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ABSTRACT
Cloud data centers host diverse applications, mixing workloads that
require small predictable latency with others requiring large sus-
tained throughput. In this environment, today’s state-of-the-art TCP
protocol falls short. We present measurements of a 6000 server
production cluster and reveal impairments that lead to high applica-
tion latencies, rooted in TCP’s demands on the limited buffer space
available in data center switches. For example, bandwidth hungry
“background” flows build up queues at the switches, and thus im-
pact the performance of latency sensitive “foreground” traffic.

To address these problems, we propose DCTCP, a TCP-like pro-
tocol for data center networks. DCTCP leverages Explicit Conges-
tion Notification (ECN) in the network to provide multi-bit feed-
back to the end hosts. We evaluate DCTCP at 1 and 10Gbps speeds
using commodity, shallow buffered switches. We find DCTCP de-
livers the same or better throughput than TCP, while using 90%
less buffer space. Unlike TCP, DCTCP also provides high burst
tolerance and low latency for short flows. In handling workloads
derived from operational measurements, we found DCTCP enables
the applications to handle 10X the current background traffic, with-
out impacting foreground traffic. Further, a 10X increase in fore-
ground traffic does not cause any timeouts, thus largely eliminating
incast problems.

Categories and Subject Descriptors: C.2.2 [Computer-Communication
Networks]: Network Protocols
General Terms: Measurement, Performance
Keywords: Data center network, ECN, TCP

1. INTRODUCTION
In recent years, data centers have transformed computing, with

large scale consolidation of enterprise IT into data center hubs,
and with the emergence of cloud computing service providers like
Amazon, Microsoft and Google. A consistent theme in data cen-
ter design has been to build highly available, highly performant
computing and storage infrastructure using low cost, commodity
components [16]. A corresponding trend has also emerged in data
center networks. In particular, low-cost switches are common at the
top of the rack, providing up to 48 ports at 1Gbps, at a price point
under $2000 — roughly the price of one data center server. Sev-
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eral recent research proposals envision creating economical, easy-
to-manage data centers using novel architectures built atop these
commodity switches [2, 12, 15].

Is this vision realistic? The answer depends in large part on how
well the commodity switches handle the traffic of real data cen-
ter applications. In this paper, we focus on soft real-time applica-
tions, supporting web search, retail, advertising, and recommenda-
tion systems that have driven much data center construction. These
applications generate a diverse mix of short and long flows, and
require three things from the data center network: low latency for
short flows, high burst tolerance, and high utilization for long flows.

The first two requirements stem from the Partition/Aggregate
(described in §2.1) workflow pattern that many of these applica-
tions use. The near real-time deadlines for end results translate into
latency targets for the individual tasks in the workflow. These tar-
gets vary from ∼10ms to ∼100ms, and tasks not completed before
their deadline are cancelled, affecting the final result. Thus, appli-
cation requirements for low latency directly impact the quality of
the result returned and thus revenue. Reducing network latency al-
lows application developers to invest more cycles in the algorithms
that improve relevance and end user experience.

The third requirement, high utilization for large flows, stems
from the need to continuously update internal data structures of
these applications, as the freshness of the data also affects the qual-
ity of the results. Thus, high throughput for these long flows is as
essential as low latency and burst tolerance.

In this paper, we make two major contributions. First, we mea-
sure and analyze production traffic (>150TB of compressed data),
collected over the course of a month from ∼6000 servers (§2), ex-
tracting application patterns and needs (in particular, low latency
needs), from data centers whose network is comprised of commod-
ity switches. Impairments that hurt performance are identified, and
linked to properties of the traffic and the switches.

Second, we propose Data Center TCP (DCTCP), which addresses
these impairments to meet the needs of applications (§3). DCTCP
uses Explicit Congestion Notification (ECN), a feature already avail-
able in modern commodity switches. We evaluate DCTCP at 1 and
10Gbps speeds on ECN-capable commodity switches (§4). We find
DCTCP successfully supports 10X increases in application fore-
ground and background traffic in our benchmark studies.

The measurements reveal that 99.91% of traffic in our data cen-
ter is TCP traffic. The traffic consists of query traffic (2KB to
20KB in size), delay sensitive short messages (100KB to 1MB),
and throughput sensitive long flows (1MB to 100MB). The query
traffic experiences the incast impairment, discussed in [32, 13] in
the context of storage networks. However, the data also reveal new
impairments unrelated to incast. Query and delay-sensitive short
messages experience long latencies due to long flows consuming



Figure 1: Queue length measured on a Broadcom Triumph
switch. Two long flows are launched from distinct 1Gbps ports
to a common 1Gbps port. Switch has dynamic memory man-
agement enabled, allowing flows to a common receiver to dy-
namically grab up to 700KB of buffer.

some or all of the available buffer in the switches. Our key learning
from these measurements is that to meet the requirements of such
a diverse mix of short and long flows, switch buffer occupancies
need to be persistently low, while maintaining high throughput for
the long flows. DCTCP is designed to do exactly this.

DCTCP combines Explicit Congestion Notification (ECN) with
a novel control scheme at the sources. It extracts multibit feed-
back on congestion in the network from the single bit stream of
ECN marks. Sources estimate the fraction of marked packets, and
use that estimate as a signal for the extent of congestion. This al-
lows DCTCP to operate with very low buffer occupancies while
still achieving high throughput. Figure 1 illustrates the effective-
ness of DCTCP in achieving full throughput while taking up a very
small footprint in the switch packet buffer, as compared to TCP.

While designing DCTCP, a key requirement was that it be imple-
mentable with mechanisms in existing hardware — meaning our
evaluation can be conducted on physical hardware, and the solu-
tion can be deployed to our data centers. Thus, we did not con-
sider solutions such as RCP [6], which are not implemented in any
commercially-available switches.

We stress that DCTCP is designed for the data center environ-
ment. In this paper, we make no claims about suitability of DCTCP
for wide area networks. The data center environment [19] is signif-
icantly different from wide area networks. For example, round trip
times (RTTs) can be less than 250µs, in absence of queuing. Appli-
cations simultaneously need extremely high bandwidths and very
low latencies. Often, there is little statistical multiplexing: a single
flow can dominate a particular path. At the same time, the data cen-
ter environment offers certain luxuries. The network is largely ho-
mogeneous and under a single administrative control. Thus, back-
ward compatibility, incremental deployment and fairness to legacy
protocols are not major concerns. Connectivity to the external In-
ternet is typically managed through load balancers and application
proxies that effectively separate internal traffic from external, so
issues of fairness with conventional TCP are irrelevant.

We do not address the question of how to apportion data cen-
ter bandwidth between internal and external (at least one end point
outside the data center) flows. The simplest class of solutions in-
volve using Ethernet priorities (Class of Service) to keep internal
and external flows separate at the switches, with ECN marking in
the data center carried out strictly for internal flows.

The TCP literature is vast, and there are two large families of
congestion control protocols that attempt to control queue lengths:
(i) Delay-based protocols use increases in RTT measurements as a
sign of growing queueing delay, and hence of congestion. These
protocols rely heavily on accurate RTT measurement, which is sus-
ceptible to noise in the very low latency environment of data cen-
ters. Small noisy fluctuations of latency become indistinguish-
able from congestion and the algorithm can over-react. (ii) Active
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Figure 2: The partition/aggregate design pattern

Queue Management (AQM) approaches use explicit feedback from
congested switches. The algorithm we propose is in this family.

Having measured and analyzed the traffic in the cluster and asso-
ciated impairments in depth, we find that DCTCP provides all the
benefits we seek. DCTCP requires only 30 lines of code change to
TCP, and the setting of a single parameter on the switches.

