnivMon only achieves 2.9Gbps

and the faster Count-Min only reaches 5.5Gbps. After plugging in NitroS-

ketch, all sketches achieve 10G and 40G line rates under CAIDA and data-

center traces, without adding an extra thread. We observe that inside this

vswitchd thread, DPDK, OVS, and NitroSketch modules “squeeze” all the

potential of a single core.

Throughput with separate-thread. Figure 3.6 shows the throughput of the

105

UnivMon CM CS k-ary
(a) 10GbE with 64B packets.

0

5

10
Th

ro
ug

hp
ut

 (G
bp

s)

VPP(10G)
OVS-DPDK(10G)
Original

NitroSketch w/OVS
NitroSketch w/VPP

0

5

10

15

P
ac

ke
t R

at
e

(M
pp

s)

UnivMon CM CS k-ary
(b) 40GbE with 64B packets.

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s)

HW. Limit(40G)
VPP(40G)
OVS-DPDK(40G)

Original
NitroSketch w/OVS
NitroSketch w/VPP

0

20

40

60

P
ac

ke
t R

at
e

(M
pp

s)

UnivMon CM CS k-ary
(c) 40GbE with Datacenter packets.

0
10
20
30
40

Th
ro

ug
hp

ut
 (G

bp
s)

HW. Limit(40G)
VPP(40G)
OVS-DPDK(40G)

Original
NitroSketch w/OVS
NitroSketch w/VPP

0.0

2.5

5.0

7.5

10.0

P
ac

ke
t R

at
e

(M
pp

s)

Figure 3.6: Throughput/Packet rate on OVS-DPDK and VPP with the separate-thread
version using 64B packets and data center traces. In (a), virtual switches use one CPU
core to switch packets while in (b) and (c) there are two cores.

0 1 2 3
Time (s)

0
10
20
30
40

Th
ro

ug
hp

ut
 (G

bp
s) DS-NitroSketch(Count-Sketch)

DS-NitroSketch(UnivMon)

Figure 3.7: Throughput over time for the delayed sampling approach (DS-
NitroSketch) with two different sketches (Setting: 40GbE with CAIDA traces).

separate-thread version. It is already difficult for virtual switches to achieve

10G line-rate on a single core with 64B packets. For 40G, even vanilla DPDK

does not reach the line rate with 64B packets due to the hardware limitation

in Intel XL710 NIC [102]. This means that OVS-DPDK and VPP cannot reach

this line rate under 64B packet traces.

In Figure 3.6(a), we can see that NitroSketch has a negligible throughput

impact on the performance of virtual switches. That is, it achieves 10G line

rate under any packet workload. As is evident from Figure 3.6(b) and (c),

NitroSketch is not the bottleneck in achieving 40G line rates for 64B packets

and for data center workloads.

106

0 5 10 15
Memory Usage (MB)

 (a)

0

10

20

P
ac

ke
t R

at
e

(M
pp

s)
OVS-DPDK(40G)
Error Target 5%
Error Target 3%

0 1 2 3 4
No. of speedup components applied

 (b)

0

20

40

Th
ro

ug
hp

ut
 (G

bp
s) UnivMon

+AVX2 Hashing
+NitroSketch
+Batched Geometric
+Reduce Heap Update

Figure 3.8: (a) Throughput vs. memory for varying error targets. (b) Throughput
with different NitroSketch components applied: 0: Vanilla UnivMon; 1: add AVX2
paralleled hash; 2: apply also NitroSketch; 3: add pre-batched geometric samples;
4: apply also sampling for heap update. (Setting: one vswitchd thread with 40GbE
NIC.)

Throughput with DS-NitroSketch. To evaluate the convergence time, we

implement DS-NitroSketch with Count-Sketch and UnivMon in OVS-DPDK

with the all-in-one version. In Figure 3.7, we report the measured throughput

every 0.1sec (extra measurement overhead added) under 40GbE. We see that

it needs about 0.6s for Count-Sketch and 0.8s for UnivMon to reach full

throughput.

Throughput vs. Memory. To guarantee an error budget ϵ (for any distri-

bution), the sampling probability p in the pre-processing stage depends on

the amount of allocated memory. To illustrate this trade-off, we set error

guarantees 3% and 5% for UnivMon with NitroSketch. Figure 3.8(a) shows

that NitroSketch copes with 40G OVS-DPDK with an acceptable increase in

memory.

Improvement breakdown. While implementing NitroSketch, we used mul-

tiple optimization techniques. Therefore, we evaluate the gains of each opti-

mization separately for UnivMon with NitroSketch. Figure 3.8(b) confirms

107

UnivMon CM CS k-ary
(a) CPU usage on 10G NIC

0

50

100

C
P

U
 U

sa
ge

 (%
) OVS-DPDK

Sketches
NitroSketch-AIO

UnivMon CM CS k-ary
(b) CPU usage on 40G NIC

0

50

100

C
P

U
 U

sa
ge

 (%
) OVS-DPDK NitroSketch-ST

Figure 3.9: CPU usage of the all-in-one version (NitroSketch-AIO) and the separate-
thread version (NitroSketch-ST)

that the NitroSketch technique offers the most significant speedup.

3.6.3 CPU Utilization

A single DPDK PMD thread is continuously polling packets from NIC. It

“saturates” a core and utilizes 100% CPU reported from a universal process

viewer (e.g., htop). Therefore, we profile the CPU time of each module.

CPU Time in all-in-one. We measure the CPU time in the same setting as

in Figure 3.5. As shown in Figure 3.9(a), when vanilla sketches are running,

the majority of the CPU time is spent on sketching, and the overall switching

performance drops. After applying NitroSketch-AIO, the switch achieves

line-rate while keeping the CPU time of NitroSketch-AIO to < 20%.

CPU Time in separate-thread. Figure 3.9(b) compares the CPU time between

OVS-DPDK and NitroSketch-Separate Thread, in a setting as in Figure 3.6(b).

When the switch is saturated with min-sized packets (∼22Mpps), the cores for

packet switching are running at nearly 100% while NitroSketch is not running

at full-speed and would handle higher packet rates, if the virtual switch could

support it.

108

0%
10%

25% HH (UnivMon)

0%
10%

25% Change (UnivMon)

1M 2M 4M 8M16M 64M 256M 1B
Epoch Size (# of packets)

 (a) Accuacy of NitroSketch with UnivMon

0%
10%

25%R
el

at
iv

e
E

rr
or

Entropy (UnivMon)

0%
10%

25% HH (Count-Min)

0%
10%

25% HH (Count Sketch)

1M 2M 4M 8M16M 64M 256M 1B
Epoch Size (# of packets)

 (b) Accuracy of NitroSketch with sketches.

0%
10%

25%R
el

at
iv

e
E

rr
or

Change (k-ary)

2.5 5.0 7.5 10.0
Sampling Rate (%)

 (c) Guaranteed Convergence Rate

1M

10M

100M

C
on

ve
rg

en
ce

 T
im

e
(p

ac
ke

ts
)

Error Target: 1%
Error Target: 3%
Error Target: 5%

Figure 3.10: (a),(b) Error rates of NitroSketch. (c) Convergence time on CAIDA traces.

3.6.4 Accuracy and Convergence Time

We evaluate the accuracy of HH, Change, and Entropy in NitroSketch with dif-

ferent sized epochs and report in Figure 3.10(a) and (b). NitroSketch achieves

better-than-guaranteed results (< 5% error) after seeing 2-3M packets.

Since NitroSketch uses geometric sampling to select packets, it requires a

convergence time to produce a guaranteed accurate result (analyzed in sec-

tion 3.4). For different error targets on CAIDA traces, we study the trade-off

between geo-sampling rate p and the convergence time (in terms of the num-

ber of packets) and report in Figure 3.10(c). Further, NitroSketch is expected

to converge faster on data center traces due to their expected larger L2 value

establishment.

3.6.5 Comparison with Other Solutions

Comparison with SketchVisor. Since the source code of SketchVisor [94] on

Open vSwitch is not publicly available, we implement its fast-path algorithm

in C and carefully integrate it with UnivMon on OVS-DPDK using the same

FIFO buffer as NitroSketch [111]. The performance of Sketchvisor depends

on how traffic distributes between the fast and the normal paths which is

109

SketchVisor NitroSketch

(a) In-memory test with CAIDA traces

0
10
20
30
40
50
60

P
ac

ke
t R

at
e

(M
pp

s)

Fast-path
(20,50,100%) UnivMon

sFlow NetFlow NitroSketch

 (b) Memory consumption on virtual switches

0

50

100

M
em

or
y

U
sa

ge
 (M

B
)

OVS-
DPDK
VPP
UnivMon

Figure 3.11: (a) In-memory packet rates: SketchVisor vs. NitroSketch. (b) Memory
usage: NetFlow vs. NitroSketch.

unknown. Thus we evaluate the throughput based on in-memory testing with

manually injecting 20%, 50%, 100% of traffic into the fast path. The CAIDA

traces are entirely loaded into DRAM using libpcap [112] to eliminate the

packet I/O between NIC and software switches. We allocate memory for

SketchVisor and NitroSketch to detect top 100 HHs, we use 900 counters for

the fast-path and set 5% error guarantee on UnivMon.

As reported in Figure 3.11(a), the throughput of SketchVisor improves

when the percentage of traffic handled by the fast-path increases. When

the fast-path processes 20% of the traffic, it achieves 2.12Mpps. Sketchvisor

achieves its maximum packet rate of 6.11Mpps when 100% traffic goes into

the fast-path. Meanwhile, NitroSketch runs at a dramatically faster speed

of 53Mpps. Unsurprisingly, this explains the situation that SketchVisor uses

100% CPU (not shown in the figure) while NitroSketch requires less than 50%

(shown in Figure 3.9(b)) when running in a separate thread on OVS-DPDK.

We observe that to cope with the full 10G speed and avoid packet drops, the

fast-path has to handle 100% of the packets. For a fair comparison on OVS, we

prevent drop packet by using a very large buffer. We manually redirect 20%,

50%, and 100% of the packets to the fast-path. Figure 3.12(a), (b) and (c) report

110

4M 16M 64M 256M
CAIDA Epoch (# of Packets)

 (a)

0

5

10
E

rr
or

 R
at

e
(%

) SketchVisor(100%)
SketchVisor(50%)
SketchVisor(20%)
NitroSketch(UnivMon)

4M 16M 64M 256M
DDoS Epoch (# of Packets)

 (b)

0

5

10

E
rr

or
 R

at
e

(%
) SketchVisor(100%)

SketchVisor(50%)
SketchVisor(20%)
NitroSketch (UnivMon)

4M 16M 64M 256M
DC Epoch (# of Packets)

 (c)

0

5

10

E
rr

or
 R

at
e

(%
) SketchVisor(100%)

SketchVisor(50%)
SketchVisor(20%)
NitroSketch (UnivMon)

Figure 3.12: HH errors on SketchVisor and NitroSketch, in CAIDA, DDoS, and data
center traces.

1M 4M 16M 64M 256M
CAIDA Epoch (# of packets)

 (a)

0

50

100

R
ec

al
l R

at
e

(%
) NitroSketch w/0.01

NetFlow w/0.1
NetFlow w/0.02
NetFlow w/0.01

1M 4M 16M 64M 256M
DDoS Epoch (# of packets)

 (b)

0

50

100

R
ec

al
l R

at
e

(%
) NitroSketch w/0.01

NetFlow w/0.1
NetFlow w/0.02
NetFlow w/0.01

1M 4M 16M 64M 256M
DC Epoch (# of packets)

 (c)

0

50

100

R
ec

al
l R

at
e

(%
) NitroSketch w/0.01

NetFlow w/0.1
NetFlow w/0.02
NetFlow w/0.01

Figure 3.13: HH recall rates on NetFlow/sFlow with different sampling rates and
NitroSketch with 0.01, using CAIDA, DDoS, and data center traces.

relative errors on HH in the three traces. We can see that NitroSketch has

larger errors before convergence (< 3.61M packets) but is more accurate than

SketchVisor after convergence. In a 10G OVS-DPDK switch, this stabilization

time can be as little as 0.24 seconds. Here, SketchVisor has degraded accuracy

in the CAIDA and DDoS trace in Figure 3.12(a) and (b) and relatively good

accuracy in the data center trace [97]. In contrast, NitroSketch achieves good

accuracy on all traces.

Comparison with NetFlow/sFlow. On OVS-DPDK and VPP, NetFlow/sFlow

are default monitoring tools. We configure OVS-DPDK to enable sFlow and

VPP to enable NetFlow. We set a polling interval of 10 seconds with sampling

rates of 0.01, 0.02, and 0.1 for NetFlow. For fairness, we configured NitroS-

ketch with a sampling probability of 0.01. On the controller, we collect the

111

sampled packets/reports with Wireshark [113] directly from the port. Fig-

ure 3.11(b) indicates that NetFlow consumes much more memory even with

0.01 sampling rate. In NetFlow (as in Figure 3.13), we observe that the recall

rates of 100 HHs are low in the CAIDA and DDoS traces and are relatively

good in the UNI2 datacenter trace [97]. This is because UNI2 is quite skewed

while CAIDA and DDoS are heavy tailed. In contrast, NitroSketch achieves

high recall rates in all cases.

3.7 Chapter Summary

Sketching is an attractive theoretical construction for monitoring in software

switches. However, its current performance on software switches is far from

ideal to serve as a viable line-rate and low CPU consumption option. By

identifying the key bottlenecks and reformulating the requirements for soft-

ware sketch implementation, we develop NitroSketch based on two popular

software switches. Our results show that NitroSketch can serve as the basis for

fast and efficient realizations of many popular sketches on software switches.

112

Chapter 4

ASAP: Fast, Approximate Graph
Pattern Mining at Scale

The recent past has seen a resurgence in storing and processing massive

amounts of graph-structured data [114, 115]. Algorithms for graph process-

ing can broadly be classified into two categories. The first, graph analysis

algorithms, compute properties of a graph typically using neighborhood in-

formation. Examples of such algorithms include PageRank [116], community

detection [117] and label propagation [118]. The second, graph pattern min-

ing algorithms, discover structural patterns in a graph. Examples of graph

pattern mining algorithms include motif finding [119], frequent sub-graph

mining (FSM) [120] and clique mining [121]. Graph mining algorithms are

used in applications like detecting similarity between graphlets [122] in so-

cial networking and for counting pattern frequencies to do credit card fraud

detection.

Today, a deluge of graph processing frameworks exist, both in academia

and open-source [15, 16, 17, 18, 19, 20, 21, 22, 23, 123, 124, 125, 126, 127, 25].

113

These frameworks typically provide high-level abstractions that make it easy

for developers to implement many graph algorithms. A vast majority of

the existing graph processing frameworks however have focused on graph

analysis algorithms. These frameworks are fast and can scale out to handle

very large graph analysis settings: for instance, GraM [128] can run one

iteration of page rank on a trillion-edge graph in 140 seconds in a cluster.

In contrast, systems that support graph pattern mining fail to scale to even

moderately sized graphs, and are slow, taking several hours to mine simple

patterns [13, 129].

The main reason for the lack of the scalability in pattern mining is the un-

derlying complexity of these algorithms—mining patterns requires complex

computations and storing exponentially large intermediate candidate sets. For

example, a graph with a million vertices may possibly contain 1017 triangles.

While distributed graph-processing solutions are good candidates for process-

ing such massive intermediate data, the need to do expensive joins to create

candidates severely degrades performance. To overcome this, Arabesque [13]

proposes new abstractions for graph mining in distributed settings that can

significantly optimize how intermediate candidates are stored. However, even

with these methods, Arabesque takes over 10 hours to count motifs in a graph

with less than 1 billion edges.

In this chapter, we present ASAP1, a system that enables both fast and

scalable pattern mining. ASAP is motivated by one key observation: in many

1for A Swift Approximate Pattern-miner

114

pattern mining tasks, it is often not necessary to output the exact answer. For in-

stance, in FSM the task is to find the frequency of subgraphs with an end-goal

of ordering them by occurrences. Similarly, motif counting determines the

number of occurrences of a given motif. In these scenarios, it is sufficient

to provide an almost correct answer. Indeed, our conversations with a so-

cial network firm revealed that their application for social graph similarity

uses a count of similar graphlets [122]. Another company’s fraud detection

system similarly counts the frequency of pattern occurrences. In both cases,

an approximate count is good enough. Furthermore, it is not necessary to

materialize all occurrences of a pattern2. Based on these use cases, we build a

system for approximate graph pattern mining.

Approximate analytics is an area that has gathered attention in big data

analytics [130, 131, 132], where the goal is to let the user trade-off accuracy

for much faster results. The basic idea in approximation systems is to execute

the exact algorithm on a small portion of the data, referred to as samples, and

then rely on the statistical properties of these samples to compose partial

results and/or error characteristics. The fundamental assumption underlying

these systems is that there exists a relationship between the input size and

the accuracy of the results which can be inferred. However, this assumption

falls apart when applied to graph pattern mining. In particular, running the

exact algorithm on a sampled graph may not result in a reduction of runtime

or good estimation of error (section 4.1.1).

Instead, in ASAP, we leverage graph approximation theory, which has a

2In fact, it may even be infeasible to output all embeddings of a pattern in a large graph.

115

rich history of proposing approximation algorithms for mining specific pat-

terns such as triangles. ASAP exploits a key idea that approximate pattern

mining can be viewed as equivalent to probabilistically sampling random

instances of the pattern. Using this as a foundation, ASAP extends the state-

of-the-art probabilistic approximation techniques to general patterns in a dis-

tributed setting. This lets ASAP massively parallelize sampling instance and

provide a drastic reduction in run-times while sacrificing a small amount of

accuracy. ASAP captures this technique in a simple API that allows users

to plugin code to detect a single instance of the pattern and then automati-

cally orchestrates computation while adjusting the error bounds based on the

parallelism.

Further, ASAP makes pattern mining practical by supporting predicate

matching and introducing caching techniques. In particular, ASAP allows

mining for patterns where edges in the pattern satisfy a user-specified property.

