From Cloud Computing to Sky Computing

Ion Stoica and Scott Shenker
UC Berkeley

Abstract

We consider the future of cloud computing and ask how we
might guide it towards a more coherent service we call sky
computing. The barriers are more economic than technical,
and we propose reciprocal peering as a key enabling step.

ACM Reference Format:

Ion Stoica and Scott Shenker. 2021. From Cloud Computing to Sky
Computing. In Workshop on Hot Topics in Operating Systems (HotOS
'21), May 31-June 2, 2021, Ann Arbor, MI, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3458336.3465302

1 Introduction

In 1961, John McCarthy outlined what he saw as the future
of computing (we regretfully note the gendered language):

‘computation may someday be organized as a pub-
lic utility, just as the telephone system is a public
utility. We can envisage computer service compa-
nies whose subscribers are connected to them [...].
Each subscriber needs to pay only for the capac-
ity that he actually uses, but he has access to all
programming languages characteristic of a very
large system.”

As a prediction about technology, McCarthy’s vision was
remarkably prescient. His short description accurately de-
picts what we now call cloud computing, where users have
access to massive amounts of computation and storage and
are charged only for the resources they use. On the contrary,
his prediction about economics was far off the mark; today,
in the United States even telephone service is no longer a
public utility but delivered instead through a competing set
of providers. However, while not a utility, phone service is
largely a commodity, providing a uniform user experience:
i.e., no matter what provider you use, you can reach anyone,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8438-4/21/05...$15.00
https://doi.org/10.1145/3458336.3465302

26

and switching providers is relatively easy; you can even keep
your number when switching.

Returning to McCarthy’s prediction, what concerns us
here is not that there is no single public computing utility,
but that cloud computing is not an undifferentiated commod-
ity. In contrast to telephony, the cloud computing market has
evolved away from commoditization, with cloud providers
striving to differentiate themselves through proprietary ser-
vices. In this paper we suggest steps we can take to overcome
this differentiation and help create a more commoditized ver-
sion of cloud computing, which we call the Sky computing.
Before doing so, we briefly summarize the history of cloud
computing to provide context for the rest of the paper.

2 Historical Context

The NSF high performance computing (HPC) initiative in
the 1980s provided an early glimpse of the utility computing
vision, though limited to the HPC community. However, the
advent of personal computers delayed this vision by putting
the focus on smaller-scale computing available to all, rather
than high-performance computing for a smaller community.
The personal computer industry was started by hobbyists
who wanted their own machines to tinker with, and was
fuelled by Moore’s Law that enabled personal computers to
keep up rapidly increasing user demands.

The emergence of the Internet led quickly to several pop-
ular services being accessible worldwide, including e-mail,
bulletin board systems, and games. The advent of the World
Wide Web ignited an explosion of new services such as
search, on-line retail, and eventually social media. To cope
with the resulting scale, these services had to build data-
centers and design their own complex distributed systems.
This path was followed by many companies - such as Ya-
hoo!, Google, eBay, and Amazon — but the onus of creating
large-scale service-specific infrastructures became a barrier
to entry in the Internet services market because these steps
required huge investments which most could not afford.

This changed in 2006 when Amazon launched S3 and EC2,
kicking off the age of cloud computing by democratizing ac-
cess to compute/storage and promoting the “pay-as-you-go”
business model. This, together with the end of Moore’s Law
(which made it quite expensive to build and scale services in
on-premise clusters), led to a renewed push towards build-
ing what could have become utility computing. However,
commercial trends have pushed us in a different direction.