2. COMMUNICATIONS IN DATA CENTERS
To understand the challenges facing data center transport proto-

cols, we first describe a common application structure, Partition/Aggregate,
that motivates why latency is a critical metric in data centers. We
measure the synchronized and bursty traffic patterns that result from
these application structure, and identify three performance impair-
ments these patterns cause.

2.1 Partition/Aggregate
The Partition/Aggregate design pattern shown in Figure 2 is the

foundation of many large scale web applications. Requests from
higher layers of the application are broken into pieces and farmed
out to workers in lower layers. The responses of these workers are
aggregated to produce a result. Web search, social network content
composition, and advertisement selection are all based around this
application design pattern. For interactive, soft-real-time applica-
tions like these, latency is the key metric, with total permissible la-
tency being determined by factors including customer impact stud-
ies [21]. After subtracting typical Internet and rendering delays,
the “backend” part of the application is typically allocated between
230-300ms. This limit is called an all-up SLA.

Many applications have a multi-layer partition/aggregate pattern
workflow, with lags at one layer delaying the initiation of others.
Further, answering a request may require iteratively invoking the
pattern, with an aggregator making serial requests to the workers
below it to prepare a response (1 to 4 iterations are typical, though
as many as 20 may occur). For example, in web search, a query
might be sent to many aggregators and workers, each responsible
for a different part of the index. Based on the replies, an aggregator
might refine the query and send it out again to improve the rele-
vance of the result. Lagging instances of partition/aggregate can
thus add up to threaten the all-up SLAs for queries. Indeed, we
found that latencies run close to SLA targets, as developers exploit
all of the available time budget to compute the best result possible.

To prevent the all-up SLA from being violated, worker nodes
are assigned tight deadlines, usually on the order of 10-100ms.
When a node misses its deadline, the computation continues with-
out that response, lowering the quality of the result. Further, high
percentiles for worker latencies matter. For example, high laten-
cies at the 99.9th percentile mean lower quality results or long lags
(or both) for at least 1 in 1000 responses, potentially impacting
large numbers of users who then may not come back. Therefore,
latencies are typically tracked to 99.9th percentiles, and deadlines
are associated with high percentiles. Figure 8 shows a screen shot
from a production monitoring tool, tracking high percentiles.
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Background Traffic

Figure 3: Time between arrival of new work for the Aggrega-
tor (queries) and between background flows between servers
(update and short message).

With such tight deadlines, network delays within the data center
play a significant role in application design. Many applications find
it difficult to meet these deadlines using state-of-the-art TCP, so
developers often resort to complex, ad-hoc solutions. For example,
our application carefully controls the amount of data each worker
sends and adds jitter. Facebook, reportedly, has gone to the extent
of developing their own UDP-based congestion control [29].

2.2 Workload Characterization
We next measure the attributes of workloads in three production

clusters related to web search and other services. The measure-
ments serve to illuminate the nature of data center traffic, and they
provide the basis for understanding why TCP behaves poorly and
for the creation of benchmarks for evaluating DCTCP.

We instrumented a total of over 6000 servers in over 150 racks.
The three clusters support soft real-time query traffic, integrated
with urgent short message traffic that coordinates the activities in
the cluster and continuous background traffic that ingests and or-
ganizes the massive data needed to sustain the quality of the query
responses. We use these terms for ease of explanation and for anal-
ysis, the developers do not separate flows in simple sets of classes.
The instrumentation passively collects socket level logs, selected
packet-level logs, and app-level logs describing latencies – a total
of about 150TB of compressed data over the course of a month.

Each rack in the clusters holds 44 servers. Each server con-
nects to a Top of Rack switch (ToR) via 1Gbps Ethernet. The ToRs
are shallow buffered, shared-memory switches; each with 4MB of
buffer shared among 48 1Gbps ports and two 10Gbps ports.

Query Traffic. Query traffic in the clusters follows the Parti-
tion/Aggregate pattern. The query traffic consists of very short,
latency-critical flows, with the following pattern. A high-level ag-
gregator (HLA) partitions queries to a large number of mid-level
aggregators (MLAs) that in turn partition each query over the 43
other servers in the same rack as the MLA. Servers act as both
MLAs and workers, so each server will be acting as an aggregator
for some queries at the same time it is acting as a worker for other
queries. Figure 3(a) shows the CDF of time between arrivals of
queries at mid-level aggregators. The size of the query flows is ex-
tremely regular, with queries from MLAs to workers being 1.6KB
and responses from workers to MLAs being 1.6 to 2KB.

Background Traffic. Concurrent with the query traffic is a com-
plex mix of background traffic, consisting of both large and small
flows. Figure 4 presents the PDF of background flow size, illustrat-
ing how most background flows are small, but most of the bytes in
background traffic are part of large flows. Key among background
flows are large, 1MB to 50MB, update flows that copy fresh data to
the workers and time-sensitive short message flows, 50KB to 1MB
in size, that update control state on the workers. Figure 3(b) shows
the time between arrival of new background flows. The inter-arrival
time between background flows reflects the superposition and di-
versity of the many different services supporting the application:
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Figure 4: PDF of flow size distribution for background traffic.
PDF of Total Bytes shows probability a randomly selected byte
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Figure 5: Distribution of number of concurrent connections.

(1) the variance in interarrival time is very high, with a very heavy
tail; (2) embedded spikes occur, for example the 0ms inter-arrivals
that explain the CDF hugging the y-axis up to the 50th percentile;
and (3) relatively large numbers of outgoing flows occur periodi-
cally, resulting from workers periodically polling a number of peers
looking for updated files.

Flow Concurrency and Size. Figure 5 presents the CDF of
the number of flows a MLA or worker node participates in con-
currently (defined as the number of flows active during a 50ms
window). When all flows are considered, the median number of
concurrent flows is 36, which results from the breadth of the Parti-
tion/Aggregate traffic pattern in which each server talks to 43 other
servers. The 99.99th percentile is over 1,600, and there is one
server with a median of 1,200 connections.

When only large flows (> 1MB) are considered, the degree of
statistical multiplexing is very low — the median number of con-
current large flows is 1, and the 75th percentile is 2. Yet, these flows
are large enough that they last several RTTs, and can consume sig-
nificant buffer space by causing queue buildup.

In summary, throughput-sensitive large flows, delay sensitive short
flows and bursty query traffic, co-exist in a data center network. In
the next section, we will see how TCP fails to satisfy the perfor-
mance requirements of these flows.

2.3 Understanding Performance Impairments
We found that to explain the performance issues seen in the pro-

duction cluster, we needed to study the interaction between the long
and short flows in the cluster and the ways flows interact with the
switches that carried the traffic.

2.3.1 Switches
Like most commodity switches, the switches in these clusters are

shared memory switches that aim to exploit statistical multiplexing
gain through use of logically common packet buffers available to
all switch ports. Packets arriving on an interface are stored into a
high speed multi-ported memory shared by all the interfaces. Mem-
ory from the shared pool is dynamically allocated to a packet by a
MMU. The MMU attempts to give each interface as much memory
as it needs while preventing unfairness [1] by dynamically adjust-
ing the maximum amount of memory any one interface can take. If
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Figure 7: A real incast event measured in a production envi-
ronment. Timeline shows queries forwarded over 0.8ms, with
all but one response returning over 12.4ms. That response is
lost, and is retransmitted after RTOmin (300ms). RTT+Queue
estimates queue length on the port to the aggregator.

a packet must be queued for an outgoing interface, but the interface
has hit its maximum memory allocation or the shared pool itself is
depleted, then the packet is dropped. Building large multi-ported
memories is very expensive, so most cheap switches are shallow
buffered, with packet buffer being the scarcest resource. The shal-
low packet buffers cause three specific performance impairments,
which we discuss next.