To further reduce the computation time, ASAP leverages the fact that in several

mining tasks, such as motif finding, it is possible to cache partial patterns that

are building blocks for many other patterns. Finally, an important problem in

any approximation system is allowing users to navigate the tradeoff between

the result accuracy and latency. For this, ASAP presents a novel approach to

build the Error-Latency Profile (ELP) for graph mining: it uses a small sample

of the graph to obtain necessary information and applies Chernoff bound

analysis to estimate the worst-case error profile for the original graph.

These techniques allow ASAP to outperform Arabesque [13], a state-of-

the-art exact pattern mining solution by up to 77× on the LiveJournal graph

116

while incurring less than 5% error. In addition, ASAP can scale to graphs with

billions of edges—for instance, ASAP can count all the 6 patterns in 4-motifs

on the Twitter (1.5B edges) and UK graph (3.7B edges) in 22 and 47 minutes,

respectively, in a 16 machine cluster.

We make the following contributions in this chapter:

• We present ASAP, the first system to our knowledge, that does fast, scalable

approximate graph pattern mining on large graphs. (section 4.2)

• We develop a general API that allows users to mine any graph pattern

and present techniques to automatically distribute executions on a cluster.

(section 4.3)

• We propose techniques that quickly infer the relationship between ap-

proximation error and latency, and show that it is accurate across many

real-world graphs. (section 4.4)

• We show that ASAP handles graphs with billions of edges, a scale that

existing systems failed to reach. (section 4.5)

4.1 Background & Motivation

In this section, we describe recent advancements in graph pattern mining

theory that we leverage.

117

0

1 4

2 3

edge sampling
(p=0.5)

graph

𝑒 "
1
𝑝 = 2e = 1

0

1 4

2 3

triangle
counting

result

(a) Uniform edge sampling

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90
 0

 2

 4

 6

 8

 10

 12

Er
ro

r
(%

)

Sp
ee

du
p

Edges Dropped (%)

Error
Speedup

(b) 3-chains in Twitter graph

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18

Er
ro

r
(%

)

Sp
ee

du
p

Edges Dropped (%)

Error
Speedup

(c) Triangles in UK graph

Figure 4.1: Simply extending approximate processing techniques to graph pattern
mining does not work.

4.1.1 Approximate Pattern Mining

Approximate processing is an approach that has been used with tremendous

success in solving similar problems in both the big data analytics [130, 131] and

databases [133, 134, 135], and thus it is natural to explore similar techniques

for graph pattern mining. However, simply extending existing approaches to

graphs is insufficient.

The common underlying idea in approximate processing systems is to

sample the input that a query or an algorithm works on. Several techniques

for sampling the input exists, for instance, BlinkDB [130] leverages stratified

sampling. To estimate the error, approximation systems rely on the assump-

tion that the sample size relates to the error in the output (e.g., if we sample K

items from the original input, then the error in aggregate queries, such as SUM,

is inversely proportional to
√

K). It is straightforward to envision extending

this approach to graph pattern mining—given a graph and a pattern to mine

in the graph, we first sample the graph, and run the pattern mining algorithm

on the sampled graph.

Figure 4.1(a) depicts the idea as applied to triangle counting. In this

example, the input graph consists of 10 triangles. Using uniform sampling

118

on the edges we obtain a graph with 50% of the edges. We can then apply

triangle counting on this sample to get an answer 1. To scale this number to

the actual graph, we can use several ways. One naive way is to double it,

since we reduced the input by half. To verify the validity of the approach,

we evaluated it on the Twitter graph [136] for finding 3-chains and the UK

webgraph [137] graph for triangle counting. The relation between the sample

size, error and the speedup compared to running on the original graph (
Torig

Tsample
)

is shown in figs. 4.1(b) and 4.1(c) respectively.

These results show the fundamental limitations of the approach. We

see that there is no relation between the size of the graph (sample) and the

error or the speedup. Even very small samples do not provide noticeable

speedups, and conversely, even very large samples end up with significant

errors. We conclude that the existing approximation approach of running

the exact algorithm on one or more samples of the input is incompatible with graph

pattern mining. Thus, in this chapter, we propose a new approach.

4.1.2 Graph Pattern Mining Theory

Graph theory community has spent significant efforts in studying various ap-

proximation techniques for specific patterns. The key idea in these approaches

is to model the edges in the graph as a stream and sample instances of a pattern

from the edge stream. Then the probability of sampling is used to bound the

number of occurrences of the pattern. There has been a large body of theoret-

ical work on various algorithms to sample specific patterns and analysis to

prove their bounds [138, 139, 140, 141, 142, 143, 144].

119

While the intuition of using such sampling to approximate pattern counts

is straightforward, the technical details and the analysis are quite subtle. Since

sampling once results in a large variance in the estimate, multiple rounds are

required to bound the variance. Consider triangle counting as an example.

Naively, one would design an technique that uniformly samples three edges

from the graph without replacement. Since the probability of sampling one

edge is 1/m in a graph of m edges, the probability of sampling three edges is

1/m3. If the sampled three edges form a triangle, we estimate the number of

triangles to be m3 (the expectation); otherwise, the estimation is 0. While such

a sampling technique is unbiased, since m is large in practice, the probability

that the sampling would find a triangle is very low and the variance of the

result is very large. Obtaining an approximated count with high accuracy,

would require a large number of trials, which not only consumes time but also

memory.

Neighborhood sampling [142] is a recently proposed approach that provides

a solution to this problem in the context of a specific graph pattern, triangle

counting. The basic idea is to sample one edge and then gradually add more

edges until the edges form a triangle or it becomes impossible to form the

pattern. This can be analyzed by Bayesian probability [142]. Let’s denote

E as the event that a pattern is formed, E1, E2, . . . , Ek are the events that

edges e1, e2, . . . , ek are sampled and stored. Thus the probability of a pattern

is actually sampled can be calculated as Pr(E) = Pr(E1 ∩ E2 · · · ∩ Ek) =

Pr(E1) × Pr(E2|E1) · · · × Pr(Ek|E1, . . . , Ek−1). Intuitively, compared to the

naive sampling, neighborhood sampling increases the probability that each

120

E0
0

1 4

2 3

estimator
(r=4)

E1

E2

E3

neighborhood
sampling

graph result

1
𝑟
#𝑒%

&'(

%)*

= 10

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

𝑒* = 40

𝑒(= 0

𝑒. = 0

𝑒/ = 0

Figure 4.2: Triangle count by neighborhood sampling

trial would find an instance of the given pattern, and thus requires fewer

estimations to achieve the same accuracy.

4.1.2.1 Example: Triangle Counting

To illustrate neighborhood sampling, we will revisit the triangle counting

example discussed earlier. To sample a triangle from a graph with m edges,

we need three edges:

• First edge l0. Uniformly sample one edge from the graph as l0. The sam-

pling probability Pr(l0) = 1/m.

• Second edge l1. Given that l0 is already sampled, we uniformly sample one

of l0’s adjacent edges (neighbors) from the graph, which we call l1. Note that

neighborhood sampling depends on the ordering of edges in the stream and

l1 appears after l0 here. The sampling probability Pr(l1|l0) = 1/c, where c

is the number l0’s neighbors appearing after l0.

• Third edge l2. Find l2 to finish if edges l2, l1, l0 form a triangle and l2 appears

after l1 in the stream. If such a triangle is sampled, the sampling probability

121

is Pr(l0 ∩ l1 ∩ l2) = Pr(l0)× Pr(l1|l0)× Pr(l2|l0, l1) = 1/mc.

The above technique describes the behaviors of one sampling trial. For

each trial, if it successfully samples a triangle, converting probabilities to

expectation, ei = mc will be the estimate of the triangles in the graph. For a

total of r trials, 1
r ∑r ei is output as the approximate result. Figure 4.2 presents

an example of a graph with five nodes.

4.1.3 Challenges

While the neighborhood sampling algorithm described above has good theo-

retical properties, there are a number of challenges in building a general sys-

tem for large-scale approximate graph mining. First, neighborhood sampling

was proposed in the context of a specific graph pattern (triangle counting).

Therefore, to be of practical use, ASAP needs to generalize neighborhood

sampling to other patterns. Second, neighborhood sampling and its anal-

ysis assume that the graph is stored in a single machine. ASAP focuses

on large-scale, distributed graph processing, and for this it needs to extend

neighborhood sampling to computer clusters. Third, neighborhood sampling

assumes homogeneous vertices and edges. Real-world graphs are property

graphs, and in practice pattern mining queries require predicate matching which

needs the technique to be aware of vertex and edge types and properties.

Finally, as in any approximate processing system, ASAP needs to allow the

end user to trade-off accuracy for latency and hence needs to understand the

relation between run-time and error in a distributed setting.

122

Er
ro

r-
La

te
nc

y
Pr

of
ile

(E
LP

)B
ui

ld
in

g

Apache Spark

Generalized Approximate
Pattern Mining

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

Estimator Count Selection

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

Estimates:{error: <5%, time: 95s}
Estimates:{error: <5%, time: 60s}

…

Graph updates

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph Profiling

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

count: 21453 +/- 14
confidence: 95%,

time: 92s

Embeddings (optional)

1

3

4

6 7

5

2

Figure 4.3: ASAP architecture

4.2 ASAP Overview

In this work, we design ASAP, a system that facilitates fast and scalable

approximate pattern mining. Figure 4.3 shows the overall architecture of

ASAP. We provide a brief overview of the different components, and how

users leverage ASAP to do approximate pattern mining in this section to aid

the reader in following the rest of this chapter.

User interface. ASAP allows the users to tradeoff accuracy for result latency.

Specifically, a user can perform pattern mining tasks using the following two

modes 1 :

• Time budget T. The user specifies a time budget T, and ASAP returns

the most accurate answer within T with a error rate guarantee e and a

configurable confidence level (default of 95%).

• Error budget ϵ. The user gives an error budget ϵ and confidence level, and

123

ASAP returns an answer within ϵ in the shortest time possible.

Before running the algorithm, ASAP first returns to the user its estimates on

the time or error bounds it can achieve 6 . After user approves the estimates,

the algorithm is run and the result presented to the user consists of the count,

confidence level and the actual run time 7 . Users can also optionally ask to

output actual (potentially large number of) embeddings of the pattern found.

Development framework. All pattern mining programs in ASAP are ver-

sions of generalized approximate pattern mining 2 we describe in detail in

section 4.3. ASAP provides a standard library of implementations for several

common patterns such as triangles, cliques and chains. To allow developers to

write program to mine any pattern, ASAP further provides a simple API that

lets them utilize our approximate mining technique (section 4.3.1.2). Using

the API, developers simply need to write a program that finds a single instance

of the pattern they are interested in, which we refer to as estimator in the rest

of this chapter. In a nutshell, our approximate mining approach depends on

running multiple such estimators in parallel.

Error-Latency Profile (ELP). In order to run a user program, ASAP first must

find out how many estimators it needs to run for the given bounds 3 . To do

this, ASAP builds an ELP. If the ELP is available for a graph, it simply queries

the ELP to find the number of estimators 4 . Otherwise, the system builds a

new ELP 5 using a novel technique that is extremely fast and can be done

online. We detail our ELP building technique in section 4.4. Since this phase is

fast, ASAP can also accommodate graph updates; on large changes, we simply

rebuild the ELP.

124

System runtime. Once ASAP determines the number of estimators necessary

to achieve the required error or time bounds, it executes the approximate

mining program using a distributed runtime built on Apache Spark [145, 146].

4.3 Approximate Pattern Mining in ASAP

We now present how ASAP enables large-scale graph pattern mining us-

ing neighborhood sampling as a foundation. We first describe our pro-

gramming abstraction(section 4.3.1) that generalizes neighborhood sampling.

Then, we describe how ASAP handles errors that arise in distributed pro-

cessing(section 4.3.2). Finally, we show how ASAP can handle queries with

predicates on edges or vertices(section 4.3.3).

4.3.1 Extending to General Patterns

To extend the neighborhood sampling technique to general patterns, we lever-

age one simple observation: at a high level, neighborhood sampling can be

viewed as consisting of two phases, sampling phase and closing phase. In the

sampling phase, we select an edge in one of two ways by treating the graph

as an ordered stream of edges: (a) sample an edge randomly; (b) sample an

edge that is adjacent to any previously sampled edges, from the remainder

of the stream. In the closing phase, we wait for one or more specific edges to

complete the pattern.

The probability of sampling a pattern can be computed from these two

phases. The closing phase always has a probability of 1 or 0, depending on

whether it finds the edges it is waiting for. The probability of the sampling

125

1

0

3

2

step 1

1

0

3

2

step 1

step 2

(a) (b)

step 2

step 3

Figure 4.4: Two ways to sample four cliques. (a) Sample two adjacent edges (0, 1)
and (0, 3), sample another adjacent edge (1, 2), and wait for the other three edges. (b)
Sample two disjoint edges (0, 1) and (2, 3), and wait for the other four edges.

phase depends on how the initial pattern is formed and is a choice made by

the developer. For a general graph pattern with multiple nodes, there can be

multiple ways to form the pattern. For example, there are two ways to sample

a four-clique with different probabilities, as shown in Figure 4.4. (i) In the first

case, the sampling phase finds three adjacent edges, and the closing phase

waits for rest three edges to come, in order to form the pattern. The sampling

probability is 1
mc1c2

, where c1 is the number of the first edge’s neighbors and

c2 represents the neighbor count of the first and the second edges. (ii) In the

second case, the sampling phase finds two disjoint edges, and the closing

phase waits for other four edges to form the pattern. The sampling probability

in this case is 1
m2 .

4.3.1.1 Analysis of General Patterns

We now show how neighborhood sampling, when captured using the two

phases, can extend to general patterns.

Definition 4.3.1 (General Pattern). We define a “general pattern” as a set of k

126

connected vertices that form a subgraph in a given graph.

First, let’s consider how an estimator can (possibly) find any general pat-

terns. We show how to sample one general pattern from the graph uniformly

with a certain success probability, taking 2 to 5-node patterns as examples.

Then, we turn to the problem of maintaining r ≤ 1 pattern(s) sampled with re-

placement from the graph. We sample r patterns and a reasonably large r will

yield a count estimate with good accuracy. For the convenience of the analysis,

we define the following notations: input graph G = (V, E) has m edges and

n vertices, and we denote the occurrence of a given pattern in G as f (G). A

pattern p = {ei, ej, . . . } contains a set of ordered edges, i.e., ei arrives before ej

when i < j. When describing the operation of an estimator, c(e) denotes the

number of edges adjacent to e and appearing after e, and ci is c(e1, . . . , ei) for

any i ≥ 1. For a given a pattern p∗ with k∗ vertices, the technique of neighbor-

hood sampling produces p∗ with probability Pr[p = p∗, k = k∗]. The goal of

one estimator is to fix all the vertices that form the pattern, and complete the

pattern if possible.

Lemma 4.3.2. Let p∗ be a k-node pattern in the graph. The probability of

detecting the pattern p = p∗ depends on k and the different ways to sample

using neighborhood sampling technique.

(1) When k = 2, the probability that p = p∗ after processing all edges in the

graph by all possible neighborhood sampling ways is

Pr[p = p∗, k = 2] =
1
m

127

(2) When k = 3, the probability that p = p∗ is

Pr[p = p∗, k = 3] =
1

m · c1

(3) When k = 4, the probability that p = p∗ is

Pr[p = p∗, k = 4] =
1

m2 (Type-I) or
1

m · c1 · c2
(Type-II)

(4) When k = 5, the probability that p = p∗ is

Pr[p = p∗, k = 5] =
1

m2 · c1
(Type-I)

or =
1

m2 · c2
(Type-II.a)

or =
1

m · c1 · c2 · c3
(Type-II.b)

Proof. Since a pattern is connected, the sampling phase is able to reach all

nodes in a sampled pattern. To fix such a pattern, the neighborhood sampling

needs to confirm all the vertices that form the pattern. Once the vertices are

found, the probability of completing such a pattern is fixed.

When k = 2, let p∗ = {e1} be an edge in the graph. Let E1 be the event

that e1 is found by neighborhood sampling. There is only one way to fix

two vertices of the pattern—uniformly sampling an edge from the graph. By

reservoir sampling, we claim that

Pr[p = p∗, k = 2] = Pr[E1] =
1
m

When k = 3, we need to fix one more vertex beyond the case of k = 2. As

128

shown in [142], we need to sample an edge e2 from e1’s neighbors that occur in

the stream after e1. Let E2 be the event that e2 is found. Since Pr[E2|E1] =
1

c(e1)
,

Pr[p = p∗, k = 3] = Pr[E1] · Pr[E2|E1] =
1

m · c(e1)

When k = 4, we require one more step from the case of k = 2 or the case of

k = 3, from extending neighborhood sampling. By extending from the case of

k = 2 (denoted as Type-I), two more vertices are needed to fix a 4-node pattern.

In Type-I, we independently find another edge e∗2 that is not adjacent to the

sampled edge e1. Let E∗2 be the event that e∗2 is found. Since Pr[E∗2 |E1] =
1
m ,

Pr[p = p∗, k = 4] = Pr[p = p∗, k = 2] ∗ Pr[E∗2 |E1]

=
1

m2 (Type-I)

When extending from the case k = 2 (denoted as Type-II), one more vertex

is needed to fix a 4-node pattern. In Type-II, we sample a “neighbor” e3

that comes after e1ande2. Let E3 be the event that e3 is found. Since e3 is

sampled uniformly from the neighbors of e1 and e2 and is appearing after

e1, e2, Pr[E3|E1, E2] =
1

c(e1,e2)
. Thus,

Pr[p = p∗, k = 4] = Pr[p = p∗, k = 3] · Pr[E3|E1, E2]

=
1

m · c(e1) · c(e1, e2)
(Type-II)

When k = 5, we again need one more step from the case k = 3 or the

case k = 4. By extending from k = 3 (denoted as Type-I), we require two

separate vertices to fix a 5-node pattern. In Type-I, we independently sample

129

another edge e∗3 that is not adjacent to e1, e2. Let E∗3 be the event that e∗3 is

found. Pr[E∗3 |E1, E2] =
1
m . Therefore,

Pr[p = p∗, k = 5] = Pr[p = p∗, k = 3] ∗ Pr[E∗3 |E1, E2]

=
1

m2 · c(e1)
(Type-I)

When extending from the case k = 4, we need to consider the two types

separately. By extending Type-I of case k = 4 (denoted as Type-II.a), we

need one more vertex to construct a 5-node pattern and thus we sample a

neighboring edge e4. Let E4 be the event that e4 is found. Since e4 is sampled

from the neighbors of e1, e2,

Pr[p = p∗, k = 5] = Pr[p = p∗, k = 4] ∗ Pr[E4|E1, E∗2]

=
1

m2 · c(e1, e2)
(Type-II.a)

Similarly, by extending Type-II of case k = 4 (denoted as Type-II.b),

Pr[p = p∗, k = 5] =
1

m · c(e1) · c(e1, e2) · c(e1, e2, e3)

Lemma 4.3.3. For pattern p∗ with k∗ nodes, let’s define

t̃ =

{
1

Pr[p=p∗,k=k∗] if p ̸= ∅

0 if p = ∅

Thus, E[t̃] = f (G).