https://doi.org/10.1145/3458336.3465302
https://doi.org/10.1145/3458336.3465302

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

In the early years when Amazon was dominant in the
cloud, they set the de facto standard for cloud computing.
However, in the past decade several competitors have emerged
in this market. According to a recent report [6], AWS now
owns just 32% of the market, followed by Microsoft with 19%,
Google with 7%, Alibaba with 6%, and the other clouds (such
as IBM and Oracle) splitting the rest of the remaining 37% of
the cloud market (due to roundoff errors this adds up to 101%).
This competition has led to lower prices and an increasing
array of products and services. For instance, AWS alone of-
fers more than 175 products and services [8]. However, many
of these services are proprietary, and these proprietary ser-
vices are one of the main ways cloud providers differentiate
themselves. For example, each cloud has its own APIs for
managing clusters, its own version of object store, its own
version of a data warehouse, its own serverless offering, and
so on. Applications developed on one cloud often do not
work on a different cloud without substantial changes, the
same way an application written for Microsoft Windows
requires substantial changes to work on Mac OS. Thus, com-
petition in the cloud market has led us away from the vision
of utility computing.

Of course there have been many calls for standardizing
cloud computing [28, 39], but these have had little impact on
the increasing drive towards cloud differentiation. The busi-
ness models of current cloud providers are built around at-
tracting, and then retaining, customers, and this goes against
offering a purely commoditized service. The question we
address, then, is how do we make progress towards the goal
of utility computing?

Our proposal is called Sky computing, to connote that we
are trying to look beyond individual clouds. However, we are
not the first to use the term "Sky computing”. Starting in 2009,
several papers have proposed designs with this name [30,
34, 35]. However, these papers focus on particular technical
solutions, such as running middleware (e.g., Nimbus) on a
cross-cloud Infrastructure-as-a-Service platform, and target
specific workloads such as high-performance computing
(HPC). This paper takes a broader view of Sky computing,
proposing it as the universal software platform for future
applications and considering how technical trends and the
market forces can play a critical role in the emergence of
Sky computing.

3 Lessons from the Internet

Despite the fact that cloud computing and the Internet differ
along many dimensions, we think the Internet provides a use-
ful set of historical lessons. In the early 1960s several groups
were developing packet switching technology. These early
networks worked well, but were incompatible with each
other. The community faced a choice: should it standardize
on a single networking technology, or could it find a way to

27

lon Stoica and Scott Shenker

accommodate diversity? In 1972 Robert Kahn proposed open-
architecture networking [32], which advocated a universal
interoperability layer that could allow any two networks to
interconnect. This became the Internetworking Protocol (IP).
IP and the protocols above it were all that was needed in the
ARPAnet, which was a single coherent network. However, as
the ARPAnet grew into the Internet, and the Internet grew
to include separate Autonomous Systems (ASes, which are
independently run networks), the Internet needed some way
for packets in one network to reach another. This was not
about low-level compatibility in network technologies, this
was a question of routing: how can the network successfully
direct packets over a set of independently run networks.

The Border Gateway Protocol (BGP) was invented to solve
this problem, and is now the “glue” that makes the set of inde-
pendently run networks appear as a coherent whole to users.
This was a technical solution, but an economic problem re-
mained: when networks interconnect, does money change
hands, and if so, who pays whom? A set of business prac-
tices have emerged for these “peering” or interconnection
agreements. For instance, customers pay providers, but two
networks of similar size and capability might do payment-
free peering. These peering arrangements are technically
straightforward, but bring up thorny policy questions such
as: can provider A charge Internet service B for carrying
B’s traffic, even if B is not directly connected to A. Thus,
issues of unfair competition arise in these agreements (and
are related to questions of network neutrality).

Thus, there were three key design decisions that allowed
the Internet to provide a uniform interface to a huge in-
frastructure made out of heterogeneous technologies (from
Ethernet to ATM to wireless) and competing companies. The
first is a “compatibility” layer that masks technological het-
erogeneity. The second is interdomain routing that glues the
Internet together, making it appear as one network to end
users. The third is a set of economic agreements, forming
what we will call a “peering” layer, that allow competing
networks to collaborate in creating a uniform network.

What lessons does this teach us about the cloud? To fulfil
the vision of utility computing, applications should be able to
run on any cloud provider (i.e., write-once, run-anywhere).
Moreover, users should not have to manage the deployments
on individual clouds, or face significant impediments mov-
ing from one cloud to another. In short, it should be as easy
for a developer to build a multi-cloud application, as it is to
build an application running on a single cloud. We call this
Sky computing. We use this term because utility computing
implies that the infrastructure is a public utility, whereas Sky
computing refers to building the illusion of utility comput-
ing on an infrastructure consisting of multiple and heteroge-
neous competing commercial cloud providers.