2.3.2 Incast
As illustrated in Figure 6(a), if many flows converge on the same

interface of a switch over a short period of time, the packets may
exhaust either the switch memory or the maximum permitted buffer
for that interface, resulting in packet losses. This can occur even if
the flow sizes are small. This traffic pattern arises naturally from
use of the Partition/Aggregate design pattern, as the request for data
synchronizes the workers’ responses and creates incast [32] at the
queue of the switch port connected to the aggregator.

The incast research published to date [32, 13] involves carefully
constructed test lab scenarios. We find that incast-like problems
do happen in production environments and they matter — degrad-
ing both performance and, more importantly, user experience. The
problem is that a response that incurs incast will almost certainly
miss the aggregator deadline and be left out of the final results.

We capture incast instances via packet-level monitoring. Fig-
ure 7 shows timeline of an observed instance. Since the size of
each individual response in this application is only 2KB (2 pack-
ets) 1, loss of a packet almost invariably results in a TCP time out.
In our network stack, theRTOmin is set to 300ms. Thus, whenever
a timeout occurs, that response almost always misses the aggrega-
tor’s deadline.

Developers have made two major changes to the application code
to avoid timeouts on worker responses. First, they deliberately lim-
ited the size of the response to 2KB to improve the odds that all

1Each query goes to all machines in the rack, and each machine
responds with 2KB, so the total response size is over 86KB.

Figure 8: Response time percentiles for a production appli-
cation having the incast traffic pattern. Forwarded requests
were jittered (deliberately delayed) over a 10ms window until
8:30am, when jittering was switched off. The 95th and lower
percentiles drop 10x, while the 99.9th percentile doubles.

the responses will fit in the memory of the switch. Second, the de-
velopers added application-level jittering [11] to desynchronize the
responses by deliberating delaying them by a random amount of
time (typically a mean value of 10ms). The problem with jittering
is that it reduces the response time at higher percentiles (by avoid-
ing timeouts) at the cost of increasing the median response time
(due to added delay). This is vividly illustrated in Figure 8.

Proposals to decreaseRTOmin reduce the impact of timeouts [32],
but, as we show next, these proposals do not address other impor-
tant sources of latency.

2.3.3 Queue buildup
Long-lived, greedy TCP flows will cause the length of the bot-

tleneck queue to grow until packets are dropped, resulting in the
familiar sawtooth pattern (Figure 1). When long and short flows
traverse the same queue, as shown in Figure 6(b), two impairments
occur. First, packet loss on the short flows can cause incast prob-
lems as described above. Second, there is a queue buildup impair-
ment: even when no packets are lost, the short flows experience in-
creased latency as they are in queue behind packets from the large
flows. Since every worker in the cluster handles both query traffic
and background traffic (large flows needed to update the data struc-
tures on the workers), this traffic pattern occurs very frequently.

A closer look at Figure 7 shows that arrivals of the responses are
distributed over∼12ms. Since the total size of all responses is only
43 × 2KB = 86KB — roughly 1ms of transfer time at 1Gbps — it
is surprising that there would be any incast losses in such transfers.
However, the key issue is the occupancy of the queue caused by
other flows - the background traffic - with losses occurring when
the long flows and short flows coincide.

To establish that long flows impact the latency of query responses,
we measured the RTT between the worker and the aggregator: this
is the time between the worker sending its response and receiving
a TCP ACK from the aggregator labeled as “RTT+Queue” in Fig-
ure 7. We measured the intra-rack RTT to approximately 100µs in
absence of queuing, while inter-rack RTTs are under 250µs. This
means “RTT+queue” is a good measure of the the length of the
packet queue headed to the aggregator during the times at which
the aggregator is collecting responses. The CDF in Figure 9 is the
distribution of queue length for 19K measurements. It shows that
90% of the time a response packet sees < 1ms of queueing, and
10% of the time it sees between 1 and 14ms of queuing (14ms is
the maximum amount of dynamic buffer). This indicates that query
flows are indeed experiencing queuing delays. Further, note that
answering a request can require multiple iterations, which magni-
fies the impact of this delay.

Note that this delay is unrelated to incast. No packets are being
lost, so reducing RTOmin will not help. Further, there need not



Figure 9: CDF of RTT to the aggregator. 10% of responses
see an unacceptable queuing delay of 1 to 14ms caused by long
flows sharing the queue.

even be many synchronized short flows. Since the latency is caused
by queueing, the only solution is to reduce the size of the queues.

2.3.4 Buffer pressure
Given the mix of long and short flows in our data center, it is very

common for short flows on one port to be impacted by activity on
any of the many other ports, as depicted in Figure 6(c). Indeed, the
loss rate of short flows in this traffic pattern depends on the number
of long flows traversing other ports. The explanation is that activity
on the different ports is coupled by the shared memory pool.

The long, greedy TCP flows build up queues on their interfaces.
Since buffer space is a shared resource, the queue build up reduces
the amount of buffer space available to absorb bursts of traffic from
Partition/Aggregate traffic. We term this impairment buffer pres-
sure. The result is packet loss and timeouts, as in incast, but without
requiring synchronized flows.

3. THE DCTCP ALGORITHM
The design of DCTCP is motivated by the performance impair-

ments described in § 2.3. The goal of DCTCP is to achieve high
burst tolerance, low latency, and high throughput, with commod-
ity shallow buffered switches. To this end, DCTCP is designed to
operate with small queue occupancies, without loss of throughput.

DCTCP achieves these goals primarily by reacting to congestion
in proportion to the extent of congestion. DCTCP uses a simple
marking scheme at switches that sets the Congestion Experienced
(CE) codepoint of packets as soon as the buffer occupancy exceeds
a fixed small threshold. The DCTCP source reacts by reducing the
window by a factor that depends on the fraction of marked packets:
the larger the fraction, the bigger the decrease factor.

It is important to note that the key contribution here is not the
control law itself. It is the act of deriving multi-bit feedback from
the information present in the single-bit sequence of marks. Other
control laws that act upon this information can be derived as well.
Since DCTCP requires the network to provide only single-bit feed-
back, we are able to re-use much of the ECN machinery that is
already available in modern TCP stacks and switches.

The idea of reacting in proportion to the extent of congestion
is also used by delay-based congestion control algorithms [5, 31].
Indeed, one can view path delay information as implicit multi-bit
feedback. However, at very high data rates and with low-latency
network fabrics, sensing the queue buildup in shallow-buffered switches
can be extremely noisy. For example, a 10 packet backlog consti-
tutes 120µs of queuing delay at 1Gbps, and only 12µs at 10Gbps.
The accurate measurement of such small increases in queueing de-
lay is a daunting task for today’s servers.

The need for reacting in proportion to the extent of congestion
is especially acute in the absence of large-scale statistical multi-
plexing. Standard TCP cuts its window size by a factor of 2 when
it receives ECN notification. In effect, TCP reacts to presence of

CE = 0 CE = 1

Send 1 ACK for 
every m packets 

with ECN=0

Send 1 ACK for 
every m packets 

with ECN=1

Send immediate 
ACK with ECN=0

Send immediate 
ACK with ECN=1

Figure 10: Two state ACK generation state machine.

congestion, not to its extent 2. Dropping the window in half causes
a large mismatch between the input rate to the link and the available
capacity. In the high speed data center environment where only a
small number of flows share the buffer (§ 2.2), this leads to buffer
underflows and loss of throughput.

