Hive - A Warehousing Solution Over a Map-Reduce
Framework

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao,
Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff and Raghotham Murthy

Facebook Data Infrastructure Team

1. INTRODUCTION

The size of data sets being collected and analyzed in the
industry for business intelligence is growing rapidly, mak-
ing traditional warehousing solutions prohibitively expen-
sive. Hadoop [3] is a popular open-source map-reduce im-
plementation which is being used as an alternative to store
and process extremely large data sets on commodity hard-
ware. However, the map-reduce programming model is very
low level and requires developers to write custom programs
which are hard to maintain and reuse.

In this paper, we present Hive, an open-source data ware-
housing solution built on top of Hadoop. Hive supports
queries expressed in a SQL-like declarative language - HiveQL,
which are compiled into map-reduce jobs executed on Hadoop.
In addition, HiveQL supports custom map-reduce scripts to
be plugged into queries. The language includes a type sys-
tem with support for tables containing primitive types, col-
lections like arrays and maps, and nested compositions of
the same. The underlying IO libraries can be extended to
query data in custom formats. Hive also includes a system
catalog, Hive-Metastore, containing schemas and statistics,
which is useful in data exploration and query optimization.
In Facebook, the Hive warehouse contains several thousand
tables with over 700 terabytes of data and is being used ex-
tensively for both reporting and ad-hoc analyses by more
than 100 users.

The rest of the paper is organized as follows. Section 2
describes the Hive data model and the HiveQL language
with an example. Section 3 describes the Hive system ar-
chitecture and an overview of the query life cycle. Section 4
provides a walk-through of the demonstration. We conclude
with future work in Section 5.

2. HIVE DATABASE
2.1 Data Model

Data in Hive is organized into:
e Tables - These are analogous to tables in relational

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘09, August 24-28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 978-1-60558-949-7/09/08

1626

databases. Each table has a corresponding HDF'S di-
rectory. The data in a table is serialized and stored in
files within that directory. Users can associate tables
with the serialization format of the underlying data.
Hive provides builtin serialization formats which ex-
ploit compression and lazy de-serialization. Users can
also add support for new data formats by defining cus-
tom serialize and de-serialize methods (called SerDe’s)
written in Java. The serialization format of each table
is stored in the system catalog and is automatically
used by Hive during query compilation and execution.
Hive also supports external tables on data stored in
HDFS, NFS or local directories.

e Partitions - Each table can have one or more parti-
tions which determine the distribution of data within
sub-directories of the table directory. Suppose data
for table T is in the directory /wh/T. If T is partitioned
on columns ds and ctry, then data with a particular
ds value 20090101 and ctry value US, will be stored in
files within the directory /wh/T/ds=20090101/ctry=US.

e Buckets - Data in each partition may in turn be divided

into buckets based on the hash of a column in the table.

Each bucket is stored as a file in the partition directory.

Hive supports primitive column types (integers, floating

point numbers, generic strings, dates and booleans) and

nestable collection types — array and map. Users can also
define their own types programmatically.

2.2 Query Language

Hive provides a SQL-like query language called HiveQL
which supports select, project, join, aggregate, union all and
sub-queries in the from clause. HiveQL supports data defi-
nition (DDL) statements to create tables with specific seri-
alization formats, and partitioning and bucketing columns.
Users can load data from external sources and insert query
results into Hive tables via the load and insert data manip-
ulation (DML) statements respectively. HiveQL currently
does not support updating and deleting rows in existing ta-
bles.

HiveQL supports multi-table insert, where users can per-
form multiple queries on the same input data using a single
HiveQL statement. Hive optimizes these queries by sharing
the scan of the input data.

HiveQL is also very extensible. It supports user defined
column transformation (UDF) and aggregation (UDAF) func-
tions implemented in Java. In addition, users can embed
custom map-reduce scripts written in any language using
a simple row-based streaming interface, i.e., read rows from



standard input and write out rows to standard output. This
flexibility does come at a cost of converting rows from and
to strings.

We omit more details due to lack of space. For a complete
description of HiveQL see the language manual [5].