Proof. By Lemma 4.3.2, we know that one estimator samples a particular

pattern p∗ with probability Pr[p = p∗, k = k∗]. Let p(G) be the set of a given

130

pattern in the graph,

E[t̃] = ∑
p∗∈p(G)

t̃(p ̸= ∅) · Pr[p = p∗, k = k∗] = |p(G)| = f (G)

The estimated count is the average of the input of all estimators. Now, we

consider how many estimators are needed to maintain an ϵ error guarantee.

Theorem 4.3.4. Let r ≥ 1, 0 < ϵ ≤ 1, and 0 < δ ≤ 1. There is an O(r)-space

bounded algorithm that return an ϵ-approximation to the count of a k-node

pattern, with probability at least 1− δ. For a certain ϵ, when k = 4, we need

r ≥ C1m2

f (G)
Type-I estimators, or r ≥ C2m∆2

f (G)
Type-II estimators for some constants

C1 and C2, to achieve ϵ-approximation in the worst case; When k = 5, we need

r ≥ C3m2∆
f (G)

Type-I estimators, or r ≥ C4m2∆
f (G)

Type-II.a estimators, or r ≥ C5m∆3

f (G)

Type-II.b estimators, for some constants C3, C4, C5 in the worst case.

Proof. Let’s first consider the case k = 4. Let Xi for i = 1, . . . , r be the output

value of i-th estimator. Let X̄ = 1
r ∑r

i=1 Xi be the average of r estimators.

By Lemma 4.3.3, we know that E[Xi] = f (G) and E[X̄] = f (G). From the

properties of graph G, we have c(e) ≤ ∆ for ∀e ∈ E, where ∆ is the maximum

degree (note that in practice ∆ isn’t a tight bound for the edge neighbor

information). In Type-I, Xi ≤ m2 and we construct random variables Yi =
Xi
m2

such that Yi = [0, 1]. Let Y = ∑r
i=1 Yi and E[Y] = f (G)r

m2 . Thus the probability

that the estimated number of patterns has a more than ϵ relative error off its

131

API Description
sampleVertex: ()→(v, p) Uniformly sample one vertex from the

graph.
SampleEdge: ()→(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex:
(subgraph)→(v, p)

Uniformly sample a vertex that appears after
a sampled subgraph.

ConditionalSampleEdge:
(subgraph)→(e, p)

Uniformly sample an edge that is adjacent
to the given subgraph and comes after the
subgraph in the order.

ConditionalClose: (
subgraph, subgraph)
→boolean

Given a sampled subgraph, check if another
subgraph that appears later in the order can
be formed.

Table 4.1: ASAP’s Approximate Pattern Mining API.

expectation f (G) is Pr[X̄ > (1 + ϵ) f (G)] ≤ δ
2 , which is at most

Pr[
r

∑
i=1

Yi > (1 + ϵ)E[Y]] ≤ e−
ϵ2

2+ϵ E[Y] ≤ e−
ϵ2
3 E[Y] ≤ δ

2

by Chernoff bound. Thus r ≥ 3m2

ϵ2 f (G)
· ln 2

δ . Similarly, this lower bound of r

holds for Pr[X̄ < (1− ϵ) f (G)].

In Type-II, Xi ≤ 6m∆2. Let Yi =
Xi

6m∆2 such that Yi = [0, 1]. Let Y = ∑r
i=1 Yi

and E[Y] = f (G)r
6m∆2 . By Chernoff bound, r ≥ 18m∆2

ϵ2 f (G)
· ln(2

δ). Similarly, when k = 5,

we (theoretically) need 6m2∆
ϵ2 f (G)

· ln(2
δ) Type-I estimators, 12m2∆

ϵ2 f (G)
· ln(2

δ) Type-II.a

estimators, and 24m∆3

ϵ2 f (G)
· ln(2

δ) Type-II.b estimators. Since each estimator stores

O(1) edges, the total memory is O(r).

4.3.1.2 Programming API

ASAP automates the process of computing the probability of finding a pattern,

and derives an expectation from it by providing a simple API that captures two

phases. The API, shown in Table 4.1, consists of the following five functions:

132

• SampleVertex uniformly samples one vertex from the graph. It takes no input,

and outputs v and p, where v is the sampled vertex, and p is the probability

that sampled v, which is the inverse of the number of vertices.

• SampleEdge uniformly samples one edge from the graph. It also takes no

input, and outputs e and p, where e is the sampled edge, and p is the

sampling probability, which is the inverse of the number of edges of the

graph.

• ConditionalSampleVertex conditionally samples one vertex from the graph,

given subgraph as input. It outputs v and p, where v is the sampled vertex

and p is the probability to sample v given that subgraph is already sampled.

• ConditionalSampleEdge(subgraph) conditionally samples one edge adjacent

to subgraph from the graph, given that subgraph is already sampled. It

outputs e and p, where e is the sampled edge and p is the probability to

sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges that appear after the

first subgraph to form the second subgraph. It takes the two subgraphs as

input and outputs yes/no, which is a boolean value indicating whether

the second subgraph can be formed. This function is usually used as the

final step to sample a pattern where all nodes of a possible instance have

been fixed (thereby fixing the edges needed to complete that instance of the

pattern) and the sampling process only awaits the additional edges to form

the pattern.

These five APIs capture the two phases in neighborhood sampling and can

133

SampleThreeNodeChain
(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleFourCliqueType1
(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

Figure 5: Example approximate pattern mining programs written using ASAP API

graph !(#)% &'
()*

'+,

map:%w(=3) workers reduce

subgraph
0

partial'count'c0
(using'r estimators)

subgraph
1

partial'count'c1
(using'r estimators)

subgraph
2

partial'count'c2
(using'r estimators)

Figure 6: Runtime with graph partition.
sampled, the function would return 0 as no cliques would
be found (line 3 and 5). Given e1, e2 and e3, all the
four nodes are fixed. Therefore, the function only needs
to wait for all edges to form a clique (line 8-9). If the
clique is formed, it estimates the number of cliques to be
1/(p1 ·p2 ·p3); otherwise, it returns 0 (line 10). Figure 4(a)
illustrates this sampling procedure (CliqueType1).

4.2 Applying to Distributed Settings
Capturing general graph pattern mining using the simple
two phase API allows ASAP to extend pattern mining
to distributed settings in a seamless fashion. Intuitively,
each execution of the user program can be viewed as
an instance of the sampling process. To scale this up,
ASAP needs to do two things. First, it needs to parallelize
the sampling processes, and second, it needs to combine
the outputs in a meaningful fashion that preserves the
approximation theory.

For parallelizing the pattern mining tasks, ASAP’s
runtime takes the pattern mining program and wraps it into
an estimator3 task. ASAP first partitions the vertices in the
graph across machines and executes many copies of the
estimator task using standard dataflow operations: map
and reduce. In the map phase, ASAP schedules several
copies of the estimator task on each of the machines. Each
estimator task operates on the local subgraph in each
machine and produces an output, which is a partial count.
ASAP’s runtime ensures that each estimator in a machine
sees the graph’s edges and vertices in the same order,
which is important for the sampling process to produce
correct results. Note that although every estimator in

3Since each program is providing an estimate of the final answer.

each partition sees the graph in the same order, there
is no restriction on what the order might be (e.g., there
is no sorting requirement), thus ASAP uses a random
ordering which is fast and requires no pre-processing of
the graph. Once this is completed, ASAP runs a reduce
task to combine the partial counts and obtain the final
answer. This is depicted in fig. 6. This massively parallel
execution is one of the reasons for huge latency reduction
in ASAP. Since the input to the reduce phase is simply
an array of numbers, ASAP’s shu�e is extremely light-
weight, compared to a system that produces exact answers
(and needs to exchange intermediate patterns).
Handling Underestimation. Only summing up the par-
tial counts in the reduce phase underestimates the total
number of instances, because when vertices are parti-
tioned to the workers, the instances that span across the
partitions are not counted. This results in our technique
underestimating the results, and makes the theoretical
bounds in neighborhood sampling invalid. Thus, ASAP
needs to estimate the error incurred due to distributed
execution and incorporate that in the total error analysis.

We use probability theory to do this estimation. We
enforce that the vertices in the graph are uniformly ran-
domly distributed across the machines. ASAP is not
a�ected by the normal shortcomings of random vertex
partitioning [35] as the amount of data communication
is independent of partitioning scheme used. In this case
random vertex partitioning is in fact simple to implement,
and allows us to theoretically analyze the underestimation.

The theoretical proof for handling the underestimation
is outside the scope of this paper. Intuitively, we can
think of the random vertex partitioning into w workers as
uniform vertex coloring from w available colors. Vertices
with the same color are at the same worker and each worker
estimates patterns locally on its monochromatic vertices.
By doing this coloring, the occurrence of a pattern has
been reduced by a factor of 1/ f (w), where f is a function
of the number of workers and the pattern. For instance, a
locally sampled triangle has three monochromatic vertices
and the probability that this happens among all triangles
is 1/w2. Thus by the linearity of expectation, each such
triangle is scaled by f (w) = w2. A rigorous proof on
the maximum possible w with small errors (in practice

Figure 4.5: Example approximate pattern mining programs written using ASAP API.

be used to develop pattern mining algorithms. To illustrate the use of these

APIs, we describe how they can be used to write two representative graph

patterns, shown in Figure 4.5.

Chain. Using our API to write a sampling function for counting three-node

chains is straightforward. It only includes two steps. In the first step, we

use SampleEdge() to uniformly sample one edge from the graph (line 1). In

the second step, given the first sampled edge, we use ConditionalSampleEdge

(subgraph) to find the second edge of the three-node chain, where subgraph is

set to be the first sampled edge (line 2). Finally, if the algorithm cannot find e2

to form a chain with e1 (line 3), it estimates the number of three-node chains

to be 0; otherwise, since the probability to get e1 and e2 is p1 · p2, it estimates

the number of chains to be 1/(p1 · p2).

Four clique. Similarly, we can extend the algorithm of sampling three node

chains to sample four cliques. We first sample a three-node chain (line 1-2).

Then we sample an adjacent edge of this chain to find the fourth node (line

4). Again, during the three steps, if any edges were not sampled, the function

would return 0 as no cliques would be found (line 3 and 5). Given e1, e2 and

e3, all the four nodes are fixed. Therefore, the function only needs to wait

134

graph 𝑓(𝑤)% 𝑐'

()*

'+,

map: w(=3) workers reduce

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Figure 4.6: Runtime with graph partition.

for all edges to form a clique (line 8-9). If the clique is formed, it estimates

the number of cliques to be 1/(p1 · p2 · p3); otherwise, it returns 0 (line 10).

Figure 4.4(a) illustrates this sampling procedure (CliqueType1).

4.3.2 Applying to Distributed Settings

Capturing general graph pattern mining using the simple two phase API

allows ASAP to extend pattern mining to distributed settings in a seamless

fashion. Intuitively, each execution of the user program can be viewed as

an instance of the sampling process. To scale this up, ASAP needs to do

two things. First, it needs to parallelize the sampling processes, and second,

it needs to combine the outputs in a meaningful fashion that preserves the

approximation theory.

For parallelizing the pattern mining tasks, ASAP’s runtime takes the pat-

tern mining program and wraps it into an estimator3. ASAP first partitions

the vertices in the graph across machines and executes many copies of the

3Since each program is providing an estimate of the final answer.

135

estimator using standard dataflow operations: map and reduce. In the map

phase, ASAP schedules several copies of the estimator on each of the ma-

chines. Each estimator operates on the local subgraph in each machine and

produces an output, which is a partial count. ASAP’s runtime ensures that

each estimator in a machine sees the graph’s edges and vertices in the same

order, which is important for the sampling process to produce correct results.

Note that although every estimator in each partition sees the graph in the

same order, there is no restriction on what the order might be (e.g., no sorting

requirement), thus ASAP uses a random ordering which is fast and requires

no pre-processing of the graph. Once this is completed, ASAP runs a reduce

task to combine the partial counts and obtain the final answer. This is depicted

in fig. 4.6. This massively parallel execution is one of the reasons for huge

latency reduction in ASAP. Since the input to the reduce phase is simply an

array of numbers, ASAP’s shuffle is extremely light-weight, compared to a

system that produces exact answers (and needs to exchange intermediate

patterns).

Handling Underestimation. Only summing up the partial counts in the

reduce phase underestimates the total number of instances, because when

vertices are partitioned to the workers, the instances that span across the

partitions are not counted. This results in our technique underestimating the

results, and makes the theoretical bounds in neighborhood sampling invalid.

Thus, ASAP needs to estimate the error incurred due to distributed execution

and incorporate that in the total error analysis.

We use probability theory to do this estimation. We enforce that the vertices

136

in the graph are uniformly randomly distributed across the machines. ASAP

is not affected by the normal shortcomings of random vertex partitioning [16]

as the amount of data communication is independent of partitioning scheme

used. In this case random vertex partitioning is in fact simple to implement,

and allows us to theoretically analyze the underestimation.

The theoretical proof for handling the underestimation is outside the scope

of this chapter. Intuitively, we can think of the random vertex partitioning into

w workers as uniform vertex coloring from w available colors. Vertices with

the same color are at the same worker and each worker estimates patterns

locally on its monochromatic vertices. By doing this coloring, the occurrence of

a pattern has been reduced by a factor of 1/ f (w), where f is a function of the

number of workers and the pattern. For instance, a locally sampled triangle

has three monochromatic vertices and the probability that this happens among

all triangles is 1/w2. Thus by the linearity of expectation, each such triangle

is scaled by f (w) = w2. A rigorous proof on the maximum possible w with

small errors (in practice w can be >> 100), can be shown using concentration

bounds and Hajnal-Szemerédi Theorem [138]. Similarly, each monochromatic

4-clique is scaled by f (w) = w3 and f (w) can be computed for any given

pattern.

4.3.3 Advanced Mining Patterns

Predicate Matching. In property graphs, the edges and vertices contain prop-

erties; and thus many real-world mining queries require that matching pat-

terns satisfy some predicates. For example, a predicate query might ask for the

137

count of all four cliques on the graph where every vertex in the clique is of a

certain type. ASAP supports two types of predicates on the pattern’s vertices

and edges all and atleast-one.

For “all” predicate, queries specify a predicate that is applied to every vertex

or edge. For example, such query may ask for “four cliques where all vertices

have a weight of atleast 10”. To execute such queries, ASAP introduces a

filtering phase where the predicate condition is applied before the execution of

the pattern mining task. This results in a new graph which consists only of

vertices and edges that satisfy the predicate. On this new graph, ASAP runs

the pattern mining algorithm. Thus, the “all” predicate query does not require

any changes to ASAP’s pattern mining algorithm.

The “atleast-one” predicate allows specifying a condition that atleast one

of the vertices or edges in the pattern satisfies. An example of such a query

is “four cliques where atleast one edge has a weight of 10”. To execute such

predicate queries, we modify the execution to take two passes on the edge

list. In the first pass, edges that match the predicate are copied from the

original edge list to a matched edge list. Every entry in the matched list is

a tuple, (edge, pos), where pos is the position in the original list where the

matched edge appears. In the second pass, every estimator picks the first edge

randomly from the matched list. This ensures that the pattern found by the

estimator (if it finds one) satisfies the predicate. For the second edge onwards,

the estimator uses the original list but starts the search from the position at

which the first matched edge was found. This ensures that ASAP’s probability

analysis to estimate the error holds.

138

Motif mining. Another query used in many real-world workloads is to find

all patterns with a certain number of vertices. We define these as motif queries;

for example a 3-motif query will look for two patterns, triangles and 3-chains.

Similarly a 4-motif query looks for six patterns [147]. For motif mining we

notice that several patterns have the same underlying building block. For

example, in 4-motifs, 3-chains are used in many of the constituent patterns. To

improve performance, ASAP saves the sampling phase’s state for the building

block pattern. This state includes (i) the currently sampled edges, (ii) the

probability of sampling at that point, and (iii) the position in the edge list up

to which the estimator has traversed. All the patterns that use this building

block are then executed starting from the saved state. This technique can

significantly speedup the execution of motif mining queries and we evaluate

this in Section 4.5.2.

Refining accuracy. In many mining tasks, it is common for the user to first ask

for a low accuracy answer, followed by a higher accuracy. For example, users

performing exploratory analysis on graph data often would like to iteratively

refine the queries. In such settings, ASAP caches the state of the estimator

from previous runs. For instance, if a query with an error bound of 10%

was executed using 1 million estimators, ASAP saves the output from these

estimators. Later, when the same pattern is being queried, but with an error

bound of 5% that requires 3 million estimators, ASAP only needs to launch 2

million, and can reuse the first 1 million.

139

1

2

3

0.5M 1M 1.5M 2M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph

 0
 5

 10
 15
 20
 25
 30
 35
 40

50k 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph

Figure 4.7: The actual relations between number of estimators and run-time or error
rate.

4.4 Building the Error-Latency Profile (ELP)

A key feature in any approximate processing system is allowing users to

trade-off accuracy for result latency. To do this for graph mining, we need to

understand the relation between running time and error.

In ASAP’s general, distributed graph pattern mining technique described

earlier, the only configurable parameter is the number of estimator processes

used for a mining task. By using r estimators and making r sufficient large,

ASAP is able to get results with bounded errors. Since an estimator takes

computation and memory resource to sample a pattern, picking the number

of estimators r provides a trade-off between result accuracy and resource con-

sumption. In other words, setting a specific number of estimators, Ne, results

in a fixed runtime and an error within a certain bound. As an example, fig. 4.7

depicts the relation between the number of estimators, runtime and error for

triangle counting run on the Twitter graph [136]. To enable the user to traverse

this trade-off, ASAP needs to determine the correct number of estimators

given an error or time budget.