3.1 Algorithm
The DCTCP algorithm has three main components:

(1) Simple Marking at the Switch: DCTCP employs a very sim-
ple active queue management scheme. There is only a single pa-
rameter, the marking threshold, K. An arriving packet is marked
with the CE codepoint if the queue occupancy is greater than K
upon it’s arrival. Otherwise, it is not marked. This scheme en-
sures that sources are quickly notified of the queue overshoot. The
RED marking scheme implemented by most modern switches can
be re-purposed for DCTCP. We simply need to set both the low and
high thresholds to K, and mark based on instantaneous, instead of
average queue length.
(2) ECN-Echo at the Receiver: The only difference between a
DCTCP receiver and a TCP receiver is the way information in the
CE codepoints is conveyed back to the sender. RFC 3168 states
that a receiver sets the ECN-Echo flag in a series of ACK packets
until it receives confirmation from the sender (through the CWR
flag) that the congestion notification has been received. A DCTCP
receiver, however, tries to accurately convey the exact sequence of
marked packets back to the sender. The simplest way to do this is
to ACK every packet, setting the ECN-Echo flag if and only if the
packet has a marked CE codepoint.

However, using Delayed ACKs is important for a variety of rea-
sons, including reducing the load on the data sender. To use de-
layed ACKs (one cumulative ACK for every m consecutively re-
ceived packets 3), the DCTCP receiver uses the trivial two state
state-machine shown in Figure 10 to determine whether to set ECN-
Echo bit. The states correspond to whether the last received packet
was marked with the CE codepoint or not. Since the sender knows
how many packets each ACK covers, it can exactly reconstruct the
runs of marks seen by the receiver.
(3) Controller at the Sender: The sender maintains an estimate of
the fraction of packets that are marked, called α, which is updated
once for every window of data (roughly one RTT) as follows:

α← (1− g)× α+ g × F, (1)

where F is the fraction of packets that were marked in the last win-
dow of data, and 0 < g < 1 is the weight given to new samples
against the past in the estimation of α. Given that the sender re-
ceives marks for every packet when the queue length is higher than
K and does not receive any marks when the queue length is below
K, Equation (1) implies that α estimates the probability that the
queue size is greater than K. Essentially, α close to 0 indicates
low, and α close to 1 indicates high levels of congestion.

2Other variants which use a variety of fixed factors and/or other
fixed reactions have the same issue.
3Typically, one ACK every 2 packets.



Prior work [26, 20] on congestion control in the small buffer
regime has observed that at high line rates, queue size fluctuations
become so fast that you cannot control the queue size, only its dis-
tribution. The physical significance of α is aligned with this obser-
vation: it represents a single point of the queue size distribution at
the bottleneck link.

The only difference between a DCTCP sender and a TCP sender
is in how each reacts to receiving an ACK with the ECN-Echo flag
set. Other features of TCP such as slow start, additive increase
in congestion avoidance, or recovery from packet lost are left un-
changed. While TCP always cuts it’s window size by a factor of 2
in response4 to a marked ACK, DCTCP uses α:

cwnd← cwnd× (1− α/2). (2)

Thus, when α is near 0 (low congestion), the window is only
slightly reduced. In other words, DCTCP senders start gently re-
ducing their window as soon as the queue exceeds K. This is
how DCTCP maintains low queue length, while still ensuring high
throughput. When congestion is high (α = 1), DCTCP cuts win-
dow in half, just like TCP.

3.2 Benefits
DCTCP alleviates the three impairments discussed in § 2.3 (shown

in Figure 6) as follows.
Queue buildup: DCTCP senders start reacting as soon as queue
length on an interface exceedsK. This reduces queueing delays on
congested switch ports, which minimizes the impact of long flows
on the completion time of small flows. Also, more buffer space
is available as headroom to absorb transient micro-bursts, greatly
mitigating costly packet losses that can lead to timeouts.
Buffer pressure: DCTCP also solves the buffer pressure problem
because a congested port’s queue length does not grow exceedingly
large. Therefore, in shared memory switches, a few congested ports
will not exhaust the buffer resources harming flows passing through
other ports.
Incast: The incast scenario, where a large number of synchronized
small flows hit the same queue, is the most difficult to handle. If the
number of small flows is so high that even 1 packet from each flow
is sufficient to overwhelm the buffer on a synchronized burst, then
there isn’t much DCTCP—or any congestion control scheme that
does not attempt to schedule traffic—can do to avoid packet drops.

However, in practice, each flow has several packets to transmit,
and their windows build up over multiple RTTs. It is often bursts in
subsequent RTTs that lead to drops. Because DCTCP starts mark-
ing early (and aggressively – based on instantaneous queue length),
DCTCP sources receive enough marks during the first one or two
RTTs to tame the size of follow up bursts. This prevents buffer
overflows and resulting timeouts.

3.3 Analysis
We now analyze the steady state behavior of the DCTCP control

loop in a simplified setting. We consider N infinitely long-lived
flows with identical round-trip times RTT , sharing a single bottle-
neck link of capacity C. We further assume that the N flows are
synchronized; i.e., their “sawtooth” window dynamics are in-phase.
Of course, this assumption is only realistic when N is small. How-
ever, this is the case we care about most in data centers (§ 2.2).

Because theN window sizes are synchronized, they follow iden-
tical sawtooths, and the queue size at time t is given by

Q(t) = NW (t)− C ×RTT, (3)

4Both TCP and DCTCP cut their window size at most once per
window of data [27].
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Figure 11: Window size of a single DCTCP sender, and the
queue size process.

where W (t) is the window size of a single source [4]. Therefore
the queue size process is also a sawtooth. We are interested in com-
puting the following quantities which completely specify the saw-
tooth (see Figure 11): the maximum queue size (Qmax), the ampli-
tude of queue oscillations (A), and the period of oscillations (TC ).
The most important of these is the amplitude of oscillations, which
quantifies how well DCTCP is able to maintain steady queues, due
to its gentle proportionate reaction to congestion indications.

We proceed to computing these quantities. The key observation
is that with synchronized senders, the queue size exceeds the mark-
ing threshold K for exactly one RTT in each period of the saw-
tooth, before the sources receive ECN marks and reduce their win-
dow sizes accordingly. Therefore, we can compute the fraction of
marked packets, α, by simply dividing the number of packets sent
during the last RTT of the period by the total number of packets
sent during a full period of the sawtooth, TC .

Let’s consider one of the senders. Let S(W1,W2) denote the
number of packets sent by the sender, while its window size in-
creases from W1 to W2 > W1. Since this takes W2 −W1 round-
trip times, during which the average window size is (W1 +W2)/2,

S(W1,W2) = (W 2
2 −W 2

1 )/2. (4)

LetW ∗ = (C×RTT +K)/N . This is the critical window size
at which the queue size reaches K, and the switch starts marking
packets with the CE codepoint. During the RTT it takes for the
sender to react to these marks, its window size increases by one
more packet, reaching W ∗ + 1. Hence,

α = S(W ∗,W ∗ + 1)/S((W ∗ + 1)(1− α/2),W ∗ + 1). (5)

Plugging (4) into (5) and rearranging, we get:

α2(1− α/4) = (2W ∗ + 1)/(W ∗ + 1)2 ≈ 2/W ∗, (6)

where the approximation in (6) is valid when W ∗ >> 1. Equa-
tion (6) can be used to compute α as a function of the network
parameters C, RTT , N and K. Assuming α is small, this can
be simplified as α ≈

p
2/W ∗. We can now compute A and TC

in Figure 11 as follows. Note that the amplitude of oscillation in
window size of a single flow, D, (see Figure 11) is given by:

D = (W ∗ + 1)− (W ∗ + 1)(1− α/2). (7)

Since there are N flows in total,

A = ND = N(W ∗ + 1)α/2 ≈ N

2

√
2W ∗

=
1

2

p
2N(C ×RTT +K), (8)

TC = D =
1

2

p
2(C ×RTT +K)/N (in RTTs). (9)

Finally, using (3), we have:

Qmax = N(W ∗ + 1)− C ×RTT = K +N. (10)
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Figure 12: Comparison between the queue size process pre-
dicted by the analysis with NS-2 simulations. The DCTCP pa-
rameters are set to K = 40 packets, and g = 1/16.