2.3 Running Example: StatusMeme

We now present a highly simplified application, Status-
Meme, inspired by Facebook Lexicon [6]. When Facebook
users update their status, the updates are logged into flat
files in an NF'S directory /logs/status_updates which are ro-
tated every day. We load this data into hive on a daily basis
into a table
status_updates(userid int,status string,ds string)
using a load statement like below.

LOAD DATA LOCAL INPATH ‘/logs/status_updates’
INTO TABLE status_updates PARTITION (ds=’2009-03-20’)

Each status update record contains the user identifier (userid),

the actual status string (status), and the date (ds) when the
status update occurred. This table is partitioned on the ds
column. Detailed user profile information, like the gender of
the user and the school the user is attending, is available in
the profiles(userid int,school string,gender int) table.
We first want to compute daily statistics on the frequency
of status updates based on gender and school which the user
attends. The following multi-table insert statement gener-
ates the daily counts of status updates by school (into
school_summary(school string,cnt int,ds string)) and gen-
der (into gender_summary(gender int,cnt int,ds string)) us-
ing a single scan of the join of the status_updates and
profiles tables. Note that the output tables are also parti-
tioned on the ds column, and HiveQL allows users to insert
query results into a specific partition of the output table.

FROM (SELECT a.status, b.school, b.gender
FROM status_updates a JOIN profiles b
ON (a.userid = b.userid and
a.ds=’2009-03-20" )
) subql
INSERT OVERWRITE TABLE gender_summary
PARTITION(ds=’2009-03-20")
SELECT subql.gender, COUNT(1) GROUP BY subql.gender
INSERT OVERWRITE TABLE school_summary
PARTITION(ds=’2009-03-20")
SELECT subql.school, COUNT(1) GROUP BY subql.school

Next, we want to display the ten most popular memes
per school as determined by status updates by users who
attend that school. We now show how this computation
can be done using HiveQLs map-reduce constructs. We
parse the result of the join between status_updates and
profiles tables by plugging in a custom Python mapper
script meme-extractor.py which uses sophisticated natural
language processing techniques to extract memes from sta-
tus strings. Since Hive does not yet support the rank ag-
gregation function the top 10 memes per school can then be
computed by a simple custom Python reduce script top10.py

REDUCE subg2.school, subg2.meme, subg2.cnt
USING ‘topl10.py’ AS (school,meme,cnt)

FROM (SELECT subql.school, subql.meme, COUNT(1) AS cnt
FROM (MAP b.school, a.status

USING ‘meme-extractor.py’ AS (school,meme)

1627

JDBC!
ODBC

Web

CLI GUI

Thrift
Server

]

Driver
{Compiler,
Optimizer,
Executor)

A

) (

Data Mode
+
Task
Tracker

IIHHEHHHHII

4
MName
MNode

Job
Tracker

(

Figure 1: Hive Architecture

FROM status_updates a JOIN profiles b
ON (a.userid = b.userid)
) subql
GROUP BY subqgl.school, subql.meme
DISTRIBUTE BY school, meme
SORT BY school, meme, cnt desc
) subqg2;

3. HIVE ARCHITECTURE

Figure 1 shows the major components of Hive and its in-
teractions with Hadoop. The main components of Hive are:

e External Interfaces - Hive provides both user inter-
faces like command line (CLI) and web UI, and appli-
cation programming interfaces (API) like JDBC and
ODBC.

The Hive Thrift Server exposes a very simple client
API to execute HiveQL statements. Thrift [8] is a
framework for cross-language services, where a server
written in one language (like Java) can also support
clients in other languages. The Thrift Hive clients gen-
erated in different languages are used to build common
drivers like JDBC (java), ODBC (C++), and scripting
drivers written in php, perl, python etc.

The Metastore is the system catalog. All other com-
ponents of Hive interact with the metastore. For more
details see Section 3.1.

The Driver manages the life cycle of a HiveQL state-
ment during compilation, optimization and execution.
On receiving the HiveQL statement, from the thrift
server or other interfaces, it creates a session handle
which is later used to keep track of statistics like exe-



Figure 2: Query plan with 3 map-reduce jobs for
multi-table insert query

cution time, number of output rows, etc.