From Cloud Computing to Sky Computing

We contend that the three design issues the Internet had to
address are exactly the pieces needed to create Sky comput-
ing out of our current set of clouds. We need a compatibility
layer to mask low-level technical differences, an intercloud
layer to route jobs to the right cloud, and a peering layer that
allows clouds to have agreements with each other about how
to exchange services. In the next three sections we describe
these layers in more detail. We then conclude by speculating
about the future.

Table 1 illustrates the similarity between the proposed Sky
architecture and the Internet: routers are similar to servers,
ASes are similar to availability zones, and ISPs are similar to
cloud providers. Like in the Internet where IP is oblivious to
routing packets between routers in the same ISP or across
ISPs, an application built on the intercloud layer should be
oblivious of the cloud it is running on.

Internet Sky

Router Server

Autonomous System Datacenter / Availability Zone
Internet Service Provider | Cloud Provider

Enterprise Network Private Cloud

Internet Protocol Compatibility Layer

BGP Intercloud Layer

Table 1: Analogy between the Internet and Sky com-
puting.

4 Compatibility Layer

The first step towards achieving the Sky computing vision
is to provide a cloud compatibility layer; i.e., a layer that
abstracts away the services provided by a cloud and allows an
application developed on top of this layer to run on different
clouds without change. In short, the compatibility layer is
a set of interfaces or APIs that applications can be built on;
this compatibility layer can then be ported to each cloud
using the cloud’s set of (perhaps proprietary) interfaces.

In our Internet analogy, this is similar to the IP layer that
enables routers using different underlying (L2) communi-
cation technologies to handle IP packets. However, unlike
IP which is a narrow waist, the cloud compatibility layer is
significantly broader and less well defined since clouds ex-
pose a rich (and growing) set of services to the applications,
including computation, storage, data transfers, and much
more. Thus, the cloud compatibility layer is more similar in
spirit to an operating system (e.g., Linux) that manages the
computer’s resources and exposes an API to applications.

How do we build such a cloud compatibility layer? While
every cloud offers a set of proprietary low-level interfaces,
most users today interact mostly with higher level manage-
ment and service interfaces. Some of these are proprietary,

28

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

but a growing number of them are supported by open source
software (OSS).

These OSS projects exist all levels of the software stack, in-
cluding operating systems (Linux), cluster resource managers
(Kubernetes [12], Apache Mesos [31]), application packaging
(Docker [10]), databases (MySQL [15], Postgres [17]), big data
execution engines (Apache Spark [42], Apache Hadoop [41]),
streaming engines (Apache Flink [26], Apache Spark [42],
Apache Kafka [5]), distributed query engines and databases
(Cassandra [4], MongoDB [14], Presto [18], SparkSQL [22],
Redis [19]), machine learning libraries (PyTorch [37], Ten-
sorflow [24], MXNet [27], MLFlow [13], Horovod [40], Ray
RLIib [33]), and general distributed frameworks (Ray [36],
Erlang [25], Akka [1]).

Furthermore, a plethora of companies founded by OSS
creators have emerged to provide hosted services on mul-
tiple clouds. Example are Cloudera (Apache Hadoop), Con-
fluent (Apache Kafka), MongoDB, Redis Labs, HashiCorp
(Terraform, Consul), Datastax (Cassandra), and Databricks
(Apache Spark, MLFlow, and Delta). These developments
make it relatively easy for enterprises to switch from one
cloud to another if their applications are using one of these
multi-cloud OSS-based offerings.

The compatibility layer could be constructed out of some
set of these OSS solutions. Indeed, there are already efforts
underway to consolidate different OSS components in a sin-
gle coherent platform. One example is Cloud Foundry [9], an
open source multi-cloud application platform that supports
all major cloud providers, as well as on-premise clusters.
Another example is RedHat’s OpenShift [16], a kubernetes-
based platform for multi-cloud and on-premise deployments.