We have evaluated the accuracy of the above results using NS-2
simulations in a variety of scenarios. Figure 12 shows the results
for N = 2, 10, and 40 long-lived DCTCP flows sharing a 10Gbps
bottleneck, with a 100µs round-trip time. As seen, the analysis
is indeed a fairly accurate prediction of the actual dynamics, es-
pecially when N is small (less than 10). For large N , as in the
N = 40 case, de-synchronization of the flows leads to smaller
queue variations than predicted by the analysis.

Equation (8) reveals an important property of DCTCP; when N
is small, the amplitude of queue size oscillations with DCTCP is
O(
√
C ×RTT ), and is therefore much smaller than the O(C ×

RTT ) oscillations of TCP. This allows for a very small marking
threshold K, without loss of throughput in the low statistical mul-
tiplexing regime seen in data centers. In fact, as we verify in the
next section, even with the worst case assumption of synchronized
flows used in this analysis, DCTCP can begin marking packets at
(1/7)th of the bandwidth-delay product without losing throughput.

3.4 Guidelines for choosing parameters
In this section, C is in packets/second, RTT is in seconds, and

K is in packets.
Marking Threshold. The minimum value of the queue occupancy
sawtooth is given by:

Qmin = Qmax −A (11)

= K +N − 1

2

p
2N(C ×RTT +K). (12)

To find a lower bound on K, we minimize (12) over N , and
choose K so that this minimum is larger than zero, i.e. the queue
does not underflow. This results in:

K > (C ×RTT )/7. (13)

Estimation Gain. The estimation gain g must be chosen small
enough to ensure the exponential moving average (1) “spans” at
least one congestion event. Since a congestion event occurs every
TC round-trip times, we choose g such that:

(1− g)TC > 1/2. (14)

Plugging in (9) with the worst case value N = 1, results in the
following criterion:

g < 1.386/
p

2(C ×RTT +K). (15)

3.5 Discussion
AQM is not enough: Before designing DCTCP, we evaluated Ac-
tive Queue Management (AQM) schemes like RED 5 and PI [17]
that do not modify TCP’s congestion control mechanism. We found
they do not work well when there is low statistical multiplexing and

5We always use RED with ECN: i.e. random early marking, not
random early drop. We call it RED simply to follow convention.

traffic is bursty—both of which are true in the data center. Essen-
tially, because of TCP’s conservative reaction to congestion indica-
tions, any AQM scheme operating with TCP in a data-center-like
environment requires making a tradeoff between throughput and
delay [9]: either accept large queue occupancies (and hence delay),
or accept loss of throughput.

We will examine performance of RED (with ECN) in some detail
in § 4, since our testbed switches are RED/ECN-capable. We have
evaluated other AQM schemes such as PI extensively using NS-
2. See [3] for detailed results. Our simulation results show that
with few flows (< 5), PI suffers from queue underflows and a loss
of utilization, while with many flows (20), queue oscillations get
worse, which can hurt the latency of time-critical flows.
Convergence and Synchronization: In both analysis and experi-
mentation, we have found that DCTCP achieves both high through-
put and low delay, all in an environment with low statistical multi-
plexing. In achieving this, DCTCP trades off convergence time; the
time required for a new flow to grab its share of the bandwidth from
an existing flow with a large window size. This is expected since a
DCTCP source must make incremental adjustments to its window
size based on the accumulated multi-bit feedback in α. The same
tradeoff is also made by a number of TCP variants [22, 23].

We posit that this is not a major concern in data centers. First,
data center round-trip times are only a few 100µsec, 2 orders of
magnitudes less than RTTs in the Internet. Since convergence time
for a window based protocol like DCTCP is proportional to the
RTT, the actual differences in time cause by DCTCP’s slower con-
vergence compared to TCP are not substantial. Simulations show
that the convergence times for DCTCP is on the order of 20-30ms
at 1Gbps, and 80-150ms at 10Gbps, a factor of 2-3 more than
TCP 6. Second, in a data center dominated by microbursts, which
by definition are too small to converge, and big flows, which can
tolerate a small convergence delay over their long lifetimes, con-
vergence time is the right metric to yield.

Another concern with DCTCP is that the “on-off” style mark-
ing can cause synchronization between flows. However, DCTCP’s
reaction to congestion is not severe, so it is less critical to avoid
synchronization [10].
Practical considerations: While the recommendations of § 3.4
work well in simulations, some care is required before applying
these recommendations in real networks. The analysis of the pre-
vious section is for idealized DCTCP sources, and does not cap-
ture any of the burstiness inherent to actual implementations of
window-based congestion control protocols in the network stack.
For example, we found that at 10G line rates, hosts tend to send
bursts of as many as 30-40 packets, whenever the window permit-
ted them to do so. While a myriad of system details (quirks in
TCP stack implementations, MTU settings, and network adapter
configurations) can cause burstiness, optimizations such as Large
Send Offload (LSO), and interrupt moderation increase burstiness
noticeably 7. One must make allowances for such bursts when se-
lecting the value of K. For example, while based on (13), a mark-
ing threshold as low as 20 packets can be used for 10Gbps, we
found that a more conservative marking threshold larger than 60
packets is required to avoid loss of throughput. This excess is in
line with the burst sizes of 30-40 packets observed at 10Gbps.

Based on our experience with the intrinsic burstiness seen at
1Gbps and 10Gbps, and the total amount of available buffering in
our switches, we use the marking thresholds ofK = 20 packets for

6For RTTs ranging from 100µs to 300µs.
7Of course, such implementation issues are not specific to DCTCP
and affect any protocol implemented in the stack.



Ports Buffer ECN
Triumph 48 1Gbps, 4 10Gbps 4MB Y
Scorpion 24 10Gbps 4MB Y
CAT4948 48 1Gbps, 2 10Gbps 16MB N

Table 1: Switches in our testbed

1Gbps and K = 65 packets for 10Gbps ports in our experiments,
unless otherwise noted. g is set to 1/16 in all experiments.

4. RESULTS
This section is divided in three parts. First, using carefully de-

signed traffic patterns, we examine the basic properties of the DCTCP
algorithm, such as convergence, fairness, and behavior in a multi-
hop environment. Second, we show a series of microbenchmarks
that explain how DCTCP ameliorates the specific performance im-
pairments described in §2.3. Finally, we evaluate DCTCP using a
benchmark generated from our traffic measurements. No simula-
tions are used in this section. All comparisons are between a full
implementation of DCTCP and a state-of-the-art TCP New Reno
(w/ SACK) implementation. Unless otherwise noted, we use the
parameter settings discussed at the end of § 3.

Our testbed consists of 94 machines in three racks. 80 of these
machines have 1Gbps NICs, and the remaining 14 have 10Gbps
NICs. The CPU and memory of these machines were never a bot-
tleneck in any of our experiments. We connect these machines to-
gether in a variety of configurations using the set of switches shown
in Table 1. CAT4948 is a Cisco product, the rest are from Broad-
com. The Triumph and Scorpion are “shallow buffered,” while
the CAT4948 is a deep-buffered switch. Except where noted, the
switches used their default dynamic buffer allocation policy.