The Compiler is invoked by the driver upon receiv-
ing a HiveQL statement. The compiler translates this
statement into a plan which consists of a DAG of map-
reduce jobs. For more details see Section 3.2

The driver submits the individual map-reduce jobs from
the DAG to the Execution Engine in a topological
order. Hive currently uses Hadoop as its execution
engine.

We next describe the metastore and compiler in detail.

3.1 Metastore

The metastore is the system catalog which contains meta-
data about the tables stored in Hive. This metadata is spec-
ified during table creation and reused every time the table is
referenced in HiveQL. The metastore distinguishes Hive as a
traditional warehousing solution (ala Oracle or DB2) when
compared with similar data processing systems built on top
of map-reduce like architectures like Pig [7] and Scope [2].

The metastore contains the following objects:

1628

e Database - is a namespace for tables. The database
‘default’ is used for tables with no user supplied database
name.

Table - Metadata for table contains list of columns and
their types, owner, storage and SerDe information. It
can also contain any user supplied key and value data;
this facility can be used to store table statistics in the
future. Storage information includes location of the ta-
ble’s data in the underlying file system, data formats
and bucketing information. SerDe metadata includes
the implementation class of serializer and deserializer
methods and any supporting information required by
that implementation. All this information can be pro-
vided during the creation of table.

Partition - Each partition can have its own columns
and SerDe and storage information. This can be used
in the future to support schema evolution in a Hive
warehouse.

The storage system for the metastore should be optimized
for online transactions with random accesses and updates.
A file system like HDF'S is not suited since it is optimized
for sequential scans and not for random access. So, the
metastore uses either a traditional relational database (like
MySQL, Oracle) or file system (like local, NFS, AFS) and
not HDFS. As a result, HiveQL statements which only access
metadata objects are executed with very low latency. How-
ever, Hive has to explicitly maintain consistency between
metadata and data.

3.2 Compiler

The driver invokes the compiler with the HiveQL string
which can be one of DDL, DML or query statements. The
compiler converts the string to a plan. The plan consists
only of metadata operations in case of DDL statements,
and HDFS operations in case of LOAD statements. For in-
sert statements and queries, the plan consists of a directed-
acyclic graph (DAG) of map-reduce jobs.

e The Parser transforms a query string to a parse tree
representation.
The Semantic Analyzer transforms the parse tree to a
block-based internal query representation. It retrieves
schema information of the input tables from the metas-
tore. Using this information it verifies column names,
expands select * and does type-checking including
addition of implicit type conversions.
The Logical Plan Generator converts the internal query
representation to a logical plan, which consists of a tree
of logical operators.
The Optimizer performs multiple passes over the logi-
cal plan and rewrites it in several ways:

e Combines multiple joins which share the join key
into a single multi-way join, and hence a single
map-reduce job.

Adds repartition operators (also known as Re-
duceSinkOperator) for join, group-by and custom
map-reduce operators. These repartition opera-
tors mark the boundary between the map phase
and a reduce phase during physical plan genera-
tion.

Prunes columns early and pushes predicates closer
to the table scan operators in order to minimize



the amount of data transfered between operators.

e In case of partitioned tables, prunes partitions
that are not needed by the query

e In case of sampling queries, prunes buckets that
are not needed

Users can also provide hints to the optimizer to

e add partial aggregation operators to handle large
cardinality grouped aggregations

e add repartition operators to handle skew in grouped
aggregations

e perform joins in the map phase instead of the re-
duce phase

e The Physical Plan Generator converts the logical plan
into a physical plan, consisting of a DAG of map-
reduce jobs. It creates a new map-reduce job for each
of the marker operators — repartition and union all —
in the logical plan. It then assigns portions of the logi-
cal plan enclosed between the markers to mappers and
reducers of the map-reduce jobs.

In Figure 2, we illustrate the plan of the multi-table in-
sert query in Section 2.3. The nodes in the plan are phys-
ical operators and the edges represent the flow of data be-
tween operators. The last line in each node represents the
output schema of that operator. For lack of space, we do
not describe the parameters specified within each operator
node. The plan has three map-reduce jobs. Within the same
map-reduce job, the portion of the operator tree below the
repartition operator (ReduceSinkOperator) is executed by
the mapper and the portion above by the reducer. The
repartitioning itself is performed by the execution engine.