While OSS provides solutions at most layers in the soft-
ware stack, the one glaring gap is the storage layer. Every
cloud provider has its own version of proprietary highly-
scalable storage. Examples are AWS’ S3 [2], Microsoft’s Azure
Blob Storage [7] and Google’s Cloud Storage [11]. This be-
ing said, there are already several solutions providing S3
compatibility APIs for Azure’s Blob Storage and Google’s
Cloud Storage, such as S3Proxy [20] and Scality [21]. Some
cloud providers offer their own S3 compatibility APIs to help
customers transition from AWS to their own cloud. In what
follows, we assume that the storage API provided by the
compatibility layer allows reading data across clouds.

Thus, we think achieving a widely usable compatibility
layer is, on purely technical grounds, easily achievable. The
problem is whether the market will support such an effort
because, while the compatibility layer has clear benefits for
users, it naturally leads to the commoditization of the cloud
providers, which may not be in their interests. We will dis-
cuss the incentives issues in Section 7.

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

5 Intercloud Layer

The compatibility layer is just the first step in realising the
Sky vision. Even though the compatibility layer allows a user
to run an application on different clouds without change,
the user still needs to decide on which cloud to run the
application. Thus, users are still responsible for making the
performance/cost tradeoffs across different clouds. This is
akin to requiring an Internet user to explicitly select the AS
paths for its interdomain traffic, which would be an onerous
task.

To address this problem, the Internet employs BGP to
make AS-level routing decisions, decisions that are trans-
parent to the user. Similarly, the Sky architecture should
implement an intercloud layer that abstracts away cloud
providers from users; that is, users should not be aware of
which cloud an application is running on (unless they explic-
itly want to know). The intercloud layer is implemented on
top of the compatibility layer, as seen in Figure 1.

The intercloud layer must allow users to specify policies
about where their jobs should run, but not require users to
make low-level decisions about job placement (but would
allow users to do so if they desired). These policies would
allow a user to express their preferences about the tradeoff
between performance, availability, and cost. In addition, a
user might want to avoid their application running on a
datacenter operated by a competitor, or stay within certain
countries to obey relevant privacy regulations. To make this
more precise, a user might specify that this is a Tensorflow
job, it involves data that cannot leave Germany, and must be
finished within the next two hours for under a certain cost.

The intercloud layer might also enable more available and
secure applications. Indeed, since it is very unlikely that dif-
ferent clouds experience outages at the same time [23], an
application can leverage multiple clouds to mask a single
major cloud outage. Furthermore, several recent proposals
treat different clouds as distinct trust domains to provide
more efficient security solutions for a variety of applica-
tions [29, 38, 43].

We believe there are no fundamental technical limitations
in implementing the intercloud layer on top of the cloud
compatibility layer. This is simply because, from a perfor-
mance perspective, moving jobs across clouds is very similar
to moving jobs within the same cloud across datacenters.
Once an application has been designed to run across mul-
tiple datacenters, the remaining cross-cloud issues can be
addressed by the following three functionalities:

(1) A uniform naming scheme for OSS services.

(2) A directory service which allows cloud providers to
register their services, and applications to select a ser-
vice based on their preferences.

(3) An accounting and charging mechanism across clouds.

29

lon Stoica and Scott Shenker

We now discuss each of these functionalities in turn.

Service Naming Scheme In order to identify a service
instance running on a particular cloud we need a naming
scheme to identify that instance. There are many possible
schemes, and it is not our goal here to advocate for any par-
ticular one, though a natural possibility would be to leverage
DNS for naming these service instances. In addition, we need
to associate metadata with each such service instance. Such
metadata should contain how the service should be invoked,
the name of the cloud provider, location, software or API ver-
sion, hardware type, etc. Furthermore, we might also want to
add dynamic information like pricing, load, and availability.

