ONSET: Optics-enabled Network Defenses for Extreme Terabit DDoS Attacks

Distributed Denial of Service (DDoS) attacks continue to present a clear and imminent danger to critical network infrastructures. DDoS attacks have increased in sophistication with advanced strategies to continuously adapt (e.g., changing threat postures dynamically) and induce collateral damage (i.e., higher latency and loss for legitimate traffic). Furthermore, advanced attacks may also employ reconnaissance (e.g., mapping the network to find bottleneck links) to target the network infrastructure itself. In light of these trends, state-of-art defenses (e.g., advanced scrubbing, emerging software-defined defenses, and programmable switching hardware) have fundamental shortcomings. This project will develop a new framework, referred to as “Optics-enabled In-Network defenSe for Extreme Terabit DDoS attacks” (ONSET). The framework makes a case for new dimensions of defense agility that can programmatically control the topology of the network (in addition to the processing behavior) to tackle advanced and future attacks. The project will facilitate the use of optical technologies as an exciting visual medium for engaging K-12 students via suitable channels for dissemination. The project will also result in new course materials at the intersection of optical networking, software-defined networking, and network security to enable students to become domain experts in this emerging problem space.

The project will take an interdisciplinary approach spanning security, optics, systems, and networks, to address fundamental challenges along three thrusts: (1) novel “data plane” solutions to rapidly reconfigure the wavelengths and switches and new capabilities in programmable switches to rapidly identify malicious vs. benign traffic at line rate; (2) novel “control plane” orchestration mechanisms for scalable resource management algorithms and coordinated control across optical networking and programmable switches; and (3) new “northbound application programming interfaces (APIs)” to express novel defenses to combat current and future DDoS attacks (e.g., with reconnaissance). This project will develop a new framework, referred to as “Optics-enabled In-Network defenSe for Extreme Terabit DDoS attacks” (ONSET). The research efforts will result in end-to-end prototypes using open-source and standardized interfaces to demonstrate the novel defense capabilities of ONSET. The efficacy of ONSET will be evaluated using pilot studies on operational networks to create a roadmap to practical deployment, using real testbeds and large-scale simulations. The project outcomes will be released as open-source software tools, models, and simulation frameworks that will inform industry and academic work.

Funding Source: NSF SaTC-2132643, 1/1/2022 to 12/31/2025

People

  • BU PI: Alan (Zaoxing) Liu
  • All PIs: Ram Durairajan (Lead PI, UOregon), Vyas Sekar (CMU)

Publications

[NSDI] Sketchovsky: Enabling Ensembles of Sketches on Programmable Switches
Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, Peter Steenkiste
to appear in USENIX NSDI’23

[USENIX Security] Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric DDoS Attacks with Programmable Switches
Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir Braverman, Minlan Yu, Vyas Sekar
in USENIX Security’21

Software

[Sketchovsky] Github (available soon)