Notice that the first map-reduce job writes to two tem-
porary files to HDFS, tmp1 and tmp2, which are consumed
by the second and third map-reduce jobs respectively. Thus,
the second and third map-reduce jobs wait for the first map-
reduce job to finish.

4. DEMONSTRATION DESCRIPTION

The demonstration consists of the following;:

e Functionality — We demonstrate HiveQL constructs
via the StatusMeme application described in Section 2.3.
We expand the application to include queries which use
more HiveQL constructs and showcase the rule-based
optimizer.

Tuning — We also demonstrate our query plan viewer
which shows how HiveQL queries are translated into
physical plans of map-reduce jobs. We show how hints
can be used to modify the plans generated by the op-
timizer.

User Interface — We show our graphical user interface
which allows users to explore a Hive database, author
HiveQL queries, and monitor query execution.
Scalability — We illustrate the scalability of the sys-
tem by increasing the sizes of the input data and the
complexity of the queries.

S. FUTURE WORK

Hive is a first step in building an open-source warehouse
over a web-scale map-reduce data processing system (Hadoop).
The distinct characteristics of the underlying storage and ex-

1629

ecution engines has forced us to revisit techniques for query
processing. We have discovered that we have to either mod-
ify or rewrite several query processing algorithms to perform
efficiently in our setting.

Hive is an Apache sub-project, with an active user and de-
veloper community both within and outside Facebook. The
Hive warehouse instance in Facebook contains over 700 ter-
abytes of usable data and supports over 5000 queries on a
daily basis. This demonstration show cases the current ca-
pabilities of Hive. There are many important avenues of
future work:

e HiveQL currently accepts only a subset of SQL as valid
queries. We are working towards making HiveQL sub-
sume SQL syntax.

e Hive currently has a naive rule-based optimizer with a
small number of simple rules. We plan to build a cost-
based optimizer and adaptive optimization techniques
to come up with more efficient plans.

e We are exploring columnar storage and more intelli-
gent data placement to improve scan performance.

e We are running performance benchmarks based on [1]
to measure our progress as well as compare against
other systems [4]. In our preliminary experiments, we
have been able to improve the performance of Hadoop
itself by 20% compared to [1]. The improvements in-
volved using faster Hadoop data structures to process
the data, for example, using Text instead of String.
The same queries expressed easily in HiveQL had 20%
overhead compared to our optimized hadoop imple-
mentation, i.e., Hive’s performance is on par with the
hadoop code from [1]. Based on these experiments, we
have identified several areas for performance improve-
ment and have begun working on them. More details
are available in [4].

e We are enhancing the JDBC and ODBC drivers for
Hive for integration with commercial BI tools which
only work with traditional relational warehouses.

e We are exploring methods for multi-query optimiza-
tion techniques and performing generic n-way joins in
a single map-reduce job.

We would like to thank our user and developer community
for their contributions, with special thanks to Yuntao Jia,
Yongqgiang He, Dhruba Borthakur and Jeff Hammerbacher.

6. REFERENCES

[1] A. Pavlo et. al. A Comparison of Approaches to
Large-Scale Data Analysis. Proc. ACM SIGMOD, 2009.

[2] C.Ronnie et al. SCOPE: Easy and Efficient Parallel
Processing of Massive Data Sets. Proc. VLDB Endow.,
1(2):1265-1276, 2008.

[3] Apache Hadoop. Available at
http://wiki.apache.org/hadoop.

[4] Hive Performance Benchmark. Available at
https://issues.apache.org/jira/browse/HIVE-396.

[5] Hive Language Manual. Available at

http://wiki.apache.org/hadoop/Hive/LanguageManual.

Facebook Lexicon. Available at

http://www.facebook.com/lexicon.

[7] Apache Pig. http://wiki.apache.org/pig.

[8] Apache Thrift. http://incubator.apache.org/thrift.

=