Directory service An application that requires a partic-
ular service must find a service instance that satisfies its
requirements and preferences. This calls for a directory ser-
vice. Each cloud provider will publish its services to this
directory by providing its name and metadata information.
Furthermore, each cloud provider should periodically update
their dynamic metadata, such as the load and spot pricing.
In turn, applications should request a particular service ex-
pressing its preferences and requirements. Upon receiving
such request, the directory service would return an instance
satisfying these requirements and preferences. The detailed
request schema and the resolution algorithms are outside
the scope of this paper, and will require ongoing evolution
as user requirements become more expressive.

Accounting and charging With Sky computing, a user’s
application can run on one of many clouds or even on several
clouds at the same time, and each cloud must account for
the resources used. If the charging was done by each cloud,
each user would need to have accounts on every cloud. We
propose an alternative where each user signs up with a third-
party broker (which might be one of the cloud providers)
who has an account on all the clouds, and accumulates the
charges and then distributes payments from each of their
users back to the various clouds.

While many details remain to be worked out, there do
not appear to be any insurmountable technical barriers to
achieving a reasonably effective intercloud layer. As with
the compatibility layer, the issue is whether the market will
produce one.

6 Peering Between Clouds

The intercloud layer is designed to run jobs on the cloud
(or clouds) that best meets their needs. If the job involves
large data-sets, as many of the common cloud workloads
do, this will require moving the data to the cloud where
the computation will occur. Today, most clouds have pricing
policies where moving data into a cloud is much cheaper than
moving it out. For instance, ingesting data into AWS is free

From Cloud Computing to Sky Computing

while transferring data out of AWS can cost between 0.05-
0.09$/GB, the cost of storing a GB of data for several months!!
This is significantly more than the cost of streaming data
from some leading CDNs, which ranges form 0.009-0.02$/GB
for 150TB/month or more.

We will call this form of pricing “data gravity” pricing, and
it creates a strong incentive for users to process data in the
same cloud in which it currently resides. Still, moving data
from one cloud to another can still be the most cost-effective
option, especially for jobs where the computation resources
are much more expensive than the data transfer costs. For
example, consider ImageNet training which involve a 150GB
dataset. It costs about $13 to transfer it out of AWS, but,
according to the DAWNBench?, it costs over $40 to train
ResNet50 on ImageNet on AWS compared to about $20 to
train the same model on Azure. Given these numbers, it
would be cheaper to move the data from AWS and perform
training on Azure, instead of performing the training in
AWS where the data is. Thus, while data gravity pricing
does inhibit moving jobs, in some cases moving jobs is still
worthwhile.

In addition, the incentives against job movement are most
acute if the data is dynamic (i.e., is updated as a result of the
computation). If the data is static (e.g., training data), then the
user could use an archival store on one cloud (such as AWS’s
Glacier), which is significantly cheaper than blob stores, and
then import the data they want to process to the blob store
of any other cloud where they want the computation to run.

To our knowledge, current pricing policies for exporting
data are independent of the cloud the data might be going to.
One alternative that we have not seen explored to date is for
clouds to enter into reciprocal data peering arrangements,
where they agree to allow free exporting of data to each
other, and to connect with high-speed links (presumably at
PoPs where they both have a presence). This would make
data transfers both fast and free, lowering the data gravity
between two peering clouds and enabling greater freedom
in job movement. As we argue below, this may solve some
of the underlying incentive problems inherent in creating
the compatibility and intercloud layers.

7 Speculations About The Future

As noted above, while there are few technical barriers to
the compatibility layer, it would make cloud computing re-
semble a commodity. As such, we expect incumbent cloud
providers would strongly resist the emergence of a compati-
bility layer. However, unlike some other arenas (e.g., packet
formats in networking) where standardization requires uni-
versal agreement, the software for a compatibility layer can

1See S3 prices at https://aws.amazon.com/s3/pricing/.
2See the entries for February 2019 and April 2019, respectively, at https:
//dawn.cs.stanford.edu/benchmark/ImageNet/train.html

30

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

Intercloud Layer

(Service Directory, Accoun

Intercloud

Layer (Naming)

Compatibility
Layer

Intercloud
Layer (Naming)
Compatibility

|
Intercloud
Layer (Naming)
Compatibility
Layer

Datacenter (DC1)