140

Algorithm 5 BuildTimeProfile(T∗)
1: P← ∅ // store points for the profile
2: T ← 0, t← 0, α← α∗ // α∗ can be a reasonable random start
3: while T + t <= T∗ do
4: t← run approximation algorithm with α estimators
5: P.add((α, t))
6: α← 2α
7: T ← T + t

4.4.1 Building Estimator vs. Time Profile

The time complexity of our approximation algorithm is linearly related to the

number of edges in the graph and the number of estimators. Given a graph

and a particular pattern, we find the computation time is dominated by the

number of estimators when the number of estimators is large enough. From

fig. 4.7, we see that the estimator-time curve is close to linear when the number

of estimators is greater than 0.5M. Thus we propose using a linear model to

relate the running time to the number of estimators.

When the number of estimators is small, the computation time is also

affected by other factors and thus the curve is not strictly linear. However, for

these regions, it is not computationally expensive to profile more exhaustively.

Therefore, to build the time profile, we exponentially space our data collection,

gathering more points when the number of estimators is small and fewer

points as the number of estimators grows. We use a profiling budget T∗ to

bound the total time spent on profiling. Algorithm 5 shows the pseudo code.

ASAP starts from using a small number of estimators (α← α∗), and doubles

α each time until the total profiling time exceeds the profiling cost T∗. In

practice, we have found that setting T∗ in the minute granularity gives us

good results.

141

4.4.2 Building Estimator vs. Error Profile

Since error profile is non-linear (fig. 4.7), techniques like extrapolating from a

few data points is not directly applicable. Some recent work has leveraged

sophisticated techniques, such as experiment design [148] or Bayesian opti-

mization [149] for the purpose of building non-linear models in the context

of instance selection in the cloud. However, these techniques also require

the system to compute the error for a given setting for which we need to

know the ground-truth, say, by running the exact algorithm on the graph. Not

only is this infeasible in many cases, it also undermines the usefulness of an

approximation system.

In ASAP, we design a new approach to determine the relationship between

the number of estimators Ne and error ϵ. Our approach is based on two main

insights: first, we observe that for every pattern based on the probability of

sampling, a loose upper bound for the number of estimators required can

be computed using Chernoff bounds. For instance for triangle counting, the

sampling probability is 1/mc where m is the number of edges and c is the

degree of first chosen edge(section 4.1.2.1). This probability bound can be

translated to an estimator of form Ne > K∗m∗∆
ϵ2P (Theorem 3.3 [142]) where

K is a constant, m is the number of edges, ∆ is the maximum degree and

P is the ground truth or the exact number of triangles. At a high level, the

bound is based on the fact that the maximum degree vertex leads to the worst

case scenario where we have the minimum probability of sampling. Similar

bounds exist for 4-cliques and other patterns [142]. These theoretical bounds

provide a relation between the number of estimators (Ne), error bound (ϵ) and

142

ground truth (P) in terms of the graph properties such as m and ∆.

The second insight we use is that for smaller graphs we can get a very close

approximation to the ground truth by using a very large number of estimators.

This is useful in practice as this avoids having to run the exact algorithm to

get a good estimate of the ground truth. Based on these two insights, the steps

we follow are:

(a) We first uniformly sample the graph by edges to reduce it to a size where

we can obtain a nearly 100% accurate result. In our experiments, we find

that 5− 10% of the graph is appropriate according to the size of the graph.

(b) On the sampled graph, we run our algorithm with a large number of

estimators (Ngt) to find P̂s, a value very close to the ground truth for the

sampled graph.

(c) Using P̂s as the ground truth value and the theoretical relationship described

above, we compute the value of other variables on the sampled graph. For

example, in the sampled graph, it is easy to compute ms and ∆s, and then

infer K by running varying number of estimators.

(d) Finally we scale the values ms, ∆s and P̂s to the larger graph to compute Ne.

We note that the scaled P̂ might not be close to P for the larger graph. But

as we use the worst case bound to compute P̂s, the computed value of Ne

offers a good bound in practice for the larger graph.

143

4.4.3 Handling Evolving Graphs

The ELP building process in ASAP is designed to be fast and scalable. Hence,

it is possible to extend our pattern mining technique to evolving graphs by

simply rebuilding the ELP every time the graph is updated. However, in

practice, we don’t need to rebuild the ELP for every update. and that it is

possible to reuse an ELP for a limited number of graph changes. Thus we use

a simple heuristic where are a fixed number of changes, say 10% of edges, we

rebuild the ELP. The general problem of accurately estimating when a profile

is incorrect for approximate processing systems is hard [150] and in the future

we plan to study if we can automatically determine when to rebuild the ELP

by studying changes to the smaller sample graph we use in section 4.4.2.

4.5 Evaluation

We evaluate ASAP using a number of real-world graphs and compare it to

Arabesque, a state-of-the-art distributed graph mining system. Overall, our

evaluations show that:

• Compared to Arabesque, we find ASAP can improve performance by up

to 77× with just 5% loss of accuracy for counting 3-motifs and 4-motifs.

• We find that ASAP can also scale to much larger graphs (up to 3.7B

edges) whereas existing systems fail to complete execution.

• Our techniques to build error profile and time profile (ELP) are highly

accurate across all the graphs while finishing within a few minutes.

144

Graph Nodes Edges Degrees
CiteSeer [129] 3,312 4732 2.8

MiCo [129] 100,000 1,080,298 22
Youtube [151] 1,134,890 2,987,624 8

LiveJournal [151] 3,997,962 34,681,189 17
Twitter [136] 41.7 million 1.47 billion 36

Friendster [152] 65.5 million 1.80 billion 28
UK [137, 153] 105.9 million 3.73 billion 35

Table 4.2: Graph datasets used in evaluating ASAP.

Implementation. We built ASAP on Apache Spark [146], a general purpose

dataflow engine. The implementation uses GraphX [19], the graph processing

library of Spark to load and partition the graph. We do not use any other

functionality from GraphX, and our techniques only use simple dataflow

operators like map and reduce. As such, ASAP can be implemented on any

dataflow engine.

Datasets and Comparisons. Table 4.2 lists the graphs we use in our ex-

periments. We use 4 small and 3 large graphs and compare ASAP against

Arabesque [13] (using its open-source release [154] built on Apache Giraph [155])

on four smaller graphs: CiteSeer [129], Mico [129], Youtube [151], and Live-

Journal [151]. For all other evaluations, we use the large graphs. Our experi-

ments were done on a cluster of 16 Amazon EC2 r4.2xlarge instances, each

with 8 virtual CPUs and 61GiB of memory. While all of these graphs fit in the

main memory of a single server, the intermediate state generated (section 4.1)

during pattern mining makes it challenging to execute them. Arabesque, de-

spite being a highly optimized distributed solution, fails to scale to the larger

graphs in our cluster. We note that Arabesque (or any exact mining system)

needs to enumerate the edges significantly more number of times compared

145

to ASAP which only needs to do it once or twice, depending on the query.

Patterns and Metrics. For evaluating ASAP, we use two types of patterns,

motif s and cliques. For motifs, we consider 3-motifs (consisting of 2 individual

patterns), and 4-motifs (consisting of 6 individual patterns) and for cliques,

we consider 4-cliques. For our experiments, we run 10 trials for each point

and report the median, and error bar in the ELP evaluation.

We do not include the time to load the graph for any of the experiments

for ASAP and Arabesque. We use total runtime as the metric when raw

performance is evaluated. When evaluating ASAP on its ability to provide

errors within the requested bound, we need to know the actual error so that

it can be compared with ASAP’s output. We compute actual error as |t−treal |
treal

,

where treal is the ground truth number of a specific pattern in a given graph.

Since this requires us to know the ground-truth, we use simpler, known

patterns, such as triangles and chains, where the ground-truth can be obtained

from verified sources for such experiments. Note that the actual error is only

used for evaluation purposes. Unless otherwise stated, the ASAP evaluations

were done with an error target of 5% at 95% confidence.

4.5.1 Overall Performance

We first present the overall performance numbers. To do so, we perform

comparisons with Arabesque and evaluate ASAP’s scalability on larger graphs.

We do not include ELP building time in these numbers since it is a one-time

effort for each graph/task and we measure this in section 4.5.3.

Comparison with Arabesque. In this experiment, we compare Arabesque

146

CiteSeer Mico Youtube LiveJ
1

10

10^2

10^3

R
un

ni
ng

 T
im

e
(S

ec
)

1.1
2.8 4.5

11.511.8 15.8 22.5

299.2
ASAP
Arabesque

(a) 3-Motif Counting

CiteSeer Mico Youtube LiveJ
1

10

10^2

10^3

10^4

R
un

ni
ng

 T
im

e
(S

ec
)

7.3
14.9 18.1

41.6
12.1

162 291.4

3161ASAP
Arabesque

(b) 4-Motif Counting

Figure 4.8: ASAP is able to gain up to 77× improvement in performance against
Arabesque. The gains increase with larger graphs and more complex patterns. Y-axis
is in log-scale.

and ASAP on the 4 smaller graphs (Table 4.2). In each of these systems, we

load the graph first, and then warm up the JVM by running a few test patterns.

Then we use each system to perform 3-motif and 4-motif mining, and measure

the time taken to complete the task. In Arabesque, we do not consider the

time to write the output. Similarly, for ASAP we do not output the patterns

embeddings. The results are depicted in figs. 4.8(a) and 4.8(b).

We see that ASAP significantly outperforms Arabesque on all the graphs

on both the patterns, with performance improvements up to 77× with under

5% loss of accuracy. The performance improvements will increase if the user is

able to afford a larger error (e.g., 10%). We also noticed that the performance

gap between Arabesque and ASAP increases with larger graph and/or more

complex patterns. In this experiment, mining the more complex pattern

(4-motif) on the largest graph (LiveJournal) provides the highest gains for

ASAP. This validates our choice of using approximation for large-scale pattern

mining.

4These graph datasets in Arabesque are not publicly available.

147

3-Motif System Graph |V| |E| Runtime

ASAP (5%) 16 x 8 Twitter 42M 1.5B 2.5m
16 x 8 Friendster 66M 1.8B 5.0m
16 x 8 UK 106M 3.7B 5.9m

Arabesque 20x32 Inst4 180M 0.9B 10h45m

4-Motif System Graph |V| |E| Runtime

ASAP (5%) 16 x 8 Twitter 42M 1.5B 22m
16 x 8 UK 106M 3.7B 47m
16 x 8 LiveJ 4M 34M 0.7m

Arabesque 16 x 8 LiveJ 4M 34M 53m
20x32 SN4 5M 199M 6h18m

Table 4.3: Comparing the performance of ASAP and Arabesque on large graphs. The
System column indicates the number of machines used and the number of cores per
machine.

Scalability on Larger Graphs. We repeat the above experiment on the larger

graphs. Since Arabesque fails to execute on these graphs on our cluster, we

also provide performance numbers that were reported by its authors [13] as a

rough comparison. The results are shown in Table 4.3.

When mining for 3-motif, ASAP performs vastly superior on the Twitter,

the Friendster, and the UK graphs. Arabesque’s authors report a run time

of approximately 11 hours on a graph with a similar number of edges. This

translates to a 258× improvement for ASAP. In the case of 4-motifs, ASAP is

easily able to scale to the more complex pattern on larger graphs. In compari-

son, Arabesque is only able to handle a much smaller graph with less than 200

million edges. Even then, it takes over 6 hours to mine all the 4-motif patterns.

These results indicate that ASAP is able to not only outperform state-of-the-art

solutions significantly, but do so in a much smaller cluster. ASAP is able to

effortlessly scale to large graphs.

148

Pattern Baseline ASAP Improv.
Motif Mining 32.2min 22min 32%

Predicate Matching 2.5min 27s 82%
Accuracy Refinement 2.5min 1.5min 40%

Table 4.4: Improvements from techniques in ASAP that handle advanced pattern
mining queries.

4.5.2 Advanced Pattern Mining

We next evaluate the advanced pattern mining capabilities in ASAP described

in section 4.3.3.

Motif mining. We first evaluate the impact of ASAP’s optimization when

handling motif queries for multiple patterns. We use the Twitter graph and

study a 4-motif query that looks for 6 different patterns. In this case ASAP

caches the 3-node chain that is shared by multiple patterns. As shown in

Table 4.4, we see a 32% performance improvement from this.

Predicate Matching. To study how well predicate matching queries work, we

annotate every edge in the Twitter graph with a randomly chosen property.

We then consider a 3-motif query which matches 10% of the edges. With

ASAP’s filtering based technique, the “all” query completes in 27 seconds,

compared to 2.5 minutes when running without pre-filtering.

Accuracy Refinement. We study a scenario where the user first launches

a 3-motif query on the Twitter graph with 10% error guarantee and then

refines the results with another query that has a 5% error bound. We find that

the running time goes from 2.5min to 1.5min (40% improvement) when our

caching technique is enabled.

149

1

2

3

4

0 20K 40K 60K

R
u

n
ti
m

e
 (

m
in

)

No. of Estimators

UK
Friendster

Twitter

(a) Chain Counting

1
2
3
4
5
6
7
8
9

10
11
12

50k 1M 2M 3M 4M 5M

R
u

n
ti
m

e
 (

m
in

)

No. of Estimators

UK
Friendster

Twitter

(b) Triangle Counting

1
5

10
15
20

30

40

50

60

50k 1M 2M 4M 6M 8M 10M

R
u

n
ti
m

e
 (

m
in

)

No. of Estimators

UK
Friendster

Twitter

(c) Clique Counting

Figure 4.9: Runtime vs. number of estimators for Twitter, Friendster, and UK graphs.
The black solid lines are ASAP’s fitted lines.

4.5.3 Effectiveness of ELP Techniques

Here, we evaluate the effectiveness of the ELP building techniques in ASAP,

described in section 4.4.

Time Profile. To evaluate how well our time profiling technique (Section 4.4.1)

works, we run three patterns—3-chains, triangles, and 4-cliques—on the three

large graphs. In each graph, we obtain the time vs. estimator curve by

exhaustively running the mining task with varying number of estimators and

noting the time taken to complete the task. We then use our time profiling

technique which uses a small number of points instead of exhaustive profiling

to obtain ASAP’s estimate. We plot both the curves in Figure 4.9 for each

of the three graphs. In these figures, the colored lines represent the actual

(exhaustively profiled) curve, and the black line shows ASAP’s estimate.

From the figure we can see that the time profile estimated by ASAP very

closely tracks the actual time taken, thereby showing the effectiveness of our

technique.

Error Profile. We repeat the experiment for evaluating ASAP’s error profile

building technique. Here, we exhaustively build the error profile by running a

different number of estimators on each graph, and note the error. Then we use

150

5

10

15

20

25

0 10K 20K 30K 40K 50K 60K 70K 80K

E
rr

o
r

(%
)

Twitter-graph

Actual Error
Profiled worst-case Error

5

10

15

20

25

0 10K 20K 30K 40K 50K 60K 70K 80K

E
rr

o
r

(%
)

Friendster-graph

Actual Error
Profiled worst-case Error

5

10

15

20

25

0 10K 20K 30K 40K 50K 60K 70K 80K

E
rr

o
r

(%
)

UK-graph

Actual Error
Profiled worst-case Error

(a) Chain Counting

5
10

20

30

40

50K 1M 2M 3.3M

E
rr

o
r

(%
)

Twitter-graph

Actual Error
Profiled Worst-case Error

5
10

20

30

40

50K 1M 2M 3.3M

E
rr

o
r

(%
)

Friendster-graph

Actual Error
Profiled Worst-case Error

5
10

20

30

40

50K 1M 2M 3.3M

E
rr

o
r

(%
)

UK-graph

Actual Error
Profiled Worst-case Error

(b) Triangle Counting

5
10

20

30

40

0 1M 2M 4M 6M 8M 10M

E
rr

o
r

(%
)

Twitter-graph

Actual Error
Profiled Worst-case Error

5
10

20

30

40

0 1M 2M 4M 6M 8M 10M

E
rr

o
r

(%
)

Friendster-graph

Actual Error
Profiled Worst-case Error

5
10

20

30

40

0 1M 2M 4M 6M 8M 10M

E
rr

o
r

(%
)

UK-graph

Actual Error
Profiled Worst-case Error

(c) Clique Counting

Figure 4.10: Error vs. number of estimators for Twitter, Friendster, and UK graphs.

ASAP’s technique of using a small portion of the graph to build the profile. We

show both in Figure 4.10. We see that the actual errors are always within the

estimated profile. This means that ASAP is able to guarantee that the answer

it returns is within the requested error bound. We also note that in real-world

graphs, the worst-case bounds are never really reached. In edge cases, where

the number of patterns in the graphs are high like the chains in UK graph,

the overestimation may be large, and one concern might be that we run more

estimators than required. We are working on techniques that can help us

determine a tighter bound for the number of estimators in the future but as

discussed in Section 4.5.1, even with this overestimation we get significant

speedups in practice. This experiment confirms that ASAP’s heuristic of using

a very small portion of the graph and leveraging the Chernoff bound analysis

(Section 4.4.2) is a viable approach.

Error rate Confidence. In Figure 4.11, we evaluate the cumulative distribution

151

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

Error Target (%)

UK Graph

Figure 4.11: CDF of 100 runs with 3% error target.

Graph Task Time Profile Error Profile

3-Chain 5.2m 2.1m
UK-2007-05 3-Motif 6.1m 2.7m

4-Clique 9.5m 4.8m
4-Motif 11.2m 5.9m

Table 4.5: ELP building time for different tasks on UK graph

function (CDF) of 100 independent runs on the UK graph with 3% error target

and 99% confidence. We can see that 100/100 actual results are not worse than

3% error and 74/100 results are within 2% error. Thus the actual results are

even better than the theoretical analysis for 99% confidence.

ELP Building Time. Finally, we evaluate the time taken for building the

profiling curves. For this, we use the UK graph and configure ASAP to use 1%

of the graph to build the error profile. The results are shown in table 4.5 for

different patterns, which shows that the time to build the profiles is relatively

small, even for the largest graph.