4.1 DCTCP Performance
The experiments in this subsection are microbenchmarks, with

traffic patterns specifically designed to evaluate particular aspects
of DCTCP’s performance.
Throughput and queue length: We begin by evaluating whether
DCTCP achieves the same throughput as TCP on long-lived flows
when recommended values of K are used. To determine this, we
use machines connected to the Triumph switch with 1Gbps links.
One host is a receiver; the others are senders. The senders estab-
lish long-lived connections to the receiver and send data as fast as
they can. During the transfer, we sample the instantaneous queue
length at the receiver’s switch port every 125ms. We repeat the ex-
periment for both DCTCP and TCP. For DCTCP, we set K = 20,
as recommended before. For TCP, the switch operates in standard,
drop-tail mode.

We find that both TCP and DCTCP achieve the maximum through-
put of 0.95Gbps, and link utilization is nearly 100%. The key dif-
ference is queue length at the receiver interface. The CDF in Fig-
ure 13 shows that DCTCP queue length is stable around 20 packets
(i.e., equal to K + n, as predicted in § 3), while the TCP queue
length is 10X larger and varies widely. In fact, Figure 1 is based
on the data from this experiment. It shows the time series of queue
length (with 2 flows) for a representative period. The sawtooth be-
havior of TCP is clearly visible. The upper limit for TCP’s queue
length is dictated by the switch’s dynamic buffer allocation pol-
icy, which will allocate up to ∼700KB of buffer to a single busy
interface if no other port is receiving traffic. In contrast, DCTCP
maintains a stable, low queue length.

We also tried various other values of K, and found that the per-
formance is insensitive to value of K at 1Gbps, even for values
as low as K = 5. We then repeated the experiment with 10Gbps
link. Figure 14 shows the throughput results. Once the value of
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Figure 15: DCTCP versus RED at 10Gbps

K exceeds the recommended value of 65, DCTCP gets the same
throughput as TCP, and is no longer sensitive to the value of K.
RED: In §3, we argued that even AQM schemes like RED would
show queue length oscillations, as these oscillations stem from the
way TCP adjusts its window in response to congestion indications.
We also argued that DCTCP does not suffer from this problem.

To verify this, we repeated the 10Gbps experiment. We again
ran DCTCP with K = 65. For TCP, the switch marked pack-
ets using RED.8 It was difficult to set RED parameters correctly:
following the guidelines in [7] (max_p=0.1, weight=9, min_th=50,
max_th=150) caused TCP throughput to drop to 7.8Gbps. To get a
fair comparison with DCTCP, we increased the value of the min_th
and max_th RED parameters until TCP achieved 9.2Gbps at min_th
= 150. Figure 15 shows the distribution of queue length observed
at the receiver’s switch port.

We see that RED causes wide oscillations in queue length, of-
ten requiring twice as much buffer to achieve the same throughput
as DCTCP. This transient queue buildup means there is less room
available to absorb microbursts, and we will see the impact of this
on our real benchmark in §4.3. However, given the difficulty of
setting RED parameters, we use TCP with drop tail as the base-
line for all other experiments. The baseline also reflects what our
production clusters (§ 2) actually implement.

The key takeaway from these experiments is that with K set ac-
cording to the guidelines in §3.4, DCTCP achieves full throughput,
even at very small queue length. TCP with drop tail or RED causes
queue lengths to oscillate widely.
Fairness and convergence: To show that DCTCP flows quickly
converge to their fair share, we set up 6 hosts connected via 1Gbps
links to the Triumph switch. K was set to 20. One of the hosts
acts as a receiver, while the others act as senders. We start a sin-
gle long-lived flow, and then we sequentially start and then stop
the other senders, spaced by 30 seconds. The timeseries depicting
the overall flow throughput is shown in Figure 16(a). As DCTCP
flows come and go, they quickly converge to their fair share. For
comparison, the corresponding timeseries for TCP is shown in Fig-
ure 16(b). TCP throughput is fair on average, but has much higher
variation. We have repeated this test with up to 90 flows, and we
find that DCTCP converges quickly, and all flows achieve their
8Our switches do not support any other AQM scheme. RED is
implemented by setting the ECN bit, not dropping.
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Figure 17: Multi-hop topology

fair share (Jain’s fairness index is 0.99). We make no claims that
DCTCP is fair to TCP. If need be, DCTCP flows can be isolated
from TCP flows, which can be easily accomplished in most data
centers, as discussed in (§ 1).
Multi-hop networks: To evaluate DCTCP performance in a multi-
hop, multi-bottleneck environment, we created the topology in Fig-
ure 17. The senders in the S1 and S3 groups, totaling 20 ma-
chines, all send to receiver R1. The 20 senders in S2 each send
to an assigned receiver in group R2. There are two bottlenecks in
this topology: both the 10Gbps link between Triumph 1 and the
Scorpion and the 1Gbps link connecting Triumph 2 to R1 are over-
subscribed. The flows from the senders in group S1 encounter both
these bottlenecks. We find that with DCTCP, each sender in S1 gets
46Mbps and S3 gets 54Mbps throughput, while each S2 sender gets
approximately 475Mbps — these are within 10% of their fair-share
throughputs. TCP does slightly worse: the queue length fluctua-
tions at the two bottlenecks cause timeouts for some of the TCP
connections. This experiment shows that DCTCP can cope with
the multiple bottlenecks and differing RTTs that will be found in
data centers.

4.2 Impairment microbenchmarks
We now show a series of microbenchmarks that show how DCTCP

addresses the impairments described in § 2.3.

4.2.1 Incast
In this section, we examine the incast impairment (§ 2.3). In

[32] value of RTOmin was reduced to address the incast problem.
We compare this approach with DCTCP’s approach of avoiding
timeouts, as explained in 3.2.
Basic incast: We start with an experiment that repeats the con-
ditions in [32]. Forty-one machines are connected to the Triumph
switch with 1Gbps links, and, to duplicate the prior work, for this
one experiment the dynamic memory allocation policy in the switch
was replaced with a static allocation of 100 packets to each port.

One machine acts as a client, others act as servers. The client re-
quests ("queries") 1MB/n bytes from n different servers, and each
server responds immediately with the requested amount of data.
The client waits until it receives all the responses, and then issues
another, similar query. This pattern is repeated 1000 times. The
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Figure 19: Many-to-one: With dynamic buffering, DCTCP
does not suffer problems at even high load.

metric of interest is the completion time of the queries. The min-
imum query completion time is around 8ms: the incoming link at
the receiver is the bottleneck, and it takes 8ms to deliver 1MB of
data over a 1Gbps link. We carry out the experiment for both TCP
and DCTCP, and with two timeout values: the default 300ms, and
10ms. The latter value is the tick granularity of our system, so it
is the smallest timeout value we can use without major changes to
timer handling.

Figure 18(a) shows the mean query completion time. DCTCP
performs much better than both TCP variants — eventually con-
verging to equivalent performance as incast degree increases. Fig-
ure 18(b) makes the reason evident by showing the fraction of queries
that suffered at least one timeout.9 TCP begins to suffer timeouts
when the number of servers exceeds 10, as no sender receives a
signal to lower its sending rate until enough packets are in flight
to cause a full window loss. DCTCP senders receive ECN marks,
slow their rate, and only suffer timeouts once the number of senders
is large enough so that each sending (around) 2 packets exceeds the
static buffer size (35× 2× 1.5KB > 100KB).
Importance of dynamic buffering: Recall that the above experi-
ment used a static buffer of 100 packets at each port. Would using
the switch’s default dynamic buffer allocation algorithm (§ 2.3.1)
solve the incast problem? To answer this question, we repeated
the above experiment with dynamic buffering enabled. Given the
poor performance of TCP with 300ms timeout (top curve in Fig-
ure 18(a)), we use 10ms timeout here and for the rest of the paper.