, Datacenter (DC5)
Datacenter (DC2) //
Cloud

Intercloud /
Provider B /

Layer (Naming)
Compatibility
Layer

i Peer !
Aagreement

Intercloud
Layer (Naming)
Compatibility
Layer

Datacenter (DC3)

Cloud Datacenter (DC4)

Provider A

Figure 1: Possible Sky computing architecture.

be ported to any cloud, even if the cloud does not wish to
officially support it. Thus, users of a large incumbent cloud
provider which does not officially support the compatibility
layer might opt to use the compatibility interface rather than
the cloud provider’s lower-level interfaces just to preserve
portability.

In addition, while large incumbents might not be happy
about a compatibility layer, we expect smaller cloud providers
will embrace such a layer. For smaller cloud providers, offer-
ing proprietary interfaces may not be preferable to adopting
amore widely supported standard. By doing so, these smaller
providers would have access to a larger market share (i.e.,
users who have adopted the compatibility layer as their set
of APIs) and could compete on price, performance, or various
forms of customer service. We are already seeing this in the
market, where Google has recently released Anthos [3], an
application management platform based on Kubernetes [12]
that supports “write once, run anywhere” with a consistent
development and operations experience for cloud and on-
premise applications. Anthos is already running on Google
Compute Cloud (GCP) and AWS, with Azure to follow shortly.
Thus, smaller cloud providers may be better off supporting
Anthos rather than competing with it with their own propri-
etary (and presumably less well-known) interfaces.

Once a compatibility layer has gained traction, an inter-
cloud layer can be developed. The question is: who would
benefit from its development? Here we must speculate, since
we are far from having these two layers in place.

We think that once a compatibility layer and an intercloud
layer are in place, cloud providers will fall into two cate-
gories. There will be stand-alone cloud providers who try
to lock customers in with proprietary interfaces and data
export fees. These providers will typically be large enough
so that they have the resources to offer a variety of pro-
prietary services. However, in contrast to today, we think
there will also be commodity cloud providers who directly
support the compatibility layer and agree to reciprocal data

https://aws.amazon.com/s3/pricing/
https://dawn.cs.stanford.edu/benchmark/ImageNet/train.html
https://dawn.cs.stanford.edu/benchmark/ImageNet/train.html

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

peering with other commodity cloud providers. These com-
modity providers, taken together as a whole, form the Sky,
which offers a unified interface to a set of heterogeneous and
competing cloud providers.

Why do we believe the Sky will happen? It rests on the
nature of innovation in the two classes of providers. In a
competitive market, the stand-alone providers compete with
each other, and with the Sky. The commodity providers also
compete with each other within the Sky, and collectively
compete with the stand-alone providers. In terms of tradeoffs,
the stand-alone providers have higher margins (because their
customers have exit barriers) but must innovate across the
board to retain advantages for their proprietary interfaces.

In contrast, the commodity providers have lower mar-
gins, but can innovate more narrowly. That is, a commodity
provider might specialize in supporting one or more services;
jobs in the Sky that could benefit from these specialized ser-
vices would migrate there. For example, Oracle could provide
a database-optimized cloud, while a company like EMC can
provide a storage-optimized cloud. In addition, hardware
manufacturers could directly participate in the cloud econ-
omy. For example, Samsung might be able to provide the best
price-performance cloud storage, while Nvidia can provide
hardware-assisted ML services. More excitingly, a company
like Cerebras Systems, which builds a wafer-scale accelerator
for AI workloads, can offer a service based on its chips. To
do so it just needs to host its machines in one or more colo-
cation datacenters like Equinix and port popular ML frame-
works like TensorFlow [24], PyTorch [37], MXNet [27] — thus
providing a compatibility layer — onto Cerebras-powered
servers. Cerebras only needs to provide processing service;
all the other services required by customers (such as data
storage) can run in existing cloud providers. In contrast, to-
day, a company like Cerebras has only two choices: get one
of the big cloud providers like AWS, Azure, or GCP to deploy
its hardware, or build its own fully-featured cloud. Both are
daunting propositions.