152

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 8 12 16

E
rr

o
r

(%
)

No. of Machines

Config-1
Config-2

Figure 4.12: The errors from two cluster scenarios with different number of nodes.
Config-1:strong-scaling to fix the total number of estimators as 2M × 128; Config-2:
weak-scaling to fix the number of estimators per executor as 2M.

4.5.4 Scaling ASAP on a Cluster

ASAP partitions the graph into different subgraphs based on random vertex

partition, and aggregates scaled results in the final reduce phase. In this section

we evaluate how configurations with different numbers of machines impact

the accuracy. In Fig. 4.12, we consider two scenarios: strong-scaling, where

we fix the total number of estimators used for the entire graph, and increase

the number of machines used; and weak-scaling where we fix the number of

estimators used per-machine and thus correspondingly scale the number of

estimators as we add more machines. We run the triangle counting task with

the Twitter graph on different cluster sizes of 4, 8, 12, and 16 machines. From

the figure we see that in the strong-scaling regime, adding more machines has

no impact on the accuracy of ASAP and that we are able to correctly adjust

the accuracy as more graph partitions are created. In the weak-scaling case

we see that the accuracy improves as we increase more machines, which is the

expected behavior when we have more estimators.

153

5-Chain 5-House

Figure 4.13: Two representative (from 21) patterns in 5-Motif.

5-Chain System Graph |V| |E| Runtime

ASAP (5%) 16 x 16 Twitter 42M 1.5B 9.2m
16 x 16 UK 106M 3.7B 17.3m

ASAP (10%) 16 x 16 Twitter 42M 1.5B 3.2m
16 x 16 UK 106M 3.7B 6.5m

5-House System Graph |V| |E| Runtime

ASAP (5%) 16 x 16 Twitter 42M 1.5B 12.3m
16 x 16 UK 106M 3.7B 22.1m

ASAP (10%) 16 x 16 Twitter 42M 1.5B 5.6m
16 x 16 UK 106M 3.7B 14.2m

Table 4.6: Approximating 5-Motif patterns in ASAP.

4.5.5 More Complex Patterns

Finally, we evaluate the generality of ASAP’s techniques by applying to mine

5-motifs, consisting of 21 individual patterns. This choice was influenced by

our conversations with industry partners, who use similar patterns in their

production systems. Due to the complexity of the patterns, we used a larger

cluster for this experiment, consisting of 16 machines, each with 16 cores and

128GB memory. Due to space constraints, and also because of the absence of

a comparison, we only provide ASAP’s performance on two representative

patterns (Figure 4.13) in Table 4.6. As we see, ASAP is able to handle complex

patterns on large graphs easily.

154

4.6 Related Work

A large number of systems have been proposed in the literature for graph

processing [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Of these, some [15, 17, 18]

are single machine systems, while the rest supports distributed processing.

By using careful and optimized operations, these systems can process huge

graphs, in the order of a trillion edges. However, these systems have focused

their attention mainly on graph analysis, and do not support efficient graph

pattern mining. Some systems implement specific versions of simple pattern

mining (e.g., triangle count). They do not support general pattern mining.

Similar to graph processing systems, a number of graph mining systems

have also been proposed. Here too, the proposals contain a mix of centralized

systems and distributed systems. These proposals can be classified into two

categories. The first category focuses on mining patterns in an input consist-

ing of multiple small graphs. This problem is significantly easier, since the

system only finds one instance of the pattern in the graph, and is trivially

incorporated in ASAP. Since this approach can be massively parallelized,

several distributed systems exist that focus specifically on this problem. The

state-of-the-art in distributed, general purpose pattern mining systems is

Arabesque [13]. While it supports efficient pattern mining, the system still

requires a significant amount of time to process even moderately sized graphs.

A few distributed systems have focused on providing approximate pattern

mining. However, these systems focus on a specific algorithm, and hence are

not general-purpose.

In distributed data processing, approximate analysis systems [130, 131,

155

132] have recently gained popularity due to the time requirements in process-

ing large datasets. Following the approximate query processing theory in the

database community, these systems focus on reducing the amount of data

used in the analysis process in the hope that the analysis time is also reduced.

However, as we show in this work, applying the exact algorithm on a sampled

graph does not yield desired results. In addition, doing so complicates, or

even makes it infeasible to provide good time or error guarantees.

Theory community has invested a significant amount of time in analyz-

ing and proposing approximate graph algorithms for several graph analysis

tasks [156, 157, 158, 159, 160, 161]. None of these are aimed at distributed

processing, nor do they propose ways to understand the performance profile

of the algorithms when deployed in the real world. We leverage this rich

theoretical foundation in our work by extending these algorithms to mine

general patterns in a distributed setting. We further devise a strategy to build

accurate profiles to make the approach practical.

4.7 Chapter Summary

We present ASAP, a distributed, sampling-based approximate computation

engine for graph pattern mining. ASAP leverages graph approximation theory

and extends it to general patterns in a distributed setting. It further employs a

novel ELP building technique to allow users to trade-off accuracy for result

latency. Our evaluation shows that not only does ASAP outperform state-of-

the-art exact solutions by more than a magnitude, but it also scales to large

graphs while being low on resource demands.

156

Chapter 5

Streaming Algorithms for Halo
Finders

The goal of astrophysics is to explain the observed properties of the universe

we live in. In cosmology in particular, one tries to understand how matter

is distributed on the largest scales we can observe. In this effort, advanced

computer simulations play an ever more important role. Simulations are

currently the only way to accurately understand the nonlinear processes

that produce cosmic structures such as galaxies and patterns of galaxies.

Hence a large amount of effort is spent on running simulations modelling

representative parts of the universe in ever greater detail. A necessary step in

the analysis of such simulations involves locating mass concentrations, called

“haloes”, where galaxies would be expected to form. This step is crucial to

connect theory to observations – galaxies are the most observable objects that

trace the large-scale structure, but their precise spatial distribution is only

established through these simulations.

Many algorithms have been developed to find these haloes in simulations.

157

The algorithms vary widely, even conceptually. There is no absolutely agreed-

upon physical definition of a halo, although all algorithms give density peaks,

i.e. clusters of particles. Galaxies are thought to form at these concentrations of

matter. Some codes find regions inside an effective high-density contour, such

as Friends-of-Friends (FoF) [162]. In FoF, particles closer to each other than a

specified linking length are gathered together into haloes. Other algorithms

directly incorporate velocity information as well. Another approach finds

particles that have crossed each other as compared to the initial conditions,

which also ends up giving density peaks [163]. FoF is often considered to be a

standard approach, if only because it was among the first used, and is simple

conceptually. The drawbacks of FoF include that the simple density estimate

can artificially link physically separate haloes together, and the arbitrariness

of the linking length. A halo-finding comparison project [164] evaluated

the results of 17 different halo-finding algorithms; further analysis appeared

in [29]. We take the FoF algorithm as a fiducial result for comparison, but

compare to results from some other finders, as well.

Halo-finding algorithms are generally computationally intensive, often

requiring all particle positions and velocities to be loaded in memory simul-

taneously. In fact most are executed during the execution of the simulation

itself, requiring comparable computational resources. However, in order to

understand the systematic errors in such algorithms, it is often necessary to

run multiple halo-finders, often well after the original simulation has been

run. Also, many of the newest simulations have several hundred billion to a

trillion particles, with a very large memory footprint, making such posterior

158

computations quite difficult. Here, we investigate a way to apply streaming al-

gorithms as halo finders, and compare the results to those of other algorithms

participating in the Halo-Finding Comparison Project.

Recently, streaming algorithms [59] have become a popular way to process

massive data sets. In the streaming model, the input is given as a sequence of

items and the algorithm is allowed to make a single or constant number of

passes over the input data while using sub-linear, usually poly-logarithmic

space compared to the storage of the data. Streaming algorithms have found

many applications in networking ([165, 10, 36]), machine learning ([166, 167]),

financial analytics ([168, 169, 170]) and databases ([171, 172]).

In this chapter, we apply streaming algorithms to the area of cosmolog-

ical simulations and provide space and time efficient solutions to the halo

finding problem. In particular, we show a relation between the problem of

finding haloes in the simulation data and the well-known problem of finding

“heavy hitters” in the streaming data. This connection allows us to employ

efficient heavy hitter algorithms, such as Count-Sketch [6] and Pick-and-Drop

Sampling [41]. By equating heavy hitters to haloes, we are implicitly defin-

ing haloes as positions exceeding some high density threshold. In our case,

these usually turn out to be density peaks, but only because of the very spiky

nature of the particle distributions in cosmology. Conceptually, FoF haloes

are also regions enclosed by high density contours, but in practice, the FoF

implementation is very different from ours.

159

5.1 Streaming Algorithm

In this section, we investigate the application of streaming algorithms to

find haloes using a strong relation between the halo-finding problem and

the heavy hitter problem, which we discuss in section 5.1.1.4. Heavy hitter

algorithms find the k densest regions, that may physically correspond to

haloes. In our implementation, we carefully choose k to get the desired

outcome. This parameter k is as also discussed in section 5.1.1.4. We first

present in the next sub-section the formal definition of streaming algorithms

and the connection between heavy hitter problem and halo-finding problem.

After that, we presents the basic procedures of the two heavy hitter algorithms:

Count-Sketch and Pick-and-drop Sampling.

5.1.1 Streaming Data Model

5.1.1.1 Definitions

A data stream D = D(n, m) is an ordered sequence of objects p1, p2, . . . , pn,

where pj = 1 . . . m. The elements of the stream can represent any digital

object: integers, real numbers of fixed precisions, edges of a large graphs,

messages, images, web pages, etc. In the practical applications both n and

m may be very large, and we are interested in the algorithms with o(n + m)

space. A streaming algorithm is an algorithm that can make a single pass over

the input stream. The above constraints imply that a streaming algorithm is

often a randomized algorithm that provides approximate answers with high

probability. In practice, these approximate answers often suffice.

160

We investigate the results of cosmological simulations where the number

of particles will soon reach 1012. Compared to offline algorithms that require

the input to be entirely in memory, streaming algorithms provide a way to

process the data using only megabytes memory instead of gigabytes or ter-

abytes in practice.

5.1.1.2 Heavy Hitter

For each element i, its frequency fi is the number of its occurrences in D.

The kth frequency moment of a data stream D is defined as Fk(D) = ∑m
i=1 f k

i .

We say that an element is “heavy” if it appears more times than a constant

fraction of some Lp norm of the stream, where Lp = (∑i f p
i)

1/p for p > 1. In

this chapter, we consider the following heavy hitter problem.

Problem 2 . Given a stream D of n elements, the ϵ-approximate (ϕ, Lp)-heavy

hitter problem is to find a set of elements T:

• ∀i ∈ [m], fi > ϕLp =⇒ i ∈ T.

• ∀i ∈ [m], fi < (ϕ− ϵ)Lp =⇒ i ̸∈ T.

We allow the heavy hitter algorithms to use randomness; the requirement

is that the correct answer should be returned with high probability. The heavy

hitter problem is equivalent to the problem of approximately finding the k

most frequent elements. Indeed, the top k most frequent elements are in

the set of (ϕ, L1)-heavy hitters in the stream, where ϕ = Θ(1/k). There is a

Ω(1/ϵ2) trade-off between the approximation error ϵ and the memory usage.

161

Heavy hitter algorithms are building blocks of many data stream algorithms

([42, 173]).

We treat the cosmological simulation data from [164] as a data stream. To

do so, we apply an online transformation that we describe in the next section.

5.1.1.3 Data Transformation

In a cosmological simulation, dark matter particles form structures through

gravitational clustering in a large box with periodic boundary conditions

representing a patch of the simulated universe. The box we use [164] is of

size 500 Mpc/h, or about 2 billion light-years. The simulation data consists of

positions and velocities of 2563, 5123 or 10243 particles, each representing a

huge number of physical dark-matter particles. They are distributed rather

uniformly on large scales (≳ 50 Mpc/h) in the simulation box, clumping to-

gether on smaller scales. A halo is a clump of particles that are gravitationally

bound.

To apply the streaming algorithms, we transform the data. We discretize

the spatial coordinates so that we will have a finite number of types in our

transformed data stream. We partition the simulation box into a grid of cubic

cells, and bin the particles into them. The cell size is chosen to be 1 Mpc/h as

to match a typical size of a large halo; there are thus 5003 cells. This parameter

can be modified in practical applications, but it relates to the space and time

efficiency of the algorithm. We summarize the data transformation steps as

follows.

162

• Partition the simulation box into grids of cubic cells. Assign each cell a

unique integer ID.

• After reading a particle, determine its cell. Insert that cell ID into the

data stream.

Using the above transformation, streaming algorithms can process the

particles in the same way as an integer data stream.

5.1.1.4 Heavy Hitter and Dense Cells

For a heavy-hitter algorithm to save memory and time, the distribution of

cell counts must be very non-uniform. The simulations begin with an almost

uniform lattice of particles, but after gravity clusters them together, the density

distribution in cells can be modeled by a lognormal PDF ([174], [175]):

P(1)
LN(δ) =

1
(2πσ2

1)
1/2

exp

{
−
[ln(1 + δ) + σ2

1 /2]2

2σ2
1

}
1

1 + δ
, (5.1.1)

where δ = ρ/ρ̄− 1 is the overdensity, σ2
1 (R) = ln[1 + σ2

nl(R)], and σ2
nl(R) is

the variance of the nonlinear density field in spheres of radius R. Our cells are

cubic, not spherical; for theoretical estimates, we use a spherical top-hat of the

same volume as a cell.

Let N be the number of cells, and Pc be the distribution of the number of

163

particles per cell. The Lp heaviness ϕp can be estimated as

ϕp ≈
P200

(N⟨Pc
p⟩)1/p , (5.1.2)

where P200 is the number of particles in a cell with density exactly 200ρ̄. This

density threshold is a typical minimum density of a halo, coming from the

spherical-collapse model. We theoretically estimated σnl for the cells in our

density field by integrating the nonlinear power spectrum (using the fit of

[176], and the cosmological parameters of the simulation) with a spherical

tophat window. The grid size in our algorithm is roughly 1.0 Mpc (5003 cells

in total), giving σnl(Cell) ≈ 10.75. We estimated ϕ1 ≈ 10−6 and ϕ2 ≈ 10−3,

matching order-of-magnitude with the measurement of the actual density

variance from the simulation cells. These heaviness values are low enough to

presume that a heavy-hitter algorithm will efficiently find cells corresponding

to haloes.

5.1.2 Streaming Algorithms for Heavy Hitter Problem

The above relation between the halo-finding problem and the heavy hitter

problem encourages us to apply efficient streaming algorithms to build a new

halo finder. Our halo finder takes a stream of particles, performs the data

transformation described in section 5.1.1.3 and then applies a heavy hitter

algorithm to output the approximate top k heavy hitters in the transformed

stream. These heavy hitters correspond to the densest cells in the simulation

data as described in section 5.1.1.4. In our first version of the halo finder, we

use Count-Sketch algorithm [6] and Pick-and-Drop Sampling [41].

164

5.1.2.1 The Count-Sketch Algorithm

For a more generalized description of the algorithm, please refer to [6]. For

completeness, we summarize the algorithm as follows. The Count-Sketch

algorithm uses a compact data structure to maintain the approximate counts

of the top k most frequent elements in a stream. This data structure is an r× t

matrix M representing estimated counts for all elements. These counts are

calculated by two sets of hash functions: let h1, h2, . . . , hr be r hash functions,

mapping the input items to {1, . . . , t}, where each hi is sampled uniformly

from the hash function set H. Let s1, s2, . . . , sr be hash functions, mapping the

input items to {+1,−1}, uniformly sampled from another hash function set

S. We can interpret this matrix as an array of r hash tables, each containing t

buckets.

There are two operations on the Count-Sketch data structure. Denote Mi,j

as the jth bucket in the ith hash table:

• Add(M, p): For i ∈ [1, r], Mi,hi[p]+ = si[p].

• Estimate(M, p), return mediani{hi[p] · si[p]}

The Add operation updates the approximate frequency for each incom-

ing element and the Estimate operation outputs the current approximate

frequency. To maintain and store the estimated k most frequent elements,

CountSketch also needs a priority queue data structure. The pseudocode of

165

1: procedure COUNTSKETCH(r, t, k, D) ▷ D is a stream
2: Initialize an empty r× t matrix M.
3: Initialize an min-priority queue Q of size k
4: (particle with smallest count is on the top).
5: for i = 1, . . . , n and pi ∈ D do
6: Add(M, pi);
7: if pi ∈ Q then
8: Pi.count++;
9: else if Estimate(M, pi) > Q.top().count then

10: Q.pop();
11: Q.push(pi);
12: return Q

Figure 5.1: Count-Sketch Algorithm

Count-Sketch algorithm is presented in Figure 5.1. More details and theoreti-

cal guarantees are presented in [6].

5.1.2.2 The Pick-and-Drop Sampling Algorithm

Pick-and-Drop Sampling is a sampling-based streaming algorithm to approxi-

mate the heavy hitters. To describe the idea of Pick-and-Drop sampling, we

view the data stream as a sequence of r blocks of size t. Define di,j as the jth

element in the ith block and di,j = pk(i−1)+j in stream D. In each block of the

stream, Pick-and-Drop sampling will pick one random sample and record its

remaining frequency in the block. The algorithm maintains a sample with

the largest current counter and drops previous samples. The pseudocode of

Pick-and-Drop sampling [41] is given in Figure 5.2 and we need the following

definitions in Figure 5.2. For i ∈ [r], j, s ∈ [t], q ∈ [m] define:

fi,q = |{j ∈ [t] : di,j = q}|, (5.1.3)

166

ai,s = |{j∗ : s ≤ j∗ ≤ t, di,j∗ = di,s}|. (5.1.4)

1: procedure PICKDROP(r, t, λ, D)
2: Sample S1 uniformly at random on [t].
3: L1 ← d1,S1 ,
4: C1 ← a1,S1 ,
5: u1 ← 1.
6: for i = 2, . . . , r do
7: Sample Si uniformly at random on [t].
8: li ← di,Si , ci ← ai,Si
9: if Ci−1 < max(ci, λui−1) then

10: Li ← li,
11: Ci ← ci,
12: ui ← 1
13: else
14: Li ← Li−1,
15: Ci ← Ci−1 + fi,Li−1 ,
16: ui ← qi−1 + 1
17: return {Lr, Cr}

Figure 5.2: Pick-and-Drop Algorithm

The detail implementation is in Section 5.2.2.