Figure 19 shows that DCTCP no longer suffers incast timeouts
even when the number of servers grows to 40. On the other hand,
TCP continues to suffer from incast timeouts, although the dynamic
buffering algorithm mitigates the impact by allocating as much as
700KB of buffer to the receiver’s port (it does not allocate all 4MB
for fairness). The allocated buffer is sufficient for DCTCP to avoid
timeouts even with a large number of servers.
All-to-all incast: In the previous experiments, there was only a
single receiver. This is an easy case for the dynamic buffer man-
agement to handle, as there is only one receiver, so only one port

9Each query elicits a response from several servers, any of which
can suffer a timeout. However, if multiple responses suffer time-
outs, the delay does not increase proportionately, since the re-
sponses are delivered in parallel.
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gets congested. But what happens when there are multiple simul-
taneous incasts going on, as occurs in the production clusters? To
investigate, we use the same setup as before, except all 41 machines
participate. Each machine requests 25KB of data from the remain-
ing 40 machines (total 1MB). In other words, 40 incast experiments
happen all at once. The CDF of the response time is shown in Fig-
ure 20. We see that DCTCP keeps the demand on buffer space low
enough that the dynamic buffering is able to cover all requests for
memory and DCTCP suffers no timeouts at all. TCP, on the other
hand, performs poorly, because over 55% of the queries suffer from
at least one timeout.
Other settings: We also investigated TCP and DCTCP’s perfor-
mance with incast traffic patterns in scenarios including 10Gbps
links and larger (10MB) and smaller response sizes (100KB). The
results are qualitatively similar to those presented here. Repeating
the experiments with our CAT4948 deep-buffered switch, we found
a reduction in TCP’s incast problem for small response sizes (<
1MB), but the problem resurfaces for larger response sizes (10MB).
DCTCP performs well at all response sizes. Besides, the deep
buffers allow for larger queue buildups, which hurts performance
of other traffic — we examine this in detail in §4.3.

In summary, DCTCP handles incast without timeouts until there
are so many senders that the traffic sent in the first RTT overflows
the buffers. Its performance is further enhanced by the dynamic
buffering offered by modern switches.

4.2.2 Queue buildup
The second impairment scenario in § 2.3 involves big and small

flows mixing in the same queue, with the queue build-up caused by
the big flow increasing the latency of the small flows. To measure
DCTCP’s impact on this impairment, we connect 4 machines to the
Triumph switch with 1 Gbps links. One machine is a receiver and
the other three are senders. We start one big TCP flow each from
two senders to the receiver — the 75th percentile of concurrent con-
nections measured in our data center (Figure 5). The receiver then
requests 20KB chunks of data from the third sender. The sender re-
sponds immediately, and the receiver sends the next request as soon
as it finishes receiving data. All communication is over long-lived
connections, so there is no three-way handshake for each request.

Figure 21 shows the CDF of request completion times for 1000
20KB transfers. DCTCP’s completion time (median delay < 1 ms)
is much lower than TCP (median delay 19ms). No flows suffered
timeouts in this scenario, so reducing RTOmin would not reduce
the delay. Since the amount of data transferred is small, the comple-
tion time is dominated by the round trip time, which is dominated
by the queue length at the switch.

Thus, DCTCP improves latency for small flows by reducing queue
lengths, something reducing RTOmin does not affect.

4.2.3 Buffer pressure
The third impairment scenario in § 2.3 involves flows on one

set of interfaces increasing the rate of packet loss on other inter-

Without background traffic With background traffic
TCP 9.87ms 46.94ms

DCTCP 9.17ms 9.09ms

Table 2: 95th percentile of query completion time. DCTCP pre-
vents background traffic from affecting performance of query
traffic. RTOmin = 10ms, K = 20.

faces. Recall that these are shared-memory switches. With TCP,
long flows use up the shared buffer space, which leaves less head-
room to absorb incast bursts. DCTCP should alleviate this problem
by limiting the queue build up on the interfaces used by long flows.
To evaluate this, we connected 44 hosts to a Triumph switch with
1Gbps links. 11 of these hosts participate in a 10-1 incast pat-
tern, with 1 host acting as a client, and 10 hosts acting as servers.
The client requested a total of 1MB data from the servers (100KB
from each), repeating the request 10,000 times. We have seen (Fig-
ure 19), that the switch can easily handle 10:1 incast with both TCP
and DCTCP, without inducing any timeouts.

Next, we use the remaining 33 hosts to start “background” traffic
of long-lived flows to consume the shared buffer. We start a total
of 66 big flows between the 33 hosts, with each host sending data
to two other hosts.10 Table 2 shows the 95th percentile of query
completion times.

We see that with TCP, query completion time is substantially
worse in the presence of long-lived flows, while DCTCP’s perfor-
mance is unchanged. This performance difference is due to time-
outs: about 7% of queries suffer from timeouts with TCP, while
only 0.08% do so under DCTCP. Long-lived flows get the same
throughput under both TCP and DCTCP.

This experiment shows DCTCP improves the performance iso-
lation between flows by reducing the buffer pressure that would
otherwise couple them.

In summary, these microbenchmarks allow us to individually
test DCTCP for fairness, high throughput, high burst tolerance,
low latency and high performance isolation while running at 1 and
10Gbps across shared-buffer switches. On all these metrics, DCTCP
significantly outperforms TCP.

4.3 Benchmark Traffic
We now evaluate how DCTCP would perform under the traffic

patterns found in production clusters (§2.2). For this test, we use
45 servers connected to a Triumph top of rack switch by 1Gbps
links. An additional server is connected to a 10Gbps port of the
Triumph to act as a stand-in for the rest of the data center, and all
inter-rack traffic is directed to/from this machine. This aligns with
the actual data center, where each rack connects to the aggregation
switch with a 10Gbps link.

We generate all three types of traffic found in the cluster: query,
short-message, and background. Query traffic is created following
the Partition/Aggregate structure of the real application by having
each server draw from the interarrival time distribution and send a
query to all other servers in the rack, each of which then send back
a 2KB response (45 × 2KB ≈ 100KB total response size). For
the short-message and background traffic, each server draws inde-
pendently from the interarrival time and the flow size distributions,
choosing an endpoint so the ratio of inter-rack to intra-rack flows
is the same as measured in the cluster.11 We carry out these experi-
ments using TCP and DCTCP, with RTOmin set to 10ms in both.

10Queue buildup only occurs when there is more than 1 flow, which
measurements of our cluster show happens 25% of the time (§ 2).

11Background flows have some structure (e.g., pattern of polling
other workers for updates), so using two independent distributions
instead of a joint distribution is an approximation.



1

2

4

8

16

32

64

128

Fl
o

w
 c

o
m

p
le

ti
o

n
 T

im
e

 (
m

s)
DCTCP
TCP

(a) Mean

1
2
4
8

16
32
64
128
256

Fl
o

w
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s)

DCTCP
TCP

13
22

(b) 95th Percentile
Figure 22: Completion time of background traffic. Note the log
scale on the Y axis.
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For DCTCP experiments, K was set to 20 on 1Gbps links and to
65 on the 10Gbps link. Dynamic buffer allocation was used in all
cases. We generate traffic for 10 minutes, comprising over 200,000
background flows and over 188,000 queries.

Both query and short-message flows are time critical, their met-
ric of interest is completion time. The RTT (i.e. queue length) and
timeouts affect this delay the most. For large flows in the back-
ground traffic (e.g., updates), the throughput of the network is the
main consideration.