However, such a dynamic will only be effective if the in-
tercloud layer can find these accelerated services, since most
individual users won’t be up-to-date on the relative perfor-
mance of various services on the Sky. Thus, to make Sky
computing work, we need all three layers to be effective: the
compatibility layer to hide any differences in implementation
between clouds; the intercloud layer to automatically find
the best price/performance/properties for various services;
and reciprocal peering to make data movements free and
fast.

To be clear, we are not predicting the demise of proprietary
clouds; we think that in the long-term we will continue to
have both kinds of providers. The stand-alone providers
will cater to those customers who need more assistance and
where price and performance are not the critical factors. This

31

lon Stoica and Scott Shenker

might mean servicing the needs of smaller users who have
less expertise in managing the cloud. However, we think
the bulk of computation-intense workloads, particularly for
sophisticated users, will migrate to the Sky, because of the
greater access to innovation.

One might doubt that the commodity providers would
provide more innovation than the stand-alone providers, but
the PC market offers such an example. In 1981, IBM released
its Personal Computer which pushed the computing industry
in overdrive. The IBM PC was based on an open architec-
ture. The only proprietary component was the BIOS (Basic
Input/Output System) firmware. However, one year later, the
BIOS was reverse engineered and this opened the floodgates
for PC clones. As expected, this led to much lower prices;
however, it also led to more innovation. The clone manufac-
turers like Compaq, not IBM, were responsible for creating
the first portable PC, and for leading the adoption of the new
Intel processors (e.g., Intel’s x386). Furthermore, this open
architecture led to an industry of add-ons such as hardware
accelerators and storage devices. By 1986, IBM PC compati-
ble computers reached half of the entire PC market with the
PC clones outselling IBM PCs by significant numbers.

Our line of reasoning is, of course, purely speculative.
However, the lack of adoption of a compatibility layer in
even the smaller cloud providers is because they do not yet
see such a layer increasing their revenues (because they
are each competing individually against the larger clouds).
However, if such providers simultaneously agree on recip-
rocal peering, then collectively the Sky becomes a viable
competitive counterbalance to the large proprietary clouds,
and allows the commodity clouds to focus their innovation
efforts more narrowly.

8 Conclusion

In this short paper we have described some challenges that
must be overcome before cloud computing can transform
into Sky computing, which would move us closer to Mc-
Carthy’s notion of utility computing. Some of these chal-
lenges are purely technical, and are likely achievable. How-
ever, to make the economic incentives work, Sky computing
requires a group of cloud providers to adopt reciprocal data
peering so that jobs can easily migrate within this large and
heterogeneous collection of commodity clouds. Our purpose
in writing this paper was to identify this as a crucial step
in how the cloud market could be organized, and hopefully
create momentum towards the vision of a Sky full of compu-
tation, rather than isolated clouds.

References

1] Akka. https://akka.io/.

2] Amazon S3. https://aws.amazon.com/s3/.

3] Anthos. https://cloud.google.com/anthos.

4] Apache Cassandra. https://cassandra.apache.org/.

—r—_—_—

https://akka.io/
https://aws.amazon.com/s3/
https://cloud.google.com/anthos
https://cassandra.apache.org/

From Cloud Computing to Sky Computing

[5] Apache Kafka. https://kafka.apache.org/.
[6] AWS vs Azure vs Google Cloud Market Share 2020: What the Latest

[25

[29

(30

(31

(32

[’

—

—

[t

—

—

Data Shows. https://www.parkmycloud.com/blog/aws-vs-azure-vs-
google-cloud-market-share/.

Azure Blob Storage. https://azure.microsoft.com/en-us/services/
storage/blobs/.

Cloud Computing with AWS. https://aws.amazon.com/what-is-aws/.
Cloud Foundry. https://www.cloudfoundry.org/.

Docker. https://github.com/docker.

Google Cloud Storage. https://cloud.google.com/storage.
Kubernetes. https://github.com/kubernetes/kubernetes.