5.2 Implementation

5.2.1 Simulation Data

The N-body simulation data we use as the input to our halo finder was used in

the halo-finding comparison project [164] and consists of various resolutions

(numbers of particles) of the MareNostrum Universe cosmological simulation

[177]. These simulations ran in a 500 h−1Mpc box, assuming a standard

ΛCDM (cold dark matter and cosmological constant) cosmological model.

167

100 101 102 103 104
log(Np)

100
101
102
103
104
105
106

lo
g(
N
h
)

FOF
AHF
ASOHF
BDM
VOBOZ

Figure 5.3: Halo mass distribution of various halo finders.

In the first implementation of our halo finder, we consider two halo prop-

erties: center position and mass (the number of particles in it). We compare

to the the fiducial offline algorithm FoF. The distributions of halo sizes from

different halo finders are presented in Fig. 5.3.

Since our halo finder builds on the streaming algorithms of finding fre-

quent items, the algorithms need to transform the data as described in section

5.1.1.3 — dividing all the particles into different small cells and label each

particle with its associated cell ID. For example, if an input dataset contains

three particles p1, p2, p3 and they are all included in a cell of ID = 1, then the

transformed data stream becomes 1, 1, 1. The most frequent element in the

stream is obviously 1 and thus the cell 1 is the heaviest cell overall.

168

Figure 5.4: Count-Sketch Algorithm

5.2.2 Implementation Details

Our halo finder implementation is written using C++ with GNU GCC compiler

4.9.2. We implemented Count-Sketch and Pick-and-Drop sampling as two

algorithms to find heavy hitters.

5.2.2.1 Count-Sketch-based Halo Finder

There are three basic steps in the Count-Sketch algorithm, which returns the

heavy cells and the number of particles associated with them. (1) Allocate

memory for the CountSketch data structure to hold current estimates of cell

frequencies; (2) use a priority queue to record the k most frequent elements;

(3) return the positions of the top k heavy cells. Figure 5.4 presents the process

of the Count-Sketch.

The Count-Sketch data structure is an r× t matrix. Following [6], we set

169

Figure 5.5: Pick-and-Drop Sampling

r = log(n
ϵ) and t to be sufficiently large (>1 million) to achieve an expected

approximation error ϵ = 0.05. We build the matrix as a 2D array with r× t 0’s.

For each incoming element in the stream, an Add operation has to be executed

and an estimate operation needs to be executed only when this element is not

in the queue.

5.2.2.2 Pick-and-Drop-based Halo Finder

In the Pick-and-Drop sampling based halo finder, we implement a general

hash function H: N+ → {1, 2, . . . , ck}, where c ≥ 1, to gain the probability

of success to approximate the k heaviest cells. We apply the hash function H

on every incoming element and put the elements with the same hash value

together such that the original stream is divided into ck smaller sub-streams.

Meanwhile, we initialize ck instances of Pick-and-Drop sampling so that each

PD instance will process one sub-stream. The whole process of approximating

170

Figure 5.6: Halo Finder Procedure

the heavy hitters is presented in Figure 5.5. In this way, the repeated items in

the whole stream will be distributed into the same sub-stream and they are

much heavier in this sub-stream. With high probability, each instance of Pick-

and-Drop sampling will output the heaviest one in each of the sub-streams,

and in total we will have ck output items. Because of the randomness in the

sampling method, we will expect some of inaccurate heavy hitters among the

total ck outputs. By setting a large c, most of the actual top k most frequent

elements should be inside the ck outputs (raw result).

To get precise properties of haloes, such as the center, and mass, an offline

algorithm such as FoF [162] can be applied to the particles inside the returned

heavy cells and their neighbor cells. This needs an additional pass over the

data but we only need to store a small amount of particles to run those offline

in-memory algorithms. The whole process of the halo finder is represented

in Figure 5.6, where heavy hitter algorithms can be regarded as a black box.

That is, any theoretically efficient heavy hitter algorithms could be applied to

further improve the memory usage and practical performance.

171

5.2.3 Shifting Method

In the first pass of our halo finder, we only use the position of a heavy cell as

the position of a halo. However, each heavy cell may contain several haloes

and some of the haloes located on the edges between two cells cannot be

recognized because the cell size in the data transformation step is fixed. To

recover those missing haloes, we utilize a simple shifting method:

• Initialize 2d instances of Count-Sketch or Pick-and-Drop in parallel,

where d is the dimension. Our simulation data reside in three dimen-

sions, so d = 3.

• Move all the particles to one of the 2d directions with a distance of 0.5

Mpc/h (half of the cell size). In each of the 2d shifting processes, assign a

Count-Sketch/Pick-and-Drop instance to run. By combining the results

from 2d shifting processes, we expect that the majority of k largest haloes

are discovered. All the parallel instances of the CountSketch/Pick-and-

Drop are enabled by OpenMP 4.0 in C++.

5.3 Evaluation

To evaluate how well streaming based halo finders work, we mainly focus on

testing it in the following four aspects:

• Correctness: Evaluate how close are the positions of k largest haloes

found by the streaming-based algorithms to the top k large haloes re-

turned by some widely used in-memory algorithms. Evaluate the trade-

off between the selection k and the quality of result.

172

• Stability: Since streaming algorithms always require some randomness

and may produce some incorrect results, we want to see how stable are

streaming based heavy hitter algorithms are.

• Memory Usage: Linear memory space requirement is a "bottle neck" for

all offline algorithms, and it is the central problem that we are trying

to overcome by applying streaming approach. Thus it is significantly

important to theoretically or experimentally estimate the memory usage

of Pick-and-Drop and Cound-sketch algorithms.

In the evaluation, all the in-memory algorithms we choose to compare

were proposed in the Halo-Finding Comparison Project [164]. We test against

the fiducial FOF method, as well as four others that find density peak:

1. FOF by Davis et al.[162]

“Plain-vanilla” Friends-of-Friends.

2. AHF by Knollmann & Knebe [178]

Density peaks search with recursively refined grid

3. ASOHF by Planelles & Quilis. [179]

Finds spherical-overdensity peaks using adaptive density refinement.

4. BDM [180], run by Klypin & Ceverino “Bound Density Maxima” – finds

gravitationally-bound spherical-overdensity peaks.

5. VOBOZ by Neyrinck et al [181]

“Voronoi BOund Zones” – finds gravitationally bound peaks using a

173

Voronoi tessellation.

5.3.1 Correctness

As there is no agreed upon rule how to define the center and the boundary of

a halo, it is impossible to theoretically define and deterministically verify the

correctness of any halo finder. Therefore a comparison to the results of previ-

ous widely accepted halo finders seems to be the best practical verification of a

new halo finder. To compare the outputs of two different halo finders we need

to introduce some formal measure of similarity. The most straight forward

way to compare them is to consider one of them H as a ground truth, and

another one E as an estimator. Among this the FOF algorithm is considered

to be the oldest and the most widely used, thus in our initial evaluation we

decided to concentrate on the comparison with FOF. Then the most natural

measure of similarity is number of elements in H that match to elements in

output of E. More formally we will define “matches” as: for a given θ we will

say that center ei ∈ E matches the element hi ∈ E if dist(ei, hi) ≤ θ, where

dist(·, ·) is Euclidean distance. Then our measure of similarity is:

Q(θ) = Q(Ek, Hk, θ) = |{hi ∈ Hk : min
ej∈Ek

dist(hi, ej) < θ}|,

where k represents k heaviest halos.

We compare the output of both streaming-based halo finders to the output

of in-memory halo finders. We made comparisons for the 2563, 5123 and 10243-

particle simulations, finding the top 1000 and top 10000 heavy hitters. Since

the comparison results in all cases were similar, the figures presented below

174

0.0% 5.0% 10.0% 15.0% 20.0%
(1−Q(

√
3/2)/k) ·100%

FOF

AHF

ASOHF

BDMC

VOBOZ
In
-m

em
or
y
al
go

rit
hm

s

Pick and Drop
Count Sketch

(a)

10-1 100 101 102
log(d)

100

101

102

103

lo
g(
k
−Q

(d
))

CS
PD
AHF
ASOHF

BDMC
VOBOZ
Random

(b)

Figure 5.7: (a) Measure of the disagreement between PD and CS, and various in-
memory algorithms. The percentage shown is the fraction of haloes farther than a
half-cell diagonal (0.5

√
3 Mpc/h) from PD or CS halo positions. (b) The number of

top-1000 FoF haloes farther than a distance d away from any top-1000 halo from the
algorithm of each curve.

are for the 2563 dataset, and k = 1000.

On the Figure 5.7(a) we show for each in-memory algorithm the percentage

of centers that were not found by streaming-based halo finder. We can see

that both the Count-Sketch and Pick-and-Drop algorithms missed not much

more than 10 percent of the haloes in any of the results from the in-memory

algorithms.

To understand whether the 10 percent means two halo catalogs are close to

each other or not, we will choose one of the in-memory algorithms as a ground

truth and compare how close the other in-memory algorithms are. Again,

we choose FOF algorithm as a ground truth. The comparison is depicted in

Fig. 5.7(b). From this graph you can see that the outputs of Count-Sketch

and Pick-and-Drop based halo finders are closer to the FOF haloes, than other

in-memory algorithms. It can be easily explained, as after finding heavy cells

we apply the same FOF to these heavy cells and their neighborhoods, the

175

100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

N
p

k
d

e
t

Figure 5.8: Number of detected halos by our two algorithms. The solid lines corre-
spond to (CS) and the dashed lines to (PD). The dotted line at k = 1000 shows our
selection criteria. The x axis is the threshold in the number of particles allocated to the
heavy hitter. The cyan color denotes the total number of detections, the blue curves
are the true positives (TP), and the red curves are ethe false positives (FP).

output should always have similar structure to the output of in-memory FOF

on the full dataset. Also from this graph you will see that each line can be

represented as a mix of two components, one of which is the component of

random distribution. It means that after a distance of
√

3/2 all matches are

the same if we just put bunch of points at random.

The classifier is using a top-k to select the halo candidates. Figure 5.8 shows

how sensitive the results are to the selection threshold of k = 1000. It shows

several curves, including the total number of heavy hitters, the ones close to

176

−6 −5 −4 −3 −2 −1 0
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

log(false positive rate)

lo
g

(t
ru

e
 p

o
s
it
iv

e
 r

a
te

)

log ROC curve

CS

DP

Figure 5.9: This ROC curve shows the tradeoff between true and false detections as
a function of threshold. The figure plots TPR vs FPR on a log-log scale. The two
thresholds are shown with symbols, the circle denotes 1000, and the square is 900.

an FoF group – we can call these true positive (TP) – and the ones detected,

but not near an FoF object (false positives FP). From the figure, it is clear that

the threshold of 1000 is close to the optimal detection threshold, preserving

TP and minimizing FP. This corresponds to a true positive detection rate (TPR)

of 96% and a false positive detection rate of 3.6%. If we lowered our threshold

to k = 900, our TPR drops to 91% but the FPR becomes even lower, 0.88%.

These tradeoffs can be shown in Fig. 5.9 by a so-called ROC-curve (receiver

operating characteristic), where the TPR is plotted against the FPR. This shows

how lowering the detection threshold increases the true detections, but the

false detection rate increases much faster. Using the ROC curve, shown below

we can see the position of the k = 1000 threshold as a circle and the k = 900 as

177

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

CS

PD

rank(HH)

ra
n

k
(F

o
F

)
CS

PD

CS

PD

Figure 5.10: The top 1000 heavy hitters are rank-ordered by the number of their
particles. We also computed a rank of the corresponding FoF halo. The linked pairs of
ranks are plotted. One can see that if we adopted a cut at k = 900, it would eliminate
a lot of the false positives.

a square.

Finally, we should also ask, besides the set comparison, how do the indi-

vidual particle cardinalities counted around the heavy hitters correspond to

the FoF ones. Our particle counting is restricted to neighboring cells, while

the FoF is not, so we will always be undercounting. To be less sensitive to

such biases, we compare the rank ordering of the two particle counts in the

two samples in Fig. 5.10. The rank 1 is assigned to the most massive objects in

each set.

178

5.3.2 Stability

As most of the streaming algorithms utilize randomness, we estimate how sta-

ble our results are compared to the results from a deterministic search. In the

deterministic search algorithm, we find the actual heavy cells by counting the

number of particles inside them; we perform the comparison for the dataset

containing 2563 particles. To perform this evaluation we run 50 instances

of each algorithm (denoting the outputs as {Ci
cs}50

i=1 and {Ci
pd}

50
i=1). We also

count the number of cells of each result that match the densest cells returned

by the deterministic search algorithm Cds. The normalized number of matches

will be ρi
pd =

|Ci
pd∩Cds|
|Cds|

and ρi
cs = |Ci

cs∩Cds|
|Cds|

correspondingly. Our experiment

showed:

µ(ρi
cs) = 0.946, σ(ρi

cs) = 2.7 · 10−7

µ(ρi
pd) = 0.995, σ(ρi

pd) = 6 · 10−7

This means that the approximation error caused by randomness is very small

compared with the error caused by transition from overdense cells to halo

centers. This fact can also be caught from the Fig. 5.11. On that figure you

can see that shaded area below and above the red line and green line, which

represents the range of outputs among 50 instances, is very thin. Thus the

output is very stable.

5.3.3 Memory Usage

Comparing with current halo finding solutions, streaming approachs’ low

memory usage is one of the most significant advantages. To the best of our

179

Figure 5.11: Each line on the graph represents the top 1000 halo centers found with
Pick-and-Drop sampling, Count-Sketch, and in-memory algorithms. The shaded area
(too small to be visible) shows the variation due to randomness.

knowledge even for the problem of locating 1000 largest haloes in the sim-

ulation data with 10243 particles, there is no way to run other halo finding

algorithms on a regular PC since 10243 particles already need≈ 12GB memory

to only store all the particle coordinates; a computing cluster or even super-

computer is necessary. Therefore, the application of streaming techniques

introduces a new direction on the development of halo-finding algorithms.

To find top k heavy cells, Count-Sketch theoretically requires following

amount of space:

O(k log
n
δ
+

∑m
q′=k+1 f 2

q′

(ϵ fk)2 log
n
δ
),

where 1− δ is probability of success, ϵ is an Qk estimation error, and Qk is the

frequency of k-th heaviest cell. It is worth mentioning that in application to the

180

heavy cell searching problem the second term is the dominating one. The first

factor in the second term represents the linear dependency of memory usage

on the heaviness of top k cells. Thus we can expect linear memory usage for

small dataset. But as dataset grows the dependency becomes logarithmic if we

assume the same level of heaviness. Experiments verify this observation, as

for small dataset with 2563 particles Count-Sketch algorithm used around 900

megabytes memory, while for the large 10243-dataset, the memory usage was

increased to nearly 1000 megabytes. Thus the memory grows logarithmically

with the size of dataset if we assume almost constant heaviness of the top k

cells; that is why such approach is scalable for even larger datasets.

In the experiments using this particular simulation data, Pick-and-Drop

sampling shows much better performance in terms of memory usage than

Count-Sketch. The actual usage of memory was around 20 megabytes for

the dataset with 2563 particles and around 30 megabytes for the dataset with

10243 particles.

5.4 Chapter Summary

In this chapter we find a novel connection between the problem of finding the

most massive halos in cosmological N-Body simulations and the problem of

finding heavy hitters in data streams. According to this link, we have built

a halo finder based on the implementation of Count-Sketch algorithm and

Pick-and-Drop sampling. The halo finder successfully locates most (> 90%)

of the k largest haloes using sub-linear memory. Most halo-finders require

the entire simulation to be loaded into memory. But our halo finder does not

181

and could be run on the massive N-body simulations that are anticipated

to arrive in the near future with relatively modest computing resources. We

will continue to improve the performance of our halo finder, something we

have as yet not paid much attention to. In the very first implementation we

evaluated here, we mainly focus on the verification of precision instead of

performance. But both Count-Sketch and Pick-and-Drop sampling can be

easily parallelized further to achieve significantly better performance. The

majority of the computation on Count-Sketch is spent on the calculations of

r× t hash functions. A straight forward way to improve the performance is

taking advantage of the highly parallel GPU streaming processors to improve

the performance of calculating a large number of hash functions. Similarly,

Pick-and-Drop sampling is also a good candidate for more parallelism since

the Pick-and-Drop instances are running independently.

We also note that this halo finder finds only the k most massive haloes.

These are features of interest in the simulation, but some further work is

required for our methods to return a complete set of haloes as an in-memory

algorithm.

Future work:

1. Optimize the current methods using Count-Sketch and Pick-and-Drop

sampling. Our goal is to provide a halo finder tool that can be running

on personal PCs or even laptops, and provide comparatively accurate

results in a reasonable running time.

2. An application of interest to cosmologists would be to run a stream-

ing algorithm similar to this that includes velocity information; this is

182

important in distinguishing small “subhaloes” from FoF-type haloes.

Including additional attributes/dimensions in our algorithms clustering

is quite easy, and will be investigated in the near future.

183

Chapter 6

Conclusions and Future Work

Building a resource-efficient networked system is challenging as you need to

optimize the usage of various kinds of resources, including memory, CPU,

cache, and external storage, with diverse hardware. This dissertation work is

motivated by the needs of fast and memory-efficient systems for computation-

heavy tasks in the contexts of network monitoring, graph analytics, and

astrophysics. One key observation is that 100% accuracy may not be necessary

for many computation-or-memory-heavy tasks, and thus we can summarize

the data using sketches with some accuracy loss. The sketches lead to a

significant gain on the efficiency of memory and processing. In conclusion,

we briefly summarize the main contributions of the work presented in this

dissertation before highlighting some potential avenues for future work.

6.1 Summary of Contributions

We demonstrate the benefits of sketching based design in multiple networked

systems. In UnivMon and NitroSketch, we make a step forward to build a

184

robust monitoring system on both hardware and software platforms with

guaranteed accuracy for any workloads. In ASAP, we show that a graph

pattern mining system that works on large graphs with any graph patterns

might be well within our reach. In streaming halo finder, we make it possible

to handle large-scale halo finding from N-body simulation data on your own

laptop. Specifically, we make the following contributions.