Figure 22 shows the mean and 95th percentile of completion de-
lay for background traffic, classified by flow sizes. The 90% con-
fidence intervals of the mean are too tight to be shown. Short-
messages benefit significantly from DCTCP, as flows from 100KB-
1MB see a 3ms/message benefit at the mean and a 9ms benefit at
95th percentile. The background traffic did not suffer any timeouts
with either protocol in this experiment. Thus, the lower latency for
short-messages is due to DCTCP’s amelioration of queue buildup.

Figure 23 shows query completion time statistics. DCTCP per-
forms better than TCP, especially at the tail of the distribution. The
reason is a combination of timeouts and high queueing delay. With
TCP, 1.15% of the queries suffer from timeout(s). No queries suffer
from timeouts with DCTCP.
Scaled traffic: The previous benchmark shows how DCTCP per-
forms on today’s workloads. However, as explained in §2.3, the
traffic parameters we measured reflect extensive optimization con-
ducted by the developers to get the existing system into the tight
SLA bounds on response time. For example, they restrict the size of
query responses and update frequency, thereby trading off response
quality for response latency. This naturally leads to a series of
“what if” questions: how would DCTCP perform if query response
sizes were larger? Or how would DCTCP perform if background
traffic characteristics were different? We explore these questions
by scaling the traffic in the benchmark.

We begin by asking if using DCTCP instead of TCP would al-
low a 10X increase in both query response size and background
flow size without sacrificing performance. We use the same testbed
as before. We generate traffic using the benchmark, except we in-
crease the size of update flows larger than 1MB by a factor of 10
(most bytes are in these flows, so this effectively increases the vol-

ume of background traffic by a factor of 10). Similarly, we generate
queries as before, except that the total size of each response is 1MB
(with 44 servers, each individual response is just under 25KB). We
conduct the experiment for both TCP and DCTCP.

To see whether other solutions, besides DCTCP, may fix TCP’s
performance problems, we tried two variations. First, we replaced
the shallow-buffered Triumph switch with the deep-buffered CAT4948
switch.12 Second, instead of drop tail queues, we used RED with
ECN. It was as difficult to tune RED parameters at 1Gbps as it was
previously at 10Gbps: after experimentation, we found that setting
min_th = 20, max_th = 60 and using [7] for the remaining
parameters gave the best performance.

Figure 24 shows the 95th percentile of response times for the
short messages (100KB-1MB) and the query traffic (mean and other
percentiles are qualitatively similar). The results show DCTCP
performs significantly better than TCP for both update and query
traffic. The 95th percentile of completion time for short-message
traffic improves by 14ms, while query traffic improves by 136ms.
With TCP, over 92% of the queries suffer from timeouts, while only
0.3% suffer from timeouts with DCTCP.

In fact, short message completion time for DCTCP is essentially
unchanged from baseline (Figure 22(b)) and, even at 10X larger
size, only 0.3% of queries experience timeouts under DCTCP: in
contrast TCP suffered 1.15% timeouts for the baseline.13 Thus,
DCTCP can handle substantially more traffic without any adverse
impact on performance.

Deep buffered switches have been suggested as a fix for TCP’s
incast problem, and we indeed see that with CAT4948 TCP’s query
completion time is comparable to DCTCP, since less than 1% of
queries suffer from timeout. However, if deep buffers are used,
the short-message traffic is penalized: their completion times are
over 80ms, which is substantially higher than TCP without deep
buffers (DCTCP is even better). The reason is that deep buffers
cause queue buildup.

We see that RED is not a solution to TCP’s problems either:
while RED improves performance of short transfers by keeping
average queue length low, the high variability (see Figure 15) of
the queue length leads to poor performance for the query traffic
(95% of queries experience a timeout). Another possible factor is
that RED marks packets based on average queue length, and is thus
slower to react to bursts of traffic caused by query incast.

These results make three key points: First, if our data center
used DCTCP it could handle 10X larger query responses and 10X
larger background flows while performing better than it does with
TCP today. Second, while using deep buffered switches (without
ECN) improves performance of query traffic, it makes performance
of short transfers worse, due to queue build up. Third, while RED
improves performance of short transfers, it does not improve the
performance of query traffic, due to queue length variability.

We have tried other variations of our benchmarks - either by in-
creasing the arrival rate of the flows or by increasing their sizes.
We see that DCTCP consistently ourperforms TCP.

5. RELATED WORK
The literature on congestion control is vast. We focus on recent

developments most directly related to our work. Application-level
solutions to incast problem include jittering responses (§ 2.3.2)
or batching responses in small groups. These solutions avoid in-
cast, but increase the median response time. Recently, researchers

12CAT4948 does not support ECN, so we can’t run DCTCP with it.
13Note that with 10X larger queries, the minimum query completion
time increases 10X.



have shown [32, 13] that lowering the RTOmin to 1ms, and us-
ing high-resolution retransmission timers alleviates the impact of
incast-induced timeouts. But this does not prevent queue buildup;
and hence does not address latency issues (§ 2.3). DCTCP, avoids
queue buildup, and hence prevents timeouts.

QCN [24] is being developed as an optional standard for Eth-
ernet. QCN requires hardware rate limiters (implemented on the
NICs). This adds to hardware complexity, and hence increases
server cost. To reduce cost, QCN rate limiters must lump flows
into (a single or few) flow sets, which then share fate, leading
to collateral damage to flows that do not share bottleneck links
with congested flows. Moreover, QCN cannot cross layer-3 bound-
aries, which abound in many data centers today. Special transport
schemes for data centers or even optical networks like E-TCP [14]
seek to maintain high utilization in face of small buffers, deliber-
ately inducing loss, and not reacting to it. E-TCP does not address
delays experienced by short flows or incast.

Several TCP variants aim to reduce queue lengths at routers: de-
lay based congestion control (e.g., Vegas [5] and high speed vari-
ants such as CTCP [31]), explicit feedback schemes (e.g., RCP [6],
and the ECN-based VCP [34] and BMCC [25]) AQM schemes
(e.g., RED [10] and PI [17]). In data centers, queuing delays are
comparable to sources of noise in the system, hence do not provide
a reliable congestion signal. We have shown that AQM schemes
like RED and PI do not perform well in absence of statistical mul-
tiplexing. Schemes like RCP, VCP and BMCC require switches to
do more complex operations, and are not commercially available.

DCTCP differs from one of the earliest ECN schemes, DECbit
[28], in the way AQM feedback is smoothed (filtered) across time.
In DECbit, the router averages the queue length parameter over
recent cycles, while DCTCP uses a simple threshold and delegates
the smoothing across time of the feedback to the host (sender).

Much research has been devoted, with success, to improving
TCP performance on paths with high bandwidth-delay product, in-
cluding High-speed TCP [8], CUBIC [30] and FAST [33]. While
many of these variants respond less drastically to packet loss, just
like DCTCP does, they do not seek to maintain small queue length
and their analysis often assumes a high degree of statistical multi-
plexing, which is not the norm in a data center environment.

6. FINAL REMARKS
In this paper, we proposed a new variant of TCP, called Data

Center TCP (DCTCP). Our work was motivated by detailed traf-
fic measurements from a 6000 server data center cluster, running
production soft real time applications. We observed several perfor-
mance impairments, and linked these to the behavior of the com-
modity switches used in the cluster. We found that to meet the
needs of the observed diverse mix of short and long flows, switch
buffer occupancies need to be persistently low, while maintaining
high throughput for the long flows. We designed DCTCP to meet
these needs. DCTCP relies on Explicit Congestion Notification
(ECN), a feature now available on commodity switches. DCTCP
succeeds through use of the multi-bit feedback derived from the
series of ECN marks, allowing it to react early to congestion. A
wide set of detailed experiments at 1 and 10Gbps speeds showed
that DCTCP meets its design goals.
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