MLFlow. https://mlflow.org/.

MongoDB. https://github.com/mongodb/mongo.

MySQL. https://www.mysql.com/.

OpenShift. https://www.redhat.com/en/technologies/cloud-
computing/openshift.

PostgreSQL. https://www.postgresql.org/.

Presto. https://github.com/prestodb/presto.

Redis. https://github.com/redis/redis.

S3Proxy. https://github.com/gaul/s3proxy.

Scality. https://www.scality.com/.

SparkSQL. https://spark.apache.org/sql/.

The 10 Biggest Cloud Outages Of 2020. https://www.crn.com/slide-
shows/cloud/the-10-biggest-cloud-outages- of-2020.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. TensorFlow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Savannah, Georgia, USA,
2016.

Joe Armstrong. Making reliable distributed systems in the presence of
software errors. PhD thesis, Mikroelektronik och informationsteknik,
2003.

Paris Carbone, Stephan Ewen, Gyula Fora, Seif Haridi, Stefan Richter,
and Kostas Tzoumas. State management in Apache Flink: Consistent
stateful distributed stream processing. Proc. VLDB Endow., 10(12):1718-
1729, August 2017.

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. In NIPS Workshop on Machine Learning Systems
(LearningSys’16), 2016.

LLC. Cloud Strategy Partners. Ieee cloud standardization.

Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Sto-
ica. DORY: An encrypted search system with distributed trust. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 1101-1119. USENIX Association, November 2020.
José AB. Fortes. Sky computing: When multiple clouds become one.
In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, pages 4—4, 2010.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:
A platform for fine-grained resource sharing in the data center. In
Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation, NSDI'11, pages 295-308, Berkeley, CA, USA, 2011.
USENIX Association.

Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn,
Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and
Stephen Wolff. A brief history of the internet. SIGCOMM Comput.
Commun. Rev.,, 39(5):22-31, October 2009.

32

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

[33] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Sto-
ica. RLIib: Abstractions for distributed reinforcement learning. In
International Conference on Machine Learning (ICML), 2018.

[34] A. Matsunaga,]. Fortes, K. Keahey, and M. Tsugawa. Sky computing.
IEEE Internet Computing, 13(05):43-51, sep 2009.

[35] André Monteiro, Joaquim S. Pinto, Claudio J. V. Teixeira, and Tiago
Batista. Sky computing: Exploring the aggregated cloud resources -
part i. In Conference: Information Systems and Technologies (CISTI),
2021.

[36] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for
emerging Al applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), Carlsbad, CA, 2018.
USENIX Association.

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in PyTorch. 2017.

[38] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada
Popa, and Joseph M. Hellerstein. Senate: A maliciously-secure MPC
platform for collaborative analytics. In 30th USENIX Security Sympo-
sium (USENIX Security 21). USENIX Association, August 2021.

[39] Hiroshi Sakai. Standardization activities for cloud computing.

[40] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy dis-
tributed deep learning in tensorflow. arXiv preprint arXiv:1802.05799,
2018.

[41] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

[42] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and
Ton Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENLX
conference on Networked Systems Design and Implementation, pages
2-2. USENIX Association, 2012.

[43] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit
Panda, and Ion Stoica. Cerebro: A platform for multi-party crypto-
graphic collaborative learning. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, August 2021.

https://kafka.apache.org/
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share/
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://aws.amazon.com/what-is-aws/
https://www.cloudfoundry.org/
https://github.com/docker
https://cloud.google.com/storage
https://github.com/kubernetes/kubernetes
https://mlflow.org/
https://github.com/mongodb/mongo
https://www.mysql.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.postgresql.org/
https://github.com/prestodb/presto
https://github.com/redis/redis
https://github.com/gaul/s3proxy
https://www.scality.com/
https://spark.apache.org/sql/
https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2020
https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2020

	Abstract
	1 Introduction
	2 Historical Context
	3 Lessons from the Internet
	4 Compatibility Layer
	5 Intercloud Layer
	6 Peering Between Clouds
	7 Speculations About The Future
	8 Conclusion
	References