Bottleneck Analysis: Before proposing any algorithmic optimizations to

existing solutions, we conduct bottleneck analysis to find out what the real

bottlenecks are. In NitroSketch, we instrument a number of sketching based

measurement algorithms on two popular software switches (Open vSwitch

and VPP), and carefully model the performance bottlenecks in these algo-

rithms.

Algorithmic Design: We design efficient sketching techniques that optimize

the network monitoring modules on both hardware and software platforms.

In hardware, we build a universal monitoring framework named UnivMon

that supports a range of measurement tasks simultaneously with bounded

error and memory. Formally, UnivMon works for any functions defined over

the frequency vector of the data if the functions computed are not beyond 2nd

Frequency Moment. UnivMon is also late-binding, where you do not have to

specify the metrics you need to measure beforehand. The evaluation shows

UnivMon achieve good memory efficiency while maintaining comparable

accuracies with state-of-the-art custom algorithms.

In software, we propose NitroSketch to address the performance bottle-

necks identified by our profiling, and minimize the per-packet processing

185

overhead. We construct a geometric sampling based frontend into existing

sketching algorithms and further reduce the per-packet hash computation to

o(1). We formally prove that by trading a small increase in memory usage,

NitroSketch maintains the same error guarantees as existing sketching algo-

rithms under arbitrary workloads. Our evaluation shows that we push the

processing performance to the limit of 40Gbps virtual switches, by using only

single CPU core.

System Design and Implementation: In UnivMon, we map our data-plane

algorithm to P4 and have addressed several practical issues due to hardware

limitation, including how to remove the requirement of storing top K flow keys

in the data-plane, and how to efficiently compute parallel hash functions with

distinct seeds. In NitroSketch, we demonstrate our complete measurement

framework by implementing on Open vSwitch and FD.io-VPP. We optimize

the software implementations by deploying cached pseudo-random number

generator, exploiting AVX2 for parallel hash computations, and probabilistic

priority queue updates.

In ASAP, we design a distributed graph pattern miner based on an efficient

sketching technique of Neighborhood Sampling. We extend the technique to

support general patterns in a distributed setting and prove the error bounds.

We build ASAP atop Apache Spark and optimize runtime performance by

exploiting efficient hash table constructions, estimator caching, and accurate

ELP.

In streaming halo finder, we build a single machine system with two

heavy hitter algorithms — Count Sketch and Pick-and-Drop. We optimize

186

the memory efficiency and time performance by reducing priority queue

operations and parallel hash computations.

6.2 Potential Limitations

Multidimensionality:

The sketching algorithms used in Chapters 2 and 3 are focused on handling

one-dimensional data (i.e., any one of the 5-tuple or any one combination

of the 5-tuple). If we want to measure the network in a multidimensional

fashion, e.g., measure the top K superspreaders (top K source IPs that send

traffic to the most number of distinct destination IPs), we need to a version

of multidimensional UnivMon. It is unclear how to build a memory-efficient

UnivMon construction that handles multidimensional data.

Scalability:

Efficient network measurement on a larger-scale remains an issue — can

our monitoring systems scale to a larger network topology with hundreds

of nodes or even more? In UnivMon, we propose a simple network-wide

solution by solving an ILP formula, but it might be hard to achieve satisfiable

accuracy on a larger scale. We need to handle critical issues such as errors

caused by multi-path, multi-counting, and rerouting. It is also complicated

to give good accuracy guarantees on heterogeneous topologies. One possible

direction to address this issue is to disseminate the sketches into critical nodes

and improve the mergeability of UnivMon by the idea of mergeable data

sketches [182].

187

Handling large general patterns (e.g., patterns with 6 nodes or more) on

a large graph may still be hard. Due to the complexity of large patterns, the

number of estimators that needed to achieve a good accuracy (say 5%) could

be too large to fit into a small cluster. To improve the scalability in this case,

we will be required to explore better sampling techniques.

Flow identities:

In programmable hardware switches, there is lacking an efficient way to

store most frequent flow identities. This is because sketch data structures only

preserve the counts of network flows not flow identities. In theory, we can

utilize a priority queue alongside the sketch to store the identities of the most

frequent flows, which gives the best memory efficiency. Unfortunately, it is

infeasible for existing programmable ASICs to support accurate priority queue

operations, and there is also nontrivial efforts needed to enable estimated

operations on a priority queue with even a small number of entries. To avoid

using priority queue, one potential technique we can use is putting additional

reversible sketches that approximately reverse the hash functions [9].

Sensitivity to parameters:

The actual accuracy of sketching algorithms highly depends on the input

parameters. For different workload patterns, the parameters in sketching

algorithms define the number of independent hash trials and the probability

of collisions. There (very likely) isn’t an ideal parameter setting working for

any workloads and it is also not straightforward for network administrators

or users to pick appropriate parameters to obtain the best possible accuracy

on the results.

188

6.3 Future Work

Can we further optimize the performance in hardware:

Network monitoring is just one of the modules running on a switch. Our

work UnivMon is memory-efficient, but UnivMon’s per-packet operation will

occupy many processing stages on a programmable switch. The number of

processing stages is limited and we want to leave enough room for other

concurrent network functions. Thus, we will further explore the ways to

improve the efficiency of UnivMon’s stateful operations.

Sketching primitives are useful but can we make them more expressive:

We obtain traffic metrics from UnivMon, NitroSketch, or other sketching-

based primitives. These metrics are important but may not be what users

want to understand since they are not very expressive. The question here is

that can we make the sketching-based measurement systems more expressive

such that users can write SQL alike queries to the system. The users will not

be required to understand the underlying metrics they need to obtain in order

to understand the workload, but just an expressive query instead.

Measuring traffic metrics is nice but can we make a step further:

In network monitoring, traffic metrics such as heavy hitters, entropy, traffic

change, etc., are important information collected from the workload. A natural

question is that what will be the next step to utilize these metrics? We need

more concrete use cases to demonstrate why these metrics are important. In

this case, we will explore the usage of these statistics in the detection and

diagnosis of DDoS attacks.

189

ASAP handles static graphs; Can we support large evolving graphs:

Evolving graphs pose significant challenges to the existing system design

of ASAP. Since the core algorithm behind ASAP is an advanced sampling

technique, a set of edge additions or deletions of will break the randomness

of each estimator in ASAP, which breaks the proofs. Naively, to fix the

theory, for each edge, we need to maintain the uniform randomness and

update the state for each estimator. This simple fix will increase the per-edge

computations to O(r) for r estimators, which is infeasible for large graphs. We

will work on designing a better update mechanism that improves the per-edge

computations.

190

Bibliography

[1] E. Team, “insidebigdata guide to use of big data on an industrial scale,”

insideBIGDATA, 2017.

[2] B. Claise, “Cisco systems netflow services export version 9,” vol. RFC

3954.

[3] M. Wang, B. Li, and Z. Li, in Proc. of ICDCS, 2004.

[4] G. Cormode and S. Muthukrishnan, “An Improved Data Stream Sum-

mary: The Count-min Sketch and Its Applications,” J. Algorithms, 2005.

[5] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation of

frequent and top-k elements in data streams,” in Proc. of ICDT, 2005.

[6] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items

in data streams,” 2002.

[7] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan,

“Counting distinct elements in a data stream,” in Proc. of RANDOM,

2002.

[8] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change

detection: Methods, evaluation, and applications,” in Proc. of IMC, 2003.

191

[9] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible sketches

for efficient and accurate change detection over network data streams,”

in Proc. of IMC, 2004.

[10] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data streaming

algorithms for estimating entropy of network traffic,” in Proc. of SIG-

METRICS/Performance, 2006.

[11] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with

opensketch,” in Proc. of NSDI, 2013.

[12] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly Media,

Inc., 2013.

[13] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and

A. Aboulnaga, “Arabesque: A system for distributed graph mining,” in

Proc. of SOSP, 2015.

[14] C. C. Aggarwal and H. Wang, Eds., Managing and Mining Graph Data,

ser. Advances in Database Systems. Springer, 2010.

[15] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.

Hellerstein, “Graphlab: A new framework for parallel machine

learning.” in UAI, P. Grünwald and P. Spirtes, Eds. AUAI Press, 2010,

pp. 340–349. [Online]. Available: http://dblp.uni-trier.de/db/conf/

uai/uai2010.html#LowGKBGH10

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, in Proc. of

OSDI, Berkeley, CA, USA, 2012.

192

http://dblp.uni-trier.de/db/conf/uai/uai2010.html#LowGKBGH10
http://dblp.uni-trier.de/db/conf/uai/uai2010.html#LowGKBGH10

[17] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph

computation on just a pc,” in Proc. of OSDI, Hollywood, CA, 2012.

[18] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric

graph processing using streaming partitions,” in Proc. of SOSP, 2013.

[19] J. Gonzalez, R. Xin, A. Dave, D. Crankshaw, and I. Franklin, Stoica,

“Graphx: Graph processing in a distributed dataflow framework,” in

Proc. of OSDI, 2014.

[20] A. Quamar, A. Deshpande, and J. Lin, “Nscale: Neighborhood-centric

large-scale graph analytics in the cloud,” 2016.

[21] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos:

Scale-out graph processing from secondary storage,” in Proc. of SOSP,

2015.

[22] G. Wang, W. Xie, A. J. Demers, and J. Gehrke, “Asynchronous large-scale

graph processing made easy.” in Proc. of CIDR, 2013.

[23] A. Buluç and J. R. Gilbert, “The combinatorial BLAS: design, implemen-

tation, and applications,” IJHPCA, 2011.

[24] R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Differentiated graph

computation and partitioning on skewed graphs,” in Proc. of EuroSys,

2015.

[25] M. Zhang, Y. Wu, Y. Zhuo, X. Qian, C. Huan, and K. Chen, “Wonderland:

A novel abstraction-based out-of-core graph processing system,” in Proc.

of ASPLOS, 2018.

193

[26] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One

sketch to rule them all: Rethinking network flow monitoring with univ-

mon,” in Proc. of SIGCOMM, 2016.

[27] A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and I. Stoica,

“ASAP: Fast, approximate graph pattern mining at scale,” in Proc. of

OSDI, 2018.

[28] Z. Liu, N. Ivkin, L. Yang, M. Neyrinck, G. Lemson, A. Szalay, V. Braver-

man, T. Budavari, R. Burns, and X. Wang, “Streaming algorithms for

halo finders,” in Proc. of e-Science, 2015.

[29] A. Knebe, F. R. Pearce, H. Lux, Y. Ascasibar, P. Behroozi, J. Casado, C. C.

Moran, J. Diemand, and K. Dolag, “Structure finding in cosmological

simulations: the state of affairs,” MNRAS, vol. 435, pp. 1618–1658, Oct.

2013.

[30] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and

F. True, “Deriving traffic demands for operational ip networks: Method-

ology and experience,” IEEE/ACM TON, 2001.

[31] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained

traffic engineering for data centers,” in Proc. of ACM CoNEXT, 2011.

[32] Y. Zhang, “An adaptive flow counting method for anomaly detection in

sdn,” in Proc. of ACM CoNEXT, 2013.

[33] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang, “Worm origin

identification using random moonwalks,” in Proc. of S&P, 2005.

194

[34] A. Kumar, M. Sung, J. J. Xu, and J. Wang, “Data streaming algorithms

for efficient and accurate estimation of flow size distribution,” in Proc.

of SIGMETRICS, 2004.

[35] N. Bandi, A. Metwally, D. Agrawal, and A. El Abbadi, “Fast data stream

algorithms using associative memories,” in Proc. of SIGMOD, 2007.

[36] H. C. Zhao, A. Lall, M. Ogihara, O. Spatscheck, J. Wang, and J. Xu, “A

data streaming algorithm for estimating entropies of od flows,” in Proc.

of IMC, 2007.

[37] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions

from sampled flow statistics,” in Proc. of SIGCOMM, 2003.

[38] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani, “Fast

monitoring of traffic subpopulations,” in Proc. of IMC, 2008.

[39] C. Estan and G. Varghese, “New directions in traffic measurement and

accounting,” in Proc. of SIGCOMM, 2002.

[40] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change

detection: methods, evaluation, and applications,” 2003.

[41] V. Braverman and R. Ostrovsky, “Approximating large frequency mo-

ments with pick-and-drop sampling,” in Proc. of APPROX/ROMDOM,

2013.

[42] V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger, “An optimal

algorithm for large frequency moments using o(nˆ(1-2/k)) bits,” in Proc.

of APPROX/RANDOM, 2014.

195

[43] V. Braverman, Z. Liu, T. Singh, N. V. Vinodchandran, and L. F. Yang,

“New bounds for the CLIQUE-GAP problem using graph decomposition

theory,” in Proc. of MFCS, 2015.

[44] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement

with opensketch,” in Proc., ser. NSDI, 2013. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2482626.2482631

[45] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “SCREAM: Sketch

Resource Allocation for Software-defined Measurement,” in Proc.,

CoNEXT, 2015.

[46] P. Indyk, A. McGregor, I. Newman, and K. Onak, “Open problems in

data streams, property testing, and related topics,” 2011.

[47] V. Sekar, M. K. Reiter, and H. Zhang, “Revisiting the case for a minimalist

approach for network flow monitoring,” in Proc. of IMC, 2010.

[48] H. C. Zhao, A. Lall, M. Ogihara, and J. J. Xu, “Global iceberg detection

over distributed data streams,” in Proc. of ICDE, 2010.

[49] V. Braverman and R. Ostrovsky, “Zero-one frequency laws,” in Proc. of

STOC, 2010.

[50] ——, “Generalizing the layering method of indyk and woodruff: Re-

cursive sketches for frequency-based vectors on streams,” in Proc. of

APPROX/RAMDOM, 2013.

196

http://dl.acm.org/citation.cfm?id=2482626.2482631

[51] V. Braverman, S. R. Chestnut, D. P. Woodruff, and L. F. Yang, “Streaming

space complexity of nearly all functions of one variable on frequency

vectors,” in Proc. of PODS, 2016.

[52] V. Braverman, R. Ostrovsky, and A. Roytman, “Zero-one laws for sliding

windows and universal sketches,” in Proc. of APPROX/RANDOM, 2015.

[53] V. Braverman, S. R. Chestnut, R. Krauthgamer, and L. F. Yang, “Stream-

ing symmetric norms via measure concentration,” CoRR, 2015.

[54] Z. Liu, G. Vorsanger, V. Braverman, and V. Sekar, “Enabling a "risc"

approach for software-defined monitoring using universal streaming,”

in Proc. of HotNets, 2015.

[55] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:

Programming protocol-independent packet processors,” SIGCOMM

Comput. Commun. Rev., 2014.

[56] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the "one big

switch" abstraction in software-defined networks,” in Proc. of CoNEXT,

2013.

[57] “Caida internet traces 2014 sanjose,” http://goo.gl/uP5aqG.

[58] “The caida ucsd anonymized internet traces 2015,” http://www.caida.

org/data/passive/passive_2015_dataset.xml.

197

http://goo.gl/uP5aqG
http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml

[59] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of

approximating the frequency moments,” in Proc., ser. STOC, 1996.

[Online]. Available: http://doi.acm.org/10.1145/237814.237823

[60] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream

statistics over sliding windows,” SIAM J. Comput., 2002.

[61] G. Cormode and S. Muthukrishnan, “An improved data stream sum-

mary: The count-min sketch and its applications,” J. Algorithms, 2005.

[62] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,

“Extending networking into the virtualization layer,” in Proc. of HotNets,

2009.

[63] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,

F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast pro-

grammable match-action processing in hardware for sdn,” in Proc. of

ACM SIGCOMM, 2013.

[64] “Intel flexpipe,” http://goo.gl/H5qPP2.

[65] “P4 specification,” http://goo.gl/5ttjpA.

[66] S. Dasgupta and A. Gupta, “An elementary proof of a theorem of john-

son and lindenstrauss,” Random Struct. Algorithms, 2003.

[67] V. Braverman and S. R. Chestnut, “Universal Sketches for the Frequency

Negative Moments and Other Decreasing Streaming Sums,” in Proc. of

APPROX/RANDOM, 2015.

198

http://doi.acm.org/10.1145/237814.237823
http://goo.gl/H5qPP2
http://goo.gl/5ttjpA

[68] A. Chakrabarti, S. Khot, and X. Sun, “Near-optimal lower bounds on

the multi-party communication complexity of set disjointness.” in Proc.

of IEEE CCC, 2003.

[69] “Why big data needs big buffer switches,” https://goo.gl/ejWUIq.

[70] “Netfpga technical specifications,” http://netfpga.org/1G_specs.html.

[71] “P4 behavioral simulator,” https://github.com/p4lang/p4factory.

[72] “Opensketch simulation library,” https://goo.gl/kyQ80q.

[73] R. Dementiev, T. Willhalm, O. Bruggeman, P. Fay, P. Ungerer, A. Ott,

P. Lu, J. Harris, P. Kerly, P. Konsor, A. Semin, M. Kanaly, R. Brazones, and

R. Shah, “Intel performance counter monitor - a better way to measure

cpu utilization,” http://goo.gl/tQ5gxa.

[74] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” Selected Areas in Communications, IEEE Journal

on, 2011.

[75] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation in

campus networks,” SIGCOMM Comput. Commun. Rev., 2008.

[76] L. Yuan, C.-N. Chuah, and P. Mohapatra, “Progme: towards pro-

grammable network measurement,” IEEE/ACM TON, 2011.

[77] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,

A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,

199

https://goo.gl/ejWUIq
http://netfpga.org/1G_specs.html
https://github.com/p4lang/p4factory
https://goo.gl/kyQ80q
http://goo.gl/tQ5gxa

“CONGA: Distributed Congestion-aware Load Balancing for Datacen-

ters,” in Proc. of SIGCOMM, 2014.

[78] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,

and S. Shenker, “pFabric: Minimal Near-optimal Datacenter Transport,”

in Proc. of SIGCOMM, 2013.

[79] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained

Traffic Engineering for Data Centers,” in Proc. of ACM CoNEXT, 2011.

[80] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,

and S. Banerjee, “DevoFlow: Scaling Flow Management for High-

performance Networks,” in Proc. of SIGCOMM, 2011.

[81] P. Garcia-Teodoro, J. E. Diaz-Verdejo, G. Macia-Fernandez, and

E. Vazquez, “Anomaly-Based Network Intrusion Detection: Techniques,

Systems and Challenges,” Computers and Security, 2009.

[82] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar, “AF-

QCN: Approximate Fairness with Quantized Congestion Notification

for Multi-tenanted Data Centers,” in Proc. of IEEE HOTI, 2010.

[83] L. Ying, R. Srikant, and X. Kang, “The Power of Slightly More than One

Sample in Randomized Load Balancing,” in Proc. of IEEE INFOCOM,

2015.

[84] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,

A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The Design

and Implementation of Open vSwitch,” in Proc. of NSDI, 2015.

200

[85] “Microsoft hyper-v virtual switch,” https://technet.microsoft.com/

en-us/library/hh831823.aspx.

[86] “Microsoft hyper-v virtual switch,” https://www.cisco.com/c/en/

us/products/switches/nexus-1000v-switch-vmware-vsphere/index.

html.

[87] “Fd.io vector packet processing,” https://fd.io/technology/.

[88] J. Misra and D. Gries, “Finding repeated elements,” Tech. Rep., 1982.

[89] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and

J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.

of ACM SOSR, 2017.

[90] R. B. Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,

“Constant time updates in hierarchical heavy hitters,” ACM SIGCOMM

and CoRR/1707.06778, 2017.

[91] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approxi-

mating the frequency moments,” in Proc. of STOC, 1996.

[92] O. Alipourfard, M. Moshref, and M. Yu, “Re-evaluating measurement

algorithms in software,” in Proc. of HotNets, 2015.

[93] O. Alipourfard, M. Moshref, Y. Zhou, T. Yang, and M. Yu, “A comparison

of performance and accuracy of measurement algorithms in software,”

in Proc. of SOSR, 2018.

201

https://technet.microsoft.com/en- us/library/ hh831823.aspx
https://technet.microsoft.com/en- us/library/ hh831823.aspx
https://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-vsphere/index.html
https://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-vsphere/index.html
https://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-vsphere/index.html
https://fd.io/technology/

[94] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,

“Sketchvisor: Robust network measurement for software packet process-

ing,” in Proc. of SIGCOMM, 2017.

[95] “The caida ucsd anonymized internet traces 2016 - equinix-chicago,”

http://www.caida.org/data/passive/passive_2016_dataset.xml.

[96] “Capture traces from mid-atlantic ccdc 2012,” http://www.netresec.

com/?page=MACCDC.

[97] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proc. of IMC, 2010.

[98] N. Hua, B. Lin, J. J. Xu, and H. C. Zhao, “Brick: A novel exact active

statistics counter architecture,” in Proc. of ACM/IEEE ANCS, 2008.

[99] L. Yang, W. Hao, P. Tian, D. Huichen, L. Jianyuan, and L. Bin, “Case:

Cache-assisted stretchable estimator for high speed per-flow measure-

ment,” in Proc. of IEEE INFOCOM, 2016.

[100] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,

“Counter braids: a novel counter architecture for per-flow measurement,”

in ACM SIGMETRICS Performance Evaluation Review, 2008.

[101] “Data plane developer kit (dpdk),” https://software.intel.com/en-us/

networking/dpdk.

[102] “Intel ethernet controller 710 series datasheet,” https://www.intel.

com/content/dam/www/public/us/en/documents/datasheets/

xl710-10-40-controller-datasheet.pdf.

202

http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.netresec.com/?page=MACCDC
http://www.netresec.com/?page=MACCDC
https://software.intel.com/en-us/networking/dpdk
https://software.intel.com/en-us/networking/dpdk
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf

[103] “Intel vtune amplifier,” https://software.intel.com/en-us/

intel-vtune-amplifier-xe.

[104] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,

“Moongen: A scriptable high-speed packet generator,” in Proc. of IMC,

2015.

[105] J. Matouek and J. Vondrk, “The Probabilistic Method - Lecture

Notess,” https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/

15859-f09/www/handouts/matousek-vondrak-prob-ln.pdf.

[106] W. Feller, “Generalization of a probability limit theorem of cramér,”

Transactions of the American Mathematical Society, 1943.

[107] E. V. Slud, “Distribution inequalities for the binomial law,” The Annals

of Probability, 1977.

[108] R. D. Gordon, “Values of mills’ ratio of area to bounding ordinate and

of the normal probability integral for large values of the argument,” The

Annals of Mathematical Statistics, 1941.

[109] “xxhash library,” http://www.xxhash.com/.

[110] “Intel advanced vector extensions,” https://software.intel.com/en-us/

isa-extensions/intel-avx.

[111] “Fast concurrent queue,” https://github.com/cameron314/

readerwriterqueue.

[112] “Tcpdump and libpcap,” http://www.tcpdump.org.

203

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f09/www/handouts/matousek-vondrak-prob-ln.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f09/www/handouts/matousek-vondrak-prob-ln.pdf
http://www.xxhash.com/
https://software.intel.com/en-us/isa-extensions/intel-avx
https://software.intel.com/en-us/isa-extensions/intel-avx
https://github.com/cameron314/readerwriterqueue
https://github.com/cameron314/readerwriterqueue
http://www.tcpdump.org

[113] “Wireshark,” https://www.wireshark.org.

[114] “Graph DBMS increased their popularity by 500% within the last 2

years,” http://db-engines.com/en/blog_post//43.

[115] “Enterprise DBMS, Q1 2014,” https://www.forrester.com/report/

TechRadar+Enterprise+DBMS+Q1+2014/-/E-RES106801.

[116] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation

ranking: Bringing order to the web.” Stanford InfoLab, Technical Report,

1999.

[117] S. Fortunato, “Community detection in graphs,” Physics reports, 2010.

[118] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data

with label propagation,” Technical Report CMU-CALD-02-107, 2002.

[119] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and

U. Alon, “Network motifs: simple building blocks of complex networks,”

Science, 2002.

[120] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”

in Proc. of ICDM, 2002.

[121] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an

undirected graph,” Communications of the ACM, 1973.

[122] N. Pržulj, D. G. Corneil, and I. Jurisica, “Modeling interactome: Scale-

free or geometric?” Bioinformatics, 2004.

204

https://www.wireshark.org
http://db-engines.com/en/blog_post//43
https://www.forrester.com/report/TechRadar+Enterprise+DBMS+Q1+2014/-/E-RES106801
https://www.forrester.com/report/TechRadar+Enterprise+DBMS+Q1+2014/-/E-RES106801

[123] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou,

F. Zhao, and E. Chen, “Kineograph: Taking the pulse of a fast-changing

and connected world,” in Proc. of EuroSys, 2012.

[124] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,

W. Chen, and E. Chen, “Chronos: A graph engine for temporal graph

analysis,” in Proc. of EuroSys, 2014.

[125] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi,

“Naiad: A timely dataflow system,” in Proc. of SOSP, 2013.

[126] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “Llama: Efficient

graph analytics using large multiversioned arrays,” in Proc. of ICDE,

2015.

[127] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,

“One trillion edges: Graph processing at facebook-scale,” 2015.

[128] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, and

L. Zhou, “Gram: Scaling graph computation to the trillions,” in Proc. of

SoCC, 2015.

[129] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “Grami:

Frequent subgraph and pattern mining in a single large graph,” Proc. of

VLDB Endow., 2014.

[130] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,

“Blinkdb: Queries with bounded errors and bounded response times on

very large data,” in Proc. of EuroSys, 2013.

205

[131] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “Approx-

hadoop: Bringing approximations to mapreduce frameworks,” in Proc.

of ASPLOS, 2015.

[132] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman,

and M. Yu, “Grass: Trimming stragglers in approximation analytics.” in

Proc. of NSDI, 2014.

[133] S. Chaudhuri, G. Das, and V. Narasayya, “Optimized stratified sampling

for approximate query processing,” ACM Trans. Database Syst., 2007.

[134] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot,

K. Elmeleegy, and R. Sears, “Online aggregation and continuous query

support in mapreduce,” in Proc. of SIGMOD, 2010.

[135] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses

for massive data: Samples, histograms, wavelets, sketches,” Foundations

and Trends in Databases, 2012.

[136] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social

network or a news media?” in Proc. of WWW, 2010.

[137] P. Boldi and S. Vigna, “The WebGraph framework I: Compression tech-

niques,” in Proc. of WWW, Manhattan, USA, 2004.

[138] R. Pagh and C. E. Tsourakakis, “Colorful triangle counting and a mapre-

duce implementation,” CoRR, 2011.

[139] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion:

Counting triangles in massive graphs with a coin,” in Proc. of KDD, 2009.

206

[140] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and

C. Sohler, “Counting triangles in data streams,” in Proc. of PODS, 2006.

[141] M. Al Hasan and M. J. Zaki, “Output space sampling for graph patterns,”

Proc. VLDB Endow., 2009.

[142] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting and

sampling triangles from a graph stream,” Proc. VLDB Endow., 2013.

[143] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella, “Graph sample

and hold: A framework for big-graph analytics,” in Proc. of KDD, 2014.

[144] M. Jha, C. Seshadhri, and A. Pinar, “A space-efficient streaming algo-

rithm for estimating transitivity and triangle counts using the birthday

paradox,” ACM Trans. Knowl. Discov. Data, 2015.

[145] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: a

fault-tolerant abstraction for in-memory cluster computing,” in Proc. of

NSDI, 2012.

[146] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets,” in Proc. of HotCloud, 2010.

[147] P. Ribeiro and F. Silva, “G-tries: A data structure for storing and finding

subgraphs,” Data Min. Knowl. Discov., 2014.

[148] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:

Efficient performance prediction for large-scale advanced analytics,” in

Proc. of NSDI, 2016.

207

[149] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and

M. Zhang, “Cherrypick: Adaptively unearthing the best cloud con-

figurations for big data analytics,” in Proc. of NSDI, 2017.

[150] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan, S. Madden,

B. Mozafari, and I. Stoica, “Knowing when you’re wrong: Building

fast and reliable approximate query processing systems,” in Proc. of

SIGMOD, 2014.

[151] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network

dataset collection,” http://snap.stanford.edu/data, 2014.

[152] J. Yang and J. Leskovec, “Defining and evaluating network communities

based on ground-truth,” CoRR, 2012.

[153] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-

tion: A multiresolution coordinate-free ordering for compressing social

networks,” in Proc. of WWW, 2011.

[154] “Graph data mining with arabesque,” http://arabesque.io.

[155] Apache Giraph, “http://giraph.apache.org.”

[156] A. Das Sarma, S. Gollapudi, and R. Panigrahy, “Estimating pagerank on

graph streams,” in Proc. of PODS, 2008.

[157] N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar, and D. Song,

“Evolution of social-attribute networks: Measurements, modeling, and

implications using google+,” in Proc. of IMC, 2012.

208

http://snap.stanford.edu/data
http://arabesque.io
http://giraph.apache.org

[158] K. J. Ahn, S. Guha, and A. McGregor, “Analyzing graph structure via

linear measurements,” in Proc. of SODA, 2012.

[159] ——, “Graph sketches: Sparsification, spanners, and subgraphs,” in

Proc. of PODS, 2012.

[160] V. Braverman, R. Ostrovsky, and D. Vilenchik, “How hard is counting

triangles in the streaming model?” in Proc. of ICALP, 2013.

[161] S. Assadi, S. Khanna, and Y. Li, “On estimating maximum matching

size in graph streams,” in Proc. of SODA, 2017.

[162] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. M. White, “The evolution

of large-scale structure in a universe dominated by cold dark matter,”

ApJ, 1985.

[163] B. L. Falck, M. C. Neyrinck, and A. S. Szalay, “ORIGAMI: Delineating

Halos Using Phase-space Folds,” ApJ, 2012.

[164] A. Knebe, S. R. Knollmann, S. I. Muldrew, F. R. Pearce, M. A. Aragon-

Calvo, Y. Ascasibar, P. S. Behroozi, D. Ceverino, S. Colombi, J. Die-

mand, and K. Dolag, “Haloes gone MAD: The Halo-Finder Comparison

Project,” MNRAS, 2011.

[165] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online identifica-

tion of hierarchical heavy hitters: algorithms, evaluation, and applica-

tions,” in Proc. of IMC, 2004.

[166] J. Beringer and E. Hüllermeier, “Efficient instance-based learning on

data streams,” Intell. Data Anal., 2007.

209

[167] E. Liberty, “Simple and deterministic matrix sketching,” in Proc. of

SIGKDD, 2013.

[168] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, “Continuous

trend-based clustering in data streams,” in Proc. of DaWaK, 2008.

[169] L. Serir, E. Ramasso, and N. Zerhouni, “Evidential evolving gustafson-

kessel algorithm for online data streams partitioning using belief func-

tion theory.” Int. J. Approx. Reasoning, 2012.

[170] B. Ball, M. Flood, H. Jagadish, J. Langsam, L. Raschid, and P. Wiriy-

athammabhum, “A flexible and extensible contract aggregation frame-

work (caf) for financial data stream analytics,” in Proc. of DSMM, 2014.

[171] F. Rusu and A. Dobra, “Statistical analysis of sketch estimators,” in Proc.

of SIGMOD, 2007.

[172] J. Spiegel and N. Polyzotis, “Graph-based synopses for relational selec-

tivity estimation,” in Proc. of SIGMOD, 2006.

[173] P. Indyk and D. Woodruff, “Optimal approximations of the frequency

moments of data streams,” in Proc. of STOC, 2005.

[174] P. Coles and B. Jones, “A lognormal model for the cosmological mass

distribution,” MNRAS, 1991.

[175] I. Kayo, A. Taruya, and Y. Suto, “Probability distribution function of

cosmological density fluctuations from a gaussian initial condition:

Comparison of one-point and two-point lognormal model predictions

with n-body simulations,” The Astrophysical Journal, 2001.

210

[176] R. E. Smith, J. A. Peacock, A. Jenkins, S. D. M. White, C. S. Frenk, F. R.

Pearce, P. A. Thomas, G. Efstathiou, and H. M. P. Couchman, “Stable

clustering, the halo model and non-linear cosmological power spectra,”

MNRAS, 2003.

[177] S. Gottlöber and G. Yepes, “Shape, Spin, and Baryon Fraction of Clusters

in the MareNostrum Universe,” ApJ, 2007.

[178] insideBIGDATA, “Ahf: Amiga’s halo finder,” The Astrophysical Journal

Supplement Series, 2009.

[179] S. Planelles and V. Quilis, “Asohf: a new adaptive spherical overdensity

halo finder,” Astronomy & Astrophysics, 2010.

[180] A. Klypin and J. Holtzman, “Particle-Mesh code for cosmological simu-

lations,” ArXiv Astrophysics e-prints, 1997.

[181] M. C. Neyrinck, N. Y. Gnedin, and A. J. S. Hamilton, “VOBOZ: an

almost-parameter-free halo-finding algorithm,” MNRAS, 2005.

[182] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and K. Yi,

“Mergeable summaries,” in Proc. of PODS, 2012.

211

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Current Practice
	Network Monitoring
	Graph Pattern Mining

	Background on Sketching Techniques
	Thesis Approach and Contributions
	Robust Network Monitoring Infrastructure
	Fast, Approximate Graph Patterning Framework
	Memory-efficient Halo Finder in N-body Simulations

	UnivMon: Universal Flow Monitoring with Sketching
	Background and Related Work
	UnivMon architecture
	Theoretical Foundations of UnivMon
	Theory of Universal Sketching
	Algorithms for Universal Sketching
	Application to Network Monitoring

	Network-wide UnivMon
	Problem Scope
	Strawman Solutions and Limitations
	Our Approach
	Extension to Multi-path

	UnivMon Implementation
	Implementation overview
	Mapping UnivMon data plane to P4
	Control plane

	Evaluation
	Methodology
	Single Router Evaluation
	Network-wide Evaluation
	Summary of Main Findings

	Chapter Summary

	NitroSketch: Robust Sketch-based Monitoring in Software Switches
	Related Work and Motivation
	Bottleneck Analysis
	NitroSketch Framework
	Key Idea
	NitroSketch Algorithms
	Interface to Other Sketching Algorithms

	Analysis of NitroSketch
	Interpretation of Main Theorems
	Comparison to Uniform Sampling
	Proof of Theorem 3.4.2
	Analysis of DS-NitroSketch
	Analysis of the Comparison with Uniform Sampling

	Implementation
	Data Plane Module
	Control Plane Module

	Evaluation
	Methodology
	Throughput
	CPU Utilization
	Accuracy and Convergence Time
	Comparison with Other Solutions

	Chapter Summary

	ASAP: Fast, Approximate Graph Pattern Mining at Scale
	Background & Motivation
	Approximate Pattern Mining
	Graph Pattern Mining Theory
	Example: Triangle Counting

	Challenges

	ASAP Overview
	Approximate Pattern Mining in ASAP
	Extending to General Patterns
	Analysis of General Patterns
	Programming API

	Applying to Distributed Settings
	Advanced Mining Patterns

	Building the Error-Latency Profile (ELP)
	Building Estimator vs. Time Profile
	Building Estimator vs. Error Profile
	Handling Evolving Graphs

	Evaluation
	Overall Performance
	Advanced Pattern Mining
	Effectiveness of ELP Techniques
	Scaling ASAP on a Cluster
	More Complex Patterns

	Related Work
	Chapter Summary

	Streaming Algorithms for Halo Finders
	Streaming Algorithm
	Streaming Data Model
	Definitions
	Heavy Hitter
	Data Transformation
	Heavy Hitter and Dense Cells

	Streaming Algorithms for Heavy Hitter Problem
	The Count-Sketch Algorithm
	The Pick-and-Drop Sampling Algorithm

	Implementation
	Simulation Data
	Implementation Details
	Count-Sketch-based Halo Finder
	Pick-and-Drop-based Halo Finder

	Shifting Method

	Evaluation
	Correctness
	Stability
	Memory Usage

	Chapter Summary

	Conclusions and Future Work
	Summary of Contributions
	Potential Limitations
	Future Work

	Bibliography

